1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
|
/* Originally written by Bodo Moeller for the OpenSSL project.
* ====================================================================
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the OpenSSL open source
* license provided above.
*
* The elliptic curve binary polynomial software is originally written by
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
* Laboratories. */
#include <CCryptoBoringSSL_ec.h>
#include <assert.h>
#include <string.h>
#include <CCryptoBoringSSL_bn.h>
#include <CCryptoBoringSSL_err.h>
#include <CCryptoBoringSSL_mem.h>
#include <CCryptoBoringSSL_nid.h>
#include "internal.h"
#include "../../internal.h"
#include "../bn/internal.h"
#include "../delocate.h"
#include "builtin_curves.h"
static void ec_point_free(EC_POINT *point, int free_group);
static void ec_group_init_static_mont(BN_MONT_CTX *mont, size_t num_words,
const BN_ULONG *modulus,
const BN_ULONG *rr, uint64_t n0) {
bn_set_static_words(&mont->N, modulus, num_words);
bn_set_static_words(&mont->RR, rr, num_words);
#if defined(OPENSSL_64_BIT)
mont->n0[0] = n0;
#elif defined(OPENSSL_32_BIT)
mont->n0[0] = (uint32_t)n0;
mont->n0[1] = (uint32_t)(n0 >> 32);
#else
#error "unknown word length"
#endif
}
static void ec_group_set_a_minus3(EC_GROUP *group) {
const EC_FELEM *one = ec_felem_one(group);
group->a_is_minus3 = 1;
ec_felem_neg(group, &group->a, one);
ec_felem_sub(group, &group->a, &group->a, one);
ec_felem_sub(group, &group->a, &group->a, one);
}
DEFINE_METHOD_FUNCTION(EC_GROUP, EC_group_p224) {
out->curve_name = NID_secp224r1;
out->comment = "NIST P-224";
// 1.3.132.0.33
static const uint8_t kOIDP224[] = {0x2b, 0x81, 0x04, 0x00, 0x21};
OPENSSL_memcpy(out->oid, kOIDP224, sizeof(kOIDP224));
out->oid_len = sizeof(kOIDP224);
ec_group_init_static_mont(&out->field, OPENSSL_ARRAY_SIZE(kP224Field),
kP224Field, kP224FieldRR, kP224FieldN0);
ec_group_init_static_mont(&out->order, OPENSSL_ARRAY_SIZE(kP224Order),
kP224Order, kP224OrderRR, kP224OrderN0);
#if defined(BORINGSSL_HAS_UINT128) && !defined(OPENSSL_SMALL)
out->meth = EC_GFp_nistp224_method();
OPENSSL_memcpy(out->generator.raw.X.words, kP224GX, sizeof(kP224GX));
OPENSSL_memcpy(out->generator.raw.Y.words, kP224GY, sizeof(kP224GY));
out->generator.raw.Z.words[0] = 1;
OPENSSL_memcpy(out->b.words, kP224B, sizeof(kP224B));
#else
out->meth = EC_GFp_mont_method();
OPENSSL_memcpy(out->generator.raw.X.words, kP224MontGX, sizeof(kP224MontGX));
OPENSSL_memcpy(out->generator.raw.Y.words, kP224MontGY, sizeof(kP224MontGY));
OPENSSL_memcpy(out->generator.raw.Z.words, kP224FieldR, sizeof(kP224FieldR));
OPENSSL_memcpy(out->b.words, kP224MontB, sizeof(kP224MontB));
#endif
out->generator.group = out;
ec_group_set_a_minus3(out);
out->has_order = 1;
out->field_greater_than_order = 1;
}
DEFINE_METHOD_FUNCTION(EC_GROUP, EC_group_p256) {
out->curve_name = NID_X9_62_prime256v1;
out->comment = "NIST P-256";
// 1.2.840.10045.3.1.7
static const uint8_t kOIDP256[] = {0x2a, 0x86, 0x48, 0xce,
0x3d, 0x03, 0x01, 0x07};
OPENSSL_memcpy(out->oid, kOIDP256, sizeof(kOIDP256));
out->oid_len = sizeof(kOIDP256);
ec_group_init_static_mont(&out->field, OPENSSL_ARRAY_SIZE(kP256Field),
kP256Field, kP256FieldRR, kP256FieldN0);
ec_group_init_static_mont(&out->order, OPENSSL_ARRAY_SIZE(kP256Order),
kP256Order, kP256OrderRR, kP256OrderN0);
#if !defined(OPENSSL_NO_ASM) && \
(defined(OPENSSL_X86_64) || defined(OPENSSL_AARCH64)) && \
!defined(OPENSSL_SMALL)
out->meth = EC_GFp_nistz256_method();
#else
out->meth = EC_GFp_nistp256_method();
#endif
out->generator.group = out;
OPENSSL_memcpy(out->generator.raw.X.words, kP256MontGX, sizeof(kP256MontGX));
OPENSSL_memcpy(out->generator.raw.Y.words, kP256MontGY, sizeof(kP256MontGY));
OPENSSL_memcpy(out->generator.raw.Z.words, kP256FieldR, sizeof(kP256FieldR));
OPENSSL_memcpy(out->b.words, kP256MontB, sizeof(kP256MontB));
ec_group_set_a_minus3(out);
out->has_order = 1;
out->field_greater_than_order = 1;
}
DEFINE_METHOD_FUNCTION(EC_GROUP, EC_group_p384) {
out->curve_name = NID_secp384r1;
out->comment = "NIST P-384";
// 1.3.132.0.34
static const uint8_t kOIDP384[] = {0x2b, 0x81, 0x04, 0x00, 0x22};
OPENSSL_memcpy(out->oid, kOIDP384, sizeof(kOIDP384));
out->oid_len = sizeof(kOIDP384);
ec_group_init_static_mont(&out->field, OPENSSL_ARRAY_SIZE(kP384Field),
kP384Field, kP384FieldRR, kP384FieldN0);
ec_group_init_static_mont(&out->order, OPENSSL_ARRAY_SIZE(kP384Order),
kP384Order, kP384OrderRR, kP384OrderN0);
out->meth = EC_GFp_mont_method();
out->generator.group = out;
OPENSSL_memcpy(out->generator.raw.X.words, kP384MontGX, sizeof(kP384MontGX));
OPENSSL_memcpy(out->generator.raw.Y.words, kP384MontGY, sizeof(kP384MontGY));
OPENSSL_memcpy(out->generator.raw.Z.words, kP384FieldR, sizeof(kP384FieldR));
OPENSSL_memcpy(out->b.words, kP384MontB, sizeof(kP384MontB));
ec_group_set_a_minus3(out);
out->has_order = 1;
out->field_greater_than_order = 1;
}
DEFINE_METHOD_FUNCTION(EC_GROUP, EC_group_p521) {
out->curve_name = NID_secp521r1;
out->comment = "NIST P-521";
// 1.3.132.0.35
static const uint8_t kOIDP521[] = {0x2b, 0x81, 0x04, 0x00, 0x23};
OPENSSL_memcpy(out->oid, kOIDP521, sizeof(kOIDP521));
out->oid_len = sizeof(kOIDP521);
ec_group_init_static_mont(&out->field, OPENSSL_ARRAY_SIZE(kP521Field),
kP521Field, kP521FieldRR, kP521FieldN0);
ec_group_init_static_mont(&out->order, OPENSSL_ARRAY_SIZE(kP521Order),
kP521Order, kP521OrderRR, kP521OrderN0);
out->meth = EC_GFp_mont_method();
out->generator.group = out;
OPENSSL_memcpy(out->generator.raw.X.words, kP521MontGX, sizeof(kP521MontGX));
OPENSSL_memcpy(out->generator.raw.Y.words, kP521MontGY, sizeof(kP521MontGY));
OPENSSL_memcpy(out->generator.raw.Z.words, kP521FieldR, sizeof(kP521FieldR));
OPENSSL_memcpy(out->b.words, kP521MontB, sizeof(kP521MontB));
ec_group_set_a_minus3(out);
out->has_order = 1;
out->field_greater_than_order = 1;
}
EC_GROUP *EC_GROUP_new_curve_GFp(const BIGNUM *p, const BIGNUM *a,
const BIGNUM *b, BN_CTX *ctx) {
if (BN_num_bytes(p) > EC_MAX_BYTES) {
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FIELD);
return NULL;
}
BN_CTX *new_ctx = NULL;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL) {
return NULL;
}
}
// Historically, |a| and |b| were not required to be fully reduced.
// TODO(davidben): Can this be removed?
EC_GROUP *ret = NULL;
BN_CTX_start(ctx);
BIGNUM *a_reduced = BN_CTX_get(ctx);
BIGNUM *b_reduced = BN_CTX_get(ctx);
if (a_reduced == NULL || b_reduced == NULL ||
!BN_nnmod(a_reduced, a, p, ctx) ||
!BN_nnmod(b_reduced, b, p, ctx)) {
goto err;
}
ret = OPENSSL_malloc(sizeof(EC_GROUP));
if (ret == NULL) {
return NULL;
}
OPENSSL_memset(ret, 0, sizeof(EC_GROUP));
ret->references = 1;
ret->meth = EC_GFp_mont_method();
bn_mont_ctx_init(&ret->field);
bn_mont_ctx_init(&ret->order);
ret->generator.group = ret;
if (!ec_GFp_simple_group_set_curve(ret, p, a_reduced, b_reduced, ctx)) {
EC_GROUP_free(ret);
ret = NULL;
goto err;
}
err:
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}
int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator,
const BIGNUM *order, const BIGNUM *cofactor) {
if (group->curve_name != NID_undef || group->has_order ||
generator->group != group) {
// |EC_GROUP_set_generator| may only be used with |EC_GROUP|s returned by
// |EC_GROUP_new_curve_GFp| and may only used once on each group.
// |generator| must have been created from |EC_GROUP_new_curve_GFp|, not a
// copy, so that |generator->group->generator| is set correctly.
OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
if (BN_num_bytes(order) > EC_MAX_BYTES) {
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_GROUP_ORDER);
return 0;
}
// Require a cofactor of one for custom curves, which implies prime order.
if (!BN_is_one(cofactor)) {
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COFACTOR);
return 0;
}
// Require that p < 2×order. This simplifies some ECDSA operations.
//
// Note any curve which did not satisfy this must have been invalid or use a
// tiny prime (less than 17). See the proof in |field_element_to_scalar| in
// the ECDSA implementation.
int ret = 0;
BIGNUM *tmp = BN_new();
if (tmp == NULL ||
!BN_lshift1(tmp, order)) {
goto err;
}
if (BN_cmp(tmp, &group->field.N) <= 0) {
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_GROUP_ORDER);
goto err;
}
EC_AFFINE affine;
if (!ec_jacobian_to_affine(group, &affine, &generator->raw) ||
!BN_MONT_CTX_set(&group->order, order, NULL)) {
goto err;
}
group->field_greater_than_order = BN_cmp(&group->field.N, order) > 0;
group->generator.raw.X = affine.X;
group->generator.raw.Y = affine.Y;
// |raw.Z| was set to 1 by |EC_GROUP_new_curve_GFp|.
group->has_order = 1;
ret = 1;
err:
BN_free(tmp);
return ret;
}
EC_GROUP *EC_GROUP_new_by_curve_name(int nid) {
switch (nid) {
case NID_secp224r1:
return (EC_GROUP *)EC_group_p224();
case NID_X9_62_prime256v1:
return (EC_GROUP *)EC_group_p256();
case NID_secp384r1:
return (EC_GROUP *)EC_group_p384();
case NID_secp521r1:
return (EC_GROUP *)EC_group_p521();
default:
OPENSSL_PUT_ERROR(EC, EC_R_UNKNOWN_GROUP);
return NULL;
}
}
void EC_GROUP_free(EC_GROUP *group) {
if (group == NULL ||
// Built-in curves are static.
group->curve_name != NID_undef ||
!CRYPTO_refcount_dec_and_test_zero(&group->references)) {
return;
}
bn_mont_ctx_cleanup(&group->order);
bn_mont_ctx_cleanup(&group->field);
OPENSSL_free(group);
}
EC_GROUP *EC_GROUP_dup(const EC_GROUP *a) {
if (a == NULL ||
// Built-in curves are static.
a->curve_name != NID_undef) {
return (EC_GROUP *)a;
}
// Groups are logically immutable (but for |EC_GROUP_set_generator| which must
// be called early on), so we simply take a reference.
EC_GROUP *group = (EC_GROUP *)a;
CRYPTO_refcount_inc(&group->references);
return group;
}
int EC_GROUP_cmp(const EC_GROUP *a, const EC_GROUP *b, BN_CTX *ignored) {
// Note this function returns 0 if equal and non-zero otherwise.
if (a == b) {
return 0;
}
if (a->curve_name != b->curve_name) {
return 1;
}
if (a->curve_name != NID_undef) {
// Built-in curves may be compared by curve name alone.
return 0;
}
// |a| and |b| are both custom curves. We compare the entire curve
// structure. If |a| or |b| is incomplete (due to legacy OpenSSL mistakes,
// custom curve construction is sadly done in two parts) but otherwise not the
// same object, we consider them always unequal.
return a->meth != b->meth || //
!a->has_order || !b->has_order ||
BN_cmp(&a->order.N, &b->order.N) != 0 ||
BN_cmp(&a->field.N, &b->field.N) != 0 ||
!ec_felem_equal(a, &a->a, &b->a) || //
!ec_felem_equal(a, &a->b, &b->b) ||
!ec_GFp_simple_points_equal(a, &a->generator.raw, &b->generator.raw);
}
const EC_POINT *EC_GROUP_get0_generator(const EC_GROUP *group) {
return group->has_order ? &group->generator : NULL;
}
const BIGNUM *EC_GROUP_get0_order(const EC_GROUP *group) {
assert(group->has_order);
return &group->order.N;
}
int EC_GROUP_get_order(const EC_GROUP *group, BIGNUM *order, BN_CTX *ctx) {
if (BN_copy(order, EC_GROUP_get0_order(group)) == NULL) {
return 0;
}
return 1;
}
int EC_GROUP_order_bits(const EC_GROUP *group) {
return BN_num_bits(&group->order.N);
}
int EC_GROUP_get_cofactor(const EC_GROUP *group, BIGNUM *cofactor,
BN_CTX *ctx) {
// All |EC_GROUP|s have cofactor 1.
return BN_set_word(cofactor, 1);
}
int EC_GROUP_get_curve_GFp(const EC_GROUP *group, BIGNUM *out_p, BIGNUM *out_a,
BIGNUM *out_b, BN_CTX *ctx) {
return ec_GFp_simple_group_get_curve(group, out_p, out_a, out_b);
}
int EC_GROUP_get_curve_name(const EC_GROUP *group) { return group->curve_name; }
unsigned EC_GROUP_get_degree(const EC_GROUP *group) {
return BN_num_bits(&group->field.N);
}
const char *EC_curve_nid2nist(int nid) {
switch (nid) {
case NID_secp224r1:
return "P-224";
case NID_X9_62_prime256v1:
return "P-256";
case NID_secp384r1:
return "P-384";
case NID_secp521r1:
return "P-521";
}
return NULL;
}
int EC_curve_nist2nid(const char *name) {
if (strcmp(name, "P-224") == 0) {
return NID_secp224r1;
}
if (strcmp(name, "P-256") == 0) {
return NID_X9_62_prime256v1;
}
if (strcmp(name, "P-384") == 0) {
return NID_secp384r1;
}
if (strcmp(name, "P-521") == 0) {
return NID_secp521r1;
}
return NID_undef;
}
EC_POINT *EC_POINT_new(const EC_GROUP *group) {
if (group == NULL) {
OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER);
return NULL;
}
EC_POINT *ret = OPENSSL_malloc(sizeof *ret);
if (ret == NULL) {
return NULL;
}
ret->group = EC_GROUP_dup(group);
ec_GFp_simple_point_init(&ret->raw);
return ret;
}
static void ec_point_free(EC_POINT *point, int free_group) {
if (!point) {
return;
}
if (free_group) {
EC_GROUP_free(point->group);
}
OPENSSL_free(point);
}
void EC_POINT_free(EC_POINT *point) {
ec_point_free(point, 1 /* free group */);
}
void EC_POINT_clear_free(EC_POINT *point) { EC_POINT_free(point); }
int EC_POINT_copy(EC_POINT *dest, const EC_POINT *src) {
if (EC_GROUP_cmp(dest->group, src->group, NULL) != 0) {
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
if (dest == src) {
return 1;
}
ec_GFp_simple_point_copy(&dest->raw, &src->raw);
return 1;
}
EC_POINT *EC_POINT_dup(const EC_POINT *a, const EC_GROUP *group) {
if (a == NULL) {
return NULL;
}
EC_POINT *ret = EC_POINT_new(group);
if (ret == NULL ||
!EC_POINT_copy(ret, a)) {
EC_POINT_free(ret);
return NULL;
}
return ret;
}
int EC_POINT_set_to_infinity(const EC_GROUP *group, EC_POINT *point) {
if (EC_GROUP_cmp(group, point->group, NULL) != 0) {
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
ec_GFp_simple_point_set_to_infinity(group, &point->raw);
return 1;
}
int EC_POINT_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) {
if (EC_GROUP_cmp(group, point->group, NULL) != 0) {
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
return ec_GFp_simple_is_at_infinity(group, &point->raw);
}
int EC_POINT_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
BN_CTX *ctx) {
if (EC_GROUP_cmp(group, point->group, NULL) != 0) {
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
return ec_GFp_simple_is_on_curve(group, &point->raw);
}
int EC_POINT_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b,
BN_CTX *ctx) {
if (EC_GROUP_cmp(group, a->group, NULL) != 0 ||
EC_GROUP_cmp(group, b->group, NULL) != 0) {
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
return -1;
}
// Note |EC_POINT_cmp| returns zero for equality and non-zero for inequality.
return ec_GFp_simple_points_equal(group, &a->raw, &b->raw) ? 0 : 1;
}
int EC_POINT_get_affine_coordinates_GFp(const EC_GROUP *group,
const EC_POINT *point, BIGNUM *x,
BIGNUM *y, BN_CTX *ctx) {
if (group->meth->point_get_affine_coordinates == 0) {
OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
if (EC_GROUP_cmp(group, point->group, NULL) != 0) {
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
EC_FELEM x_felem, y_felem;
if (!group->meth->point_get_affine_coordinates(group, &point->raw,
x == NULL ? NULL : &x_felem,
y == NULL ? NULL : &y_felem) ||
(x != NULL && !ec_felem_to_bignum(group, x, &x_felem)) ||
(y != NULL && !ec_felem_to_bignum(group, y, &y_felem))) {
return 0;
}
return 1;
}
int EC_POINT_get_affine_coordinates(const EC_GROUP *group,
const EC_POINT *point, BIGNUM *x, BIGNUM *y,
BN_CTX *ctx) {
return EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx);
}
void ec_affine_to_jacobian(const EC_GROUP *group, EC_JACOBIAN *out,
const EC_AFFINE *p) {
out->X = p->X;
out->Y = p->Y;
out->Z = *ec_felem_one(group);
}
int ec_jacobian_to_affine(const EC_GROUP *group, EC_AFFINE *out,
const EC_JACOBIAN *p) {
return group->meth->point_get_affine_coordinates(group, p, &out->X, &out->Y);
}
int ec_jacobian_to_affine_batch(const EC_GROUP *group, EC_AFFINE *out,
const EC_JACOBIAN *in, size_t num) {
if (group->meth->jacobian_to_affine_batch == NULL) {
OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
return group->meth->jacobian_to_affine_batch(group, out, in, num);
}
int ec_point_set_affine_coordinates(const EC_GROUP *group, EC_AFFINE *out,
const EC_FELEM *x, const EC_FELEM *y) {
void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a,
const EC_FELEM *b) = group->meth->felem_mul;
void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) =
group->meth->felem_sqr;
// Check if the point is on the curve.
EC_FELEM lhs, rhs;
felem_sqr(group, &lhs, y); // lhs = y^2
felem_sqr(group, &rhs, x); // rhs = x^2
ec_felem_add(group, &rhs, &rhs, &group->a); // rhs = x^2 + a
felem_mul(group, &rhs, &rhs, x); // rhs = x^3 + ax
ec_felem_add(group, &rhs, &rhs, &group->b); // rhs = x^3 + ax + b
if (!ec_felem_equal(group, &lhs, &rhs)) {
OPENSSL_PUT_ERROR(EC, EC_R_POINT_IS_NOT_ON_CURVE);
// In the event of an error, defend against the caller not checking the
// return value by setting a known safe value. Note this may not be possible
// if the caller is in the process of constructing an arbitrary group and
// the generator is missing.
if (group->has_order) {
out->X = group->generator.raw.X;
out->Y = group->generator.raw.Y;
}
return 0;
}
out->X = *x;
out->Y = *y;
return 1;
}
int EC_POINT_set_affine_coordinates_GFp(const EC_GROUP *group, EC_POINT *point,
const BIGNUM *x, const BIGNUM *y,
BN_CTX *ctx) {
if (EC_GROUP_cmp(group, point->group, NULL) != 0) {
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
if (x == NULL || y == NULL) {
OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
EC_FELEM x_felem, y_felem;
EC_AFFINE affine;
if (!ec_bignum_to_felem(group, &x_felem, x) ||
!ec_bignum_to_felem(group, &y_felem, y) ||
!ec_point_set_affine_coordinates(group, &affine, &x_felem, &y_felem)) {
// In the event of an error, defend against the caller not checking the
// return value by setting a known safe value.
ec_set_to_safe_point(group, &point->raw);
return 0;
}
ec_affine_to_jacobian(group, &point->raw, &affine);
return 1;
}
int EC_POINT_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point,
const BIGNUM *x, const BIGNUM *y,
BN_CTX *ctx) {
return EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx);
}
int EC_POINT_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
const EC_POINT *b, BN_CTX *ctx) {
if (EC_GROUP_cmp(group, r->group, NULL) != 0 ||
EC_GROUP_cmp(group, a->group, NULL) != 0 ||
EC_GROUP_cmp(group, b->group, NULL) != 0) {
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
group->meth->add(group, &r->raw, &a->raw, &b->raw);
return 1;
}
int EC_POINT_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
BN_CTX *ctx) {
if (EC_GROUP_cmp(group, r->group, NULL) != 0 ||
EC_GROUP_cmp(group, a->group, NULL) != 0) {
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
group->meth->dbl(group, &r->raw, &a->raw);
return 1;
}
int EC_POINT_invert(const EC_GROUP *group, EC_POINT *a, BN_CTX *ctx) {
if (EC_GROUP_cmp(group, a->group, NULL) != 0) {
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
ec_GFp_simple_invert(group, &a->raw);
return 1;
}
static int arbitrary_bignum_to_scalar(const EC_GROUP *group, EC_SCALAR *out,
const BIGNUM *in, BN_CTX *ctx) {
if (ec_bignum_to_scalar(group, out, in)) {
return 1;
}
ERR_clear_error();
// This is an unusual input, so we do not guarantee constant-time processing.
BN_CTX_start(ctx);
BIGNUM *tmp = BN_CTX_get(ctx);
int ok = tmp != NULL &&
BN_nnmod(tmp, in, EC_GROUP_get0_order(group), ctx) &&
ec_bignum_to_scalar(group, out, tmp);
BN_CTX_end(ctx);
return ok;
}
int ec_point_mul_no_self_test(const EC_GROUP *group, EC_POINT *r,
const BIGNUM *g_scalar, const EC_POINT *p,
const BIGNUM *p_scalar, BN_CTX *ctx) {
// Previously, this function set |r| to the point at infinity if there was
// nothing to multiply. But, nobody should be calling this function with
// nothing to multiply in the first place.
if ((g_scalar == NULL && p_scalar == NULL) ||
(p == NULL) != (p_scalar == NULL)) {
OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
if (EC_GROUP_cmp(group, r->group, NULL) != 0 ||
(p != NULL && EC_GROUP_cmp(group, p->group, NULL) != 0)) {
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
int ret = 0;
BN_CTX *new_ctx = NULL;
if (ctx == NULL) {
new_ctx = BN_CTX_new();
if (new_ctx == NULL) {
goto err;
}
ctx = new_ctx;
}
// If both |g_scalar| and |p_scalar| are non-NULL,
// |ec_point_mul_scalar_public| would share the doublings between the two
// products, which would be more efficient. However, we conservatively assume
// the caller needs a constant-time operation. (ECDSA verification does not
// use this function.)
//
// Previously, the low-level constant-time multiplication function aligned
// with this function's calling convention, but this was misleading. Curves
// which combined the two multiplications did not avoid the doubling case
// in the incomplete addition formula and were not constant-time.
if (g_scalar != NULL) {
EC_SCALAR scalar;
if (!arbitrary_bignum_to_scalar(group, &scalar, g_scalar, ctx) ||
!ec_point_mul_scalar_base(group, &r->raw, &scalar)) {
goto err;
}
}
if (p_scalar != NULL) {
EC_SCALAR scalar;
EC_JACOBIAN tmp;
if (!arbitrary_bignum_to_scalar(group, &scalar, p_scalar, ctx) ||
!ec_point_mul_scalar(group, &tmp, &p->raw, &scalar)) {
goto err;
}
if (g_scalar == NULL) {
OPENSSL_memcpy(&r->raw, &tmp, sizeof(EC_JACOBIAN));
} else {
group->meth->add(group, &r->raw, &r->raw, &tmp);
}
}
ret = 1;
err:
BN_CTX_free(new_ctx);
return ret;
}
int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar,
const EC_POINT *p, const BIGNUM *p_scalar, BN_CTX *ctx) {
boringssl_ensure_ecc_self_test();
return ec_point_mul_no_self_test(group, r, g_scalar, p, p_scalar, ctx);
}
int ec_point_mul_scalar_public(const EC_GROUP *group, EC_JACOBIAN *r,
const EC_SCALAR *g_scalar, const EC_JACOBIAN *p,
const EC_SCALAR *p_scalar) {
if (g_scalar == NULL || p_scalar == NULL || p == NULL) {
OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
if (group->meth->mul_public == NULL) {
return group->meth->mul_public_batch(group, r, g_scalar, p, p_scalar, 1);
}
group->meth->mul_public(group, r, g_scalar, p, p_scalar);
return 1;
}
int ec_point_mul_scalar_public_batch(const EC_GROUP *group, EC_JACOBIAN *r,
const EC_SCALAR *g_scalar,
const EC_JACOBIAN *points,
const EC_SCALAR *scalars, size_t num) {
if (group->meth->mul_public_batch == NULL) {
OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
return group->meth->mul_public_batch(group, r, g_scalar, points, scalars,
num);
}
int ec_point_mul_scalar(const EC_GROUP *group, EC_JACOBIAN *r,
const EC_JACOBIAN *p, const EC_SCALAR *scalar) {
if (p == NULL || scalar == NULL) {
OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
group->meth->mul(group, r, p, scalar);
// Check the result is on the curve to defend against fault attacks or bugs.
// This has negligible cost compared to the multiplication.
if (!ec_GFp_simple_is_on_curve(group, r)) {
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
return 0;
}
return 1;
}
int ec_point_mul_scalar_base(const EC_GROUP *group, EC_JACOBIAN *r,
const EC_SCALAR *scalar) {
if (scalar == NULL) {
OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
group->meth->mul_base(group, r, scalar);
// Check the result is on the curve to defend against fault attacks or bugs.
// This has negligible cost compared to the multiplication. This can only
// happen on bug or CPU fault, so it okay to leak this. The alternative would
// be to proceed with bad data.
if (!constant_time_declassify_int(ec_GFp_simple_is_on_curve(group, r))) {
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
return 0;
}
return 1;
}
int ec_point_mul_scalar_batch(const EC_GROUP *group, EC_JACOBIAN *r,
const EC_JACOBIAN *p0, const EC_SCALAR *scalar0,
const EC_JACOBIAN *p1, const EC_SCALAR *scalar1,
const EC_JACOBIAN *p2,
const EC_SCALAR *scalar2) {
if (group->meth->mul_batch == NULL) {
OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
group->meth->mul_batch(group, r, p0, scalar0, p1, scalar1, p2, scalar2);
// Check the result is on the curve to defend against fault attacks or bugs.
// This has negligible cost compared to the multiplication.
if (!ec_GFp_simple_is_on_curve(group, r)) {
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
return 0;
}
return 1;
}
int ec_init_precomp(const EC_GROUP *group, EC_PRECOMP *out,
const EC_JACOBIAN *p) {
if (group->meth->init_precomp == NULL) {
OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
return group->meth->init_precomp(group, out, p);
}
int ec_point_mul_scalar_precomp(const EC_GROUP *group, EC_JACOBIAN *r,
const EC_PRECOMP *p0, const EC_SCALAR *scalar0,
const EC_PRECOMP *p1, const EC_SCALAR *scalar1,
const EC_PRECOMP *p2,
const EC_SCALAR *scalar2) {
if (group->meth->mul_precomp == NULL) {
OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
group->meth->mul_precomp(group, r, p0, scalar0, p1, scalar1, p2, scalar2);
// Check the result is on the curve to defend against fault attacks or bugs.
// This has negligible cost compared to the multiplication.
if (!ec_GFp_simple_is_on_curve(group, r)) {
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
return 0;
}
return 1;
}
void ec_point_select(const EC_GROUP *group, EC_JACOBIAN *out, BN_ULONG mask,
const EC_JACOBIAN *a, const EC_JACOBIAN *b) {
ec_felem_select(group, &out->X, mask, &a->X, &b->X);
ec_felem_select(group, &out->Y, mask, &a->Y, &b->Y);
ec_felem_select(group, &out->Z, mask, &a->Z, &b->Z);
}
void ec_affine_select(const EC_GROUP *group, EC_AFFINE *out, BN_ULONG mask,
const EC_AFFINE *a, const EC_AFFINE *b) {
ec_felem_select(group, &out->X, mask, &a->X, &b->X);
ec_felem_select(group, &out->Y, mask, &a->Y, &b->Y);
}
void ec_precomp_select(const EC_GROUP *group, EC_PRECOMP *out, BN_ULONG mask,
const EC_PRECOMP *a, const EC_PRECOMP *b) {
static_assert(sizeof(out->comb) == sizeof(*out),
"out->comb does not span the entire structure");
for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(out->comb); i++) {
ec_affine_select(group, &out->comb[i], mask, &a->comb[i], &b->comb[i]);
}
}
int ec_cmp_x_coordinate(const EC_GROUP *group, const EC_JACOBIAN *p,
const EC_SCALAR *r) {
return group->meth->cmp_x_coordinate(group, p, r);
}
int ec_get_x_coordinate_as_scalar(const EC_GROUP *group, EC_SCALAR *out,
const EC_JACOBIAN *p) {
uint8_t bytes[EC_MAX_BYTES];
size_t len;
if (!ec_get_x_coordinate_as_bytes(group, bytes, &len, sizeof(bytes), p)) {
return 0;
}
// The x-coordinate is bounded by p, but we need a scalar, bounded by the
// order. These may not have the same size. However, we must have p < 2×order,
// assuming p is not tiny (p >= 17).
//
// Thus |bytes| will fit in |order.width + 1| words, and we can reduce by
// performing at most one subtraction.
//
// Proof: We only work with prime order curves, so the number of points on
// the curve is the order. Thus Hasse's theorem gives:
//
// |order - (p + 1)| <= 2×sqrt(p)
// p + 1 - order <= 2×sqrt(p)
// p + 1 - 2×sqrt(p) <= order
// p + 1 - 2×(p/4) < order (p/4 > sqrt(p) for p >= 17)
// p/2 < p/2 + 1 < order
// p < 2×order
//
// Additionally, one can manually check this property for built-in curves. It
// is enforced for legacy custom curves in |EC_GROUP_set_generator|.
const BIGNUM *order = EC_GROUP_get0_order(group);
BN_ULONG words[EC_MAX_WORDS + 1] = {0};
bn_big_endian_to_words(words, order->width + 1, bytes, len);
bn_reduce_once(out->words, words, /*carry=*/words[order->width], order->d,
order->width);
return 1;
}
int ec_get_x_coordinate_as_bytes(const EC_GROUP *group, uint8_t *out,
size_t *out_len, size_t max_out,
const EC_JACOBIAN *p) {
size_t len = BN_num_bytes(&group->field.N);
assert(len <= EC_MAX_BYTES);
if (max_out < len) {
OPENSSL_PUT_ERROR(EC, EC_R_BUFFER_TOO_SMALL);
return 0;
}
EC_FELEM x;
if (!group->meth->point_get_affine_coordinates(group, p, &x, NULL)) {
return 0;
}
ec_felem_to_bytes(group, out, out_len, &x);
*out_len = len;
return 1;
}
void ec_set_to_safe_point(const EC_GROUP *group, EC_JACOBIAN *out) {
if (group->has_order) {
ec_GFp_simple_point_copy(out, &group->generator.raw);
} else {
// The generator can be missing if the caller is in the process of
// constructing an arbitrary group. In this case, we give up and use the
// point at infinity.
ec_GFp_simple_point_set_to_infinity(group, out);
}
}
void EC_GROUP_set_asn1_flag(EC_GROUP *group, int flag) {}
int EC_GROUP_get_asn1_flag(const EC_GROUP *group) {
return OPENSSL_EC_NAMED_CURVE;
}
const EC_METHOD *EC_GROUP_method_of(const EC_GROUP *group) {
// This function exists purely to give callers a way to call
// |EC_METHOD_get_field_type|. cryptography.io crashes if |EC_GROUP_method_of|
// returns NULL, so return some other garbage pointer.
return (const EC_METHOD *)0x12340000;
}
int EC_METHOD_get_field_type(const EC_METHOD *meth) {
return NID_X9_62_prime_field;
}
void EC_GROUP_set_point_conversion_form(EC_GROUP *group,
point_conversion_form_t form) {
if (form != POINT_CONVERSION_UNCOMPRESSED) {
abort();
}
}
|