File: oct.c

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (359 lines) | stat: -rw-r--r-- 11,473 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
/* Originally written by Bodo Moeller for the OpenSSL project.
 * ====================================================================
 * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */
/* ====================================================================
 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
 *
 * Portions of the attached software ("Contribution") are developed by
 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
 *
 * The Contribution is licensed pursuant to the OpenSSL open source
 * license provided above.
 *
 * The elliptic curve binary polynomial software is originally written by
 * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
 * Laboratories. */

#include <CCryptoBoringSSL_ec.h>

#include <CCryptoBoringSSL_bn.h>
#include <CCryptoBoringSSL_err.h>

#include "internal.h"


size_t ec_point_byte_len(const EC_GROUP *group, point_conversion_form_t form) {
  if (form != POINT_CONVERSION_COMPRESSED &&
      form != POINT_CONVERSION_UNCOMPRESSED) {
    OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FORM);
    return 0;
  }

  const size_t field_len = BN_num_bytes(&group->field.N);
  size_t output_len = 1 /* type byte */ + field_len;
  if (form == POINT_CONVERSION_UNCOMPRESSED) {
    // Uncompressed points have a second coordinate.
    output_len += field_len;
  }
  return output_len;
}

size_t ec_point_to_bytes(const EC_GROUP *group, const EC_AFFINE *point,
                         point_conversion_form_t form, uint8_t *buf,
                         size_t max_out) {
  size_t output_len = ec_point_byte_len(group, form);
  if (max_out < output_len) {
    OPENSSL_PUT_ERROR(EC, EC_R_BUFFER_TOO_SMALL);
    return 0;
  }

  size_t field_len;
  ec_felem_to_bytes(group, buf + 1, &field_len, &point->X);
  assert(field_len == BN_num_bytes(&group->field.N));

  if (form == POINT_CONVERSION_UNCOMPRESSED) {
    ec_felem_to_bytes(group, buf + 1 + field_len, &field_len, &point->Y);
    assert(field_len == BN_num_bytes(&group->field.N));
    buf[0] = form;
  } else {
    uint8_t y_buf[EC_MAX_BYTES];
    ec_felem_to_bytes(group, y_buf, &field_len, &point->Y);
    buf[0] = form + (y_buf[field_len - 1] & 1);
  }

  return output_len;
}

int ec_point_from_uncompressed(const EC_GROUP *group, EC_AFFINE *out,
                               const uint8_t *in, size_t len) {
  const size_t field_len = BN_num_bytes(&group->field.N);
  if (len != 1 + 2 * field_len || in[0] != POINT_CONVERSION_UNCOMPRESSED) {
    OPENSSL_PUT_ERROR(EC, EC_R_INVALID_ENCODING);
    return 0;
  }

  EC_FELEM x, y;
  if (!ec_felem_from_bytes(group, &x, in + 1, field_len) ||
      !ec_felem_from_bytes(group, &y, in + 1 + field_len, field_len) ||
      !ec_point_set_affine_coordinates(group, out, &x, &y)) {
    return 0;
  }

  return 1;
}

static int ec_GFp_simple_oct2point(const EC_GROUP *group, EC_POINT *point,
                                   const uint8_t *buf, size_t len,
                                   BN_CTX *ctx) {
  if (len == 0) {
    OPENSSL_PUT_ERROR(EC, EC_R_BUFFER_TOO_SMALL);
    return 0;
  }

  point_conversion_form_t form = buf[0];
  if (form == POINT_CONVERSION_UNCOMPRESSED) {
    EC_AFFINE affine;
    if (!ec_point_from_uncompressed(group, &affine, buf, len)) {
      // In the event of an error, defend against the caller not checking the
      // return value by setting a known safe value.
      ec_set_to_safe_point(group, &point->raw);
      return 0;
    }
    ec_affine_to_jacobian(group, &point->raw, &affine);
    return 1;
  }

  const int y_bit = form & 1;
  const size_t field_len = BN_num_bytes(&group->field.N);
  form = form & ~1u;
  if (form != POINT_CONVERSION_COMPRESSED ||
      len != 1 /* type byte */ + field_len) {
    OPENSSL_PUT_ERROR(EC, EC_R_INVALID_ENCODING);
    return 0;
  }

  // TODO(davidben): Integrate compressed coordinates with the lower-level EC
  // abstractions. This requires a way to compute square roots, which is tricky
  // for primes which are not 3 (mod 4), namely P-224 and custom curves. P-224's
  // prime is particularly inconvenient for compressed coordinates. See
  // https://cr.yp.to/papers/sqroot.pdf
  BN_CTX *new_ctx = NULL;
  if (ctx == NULL) {
    ctx = new_ctx = BN_CTX_new();
    if (ctx == NULL) {
      return 0;
    }
  }

  int ret = 0;
  BN_CTX_start(ctx);
  BIGNUM *x = BN_CTX_get(ctx);
  if (x == NULL || !BN_bin2bn(buf + 1, field_len, x)) {
    goto err;
  }
  if (BN_ucmp(x, &group->field.N) >= 0) {
    OPENSSL_PUT_ERROR(EC, EC_R_INVALID_ENCODING);
    goto err;
  }

  if (!EC_POINT_set_compressed_coordinates_GFp(group, point, x, y_bit, ctx)) {
    goto err;
  }

  ret = 1;

err:
  BN_CTX_end(ctx);
  BN_CTX_free(new_ctx);
  return ret;
}

int EC_POINT_oct2point(const EC_GROUP *group, EC_POINT *point,
                       const uint8_t *buf, size_t len, BN_CTX *ctx) {
  if (EC_GROUP_cmp(group, point->group, NULL) != 0) {
    OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
    return 0;
  }
  return ec_GFp_simple_oct2point(group, point, buf, len, ctx);
}

size_t EC_POINT_point2oct(const EC_GROUP *group, const EC_POINT *point,
                          point_conversion_form_t form, uint8_t *buf,
                          size_t max_out, BN_CTX *ctx) {
  if (EC_GROUP_cmp(group, point->group, NULL) != 0) {
    OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
    return 0;
  }
  if (buf == NULL) {
    // When |buf| is NULL, just return the number of bytes that would be
    // written, without doing an expensive Jacobian-to-affine conversion.
    if (ec_GFp_simple_is_at_infinity(group, &point->raw)) {
      OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
      return 0;
    }
    return ec_point_byte_len(group, form);
  }
  EC_AFFINE affine;
  if (!ec_jacobian_to_affine(group, &affine, &point->raw)) {
    return 0;
  }
  return ec_point_to_bytes(group, &affine, form, buf, max_out);
}

size_t EC_POINT_point2buf(const EC_GROUP *group, const EC_POINT *point,
                          point_conversion_form_t form, uint8_t **out_buf,
                          BN_CTX *ctx) {
  *out_buf = NULL;
  size_t len = EC_POINT_point2oct(group, point, form, NULL, 0, ctx);
  if (len == 0) {
    return 0;
  }
  uint8_t *buf = OPENSSL_malloc(len);
  if (buf == NULL) {
    return 0;
  }
  len = EC_POINT_point2oct(group, point, form, buf, len, ctx);
  if (len == 0) {
    OPENSSL_free(buf);
    return 0;
  }
  *out_buf = buf;
  return len;
}

int EC_POINT_set_compressed_coordinates_GFp(const EC_GROUP *group,
                                            EC_POINT *point, const BIGNUM *x,
                                            int y_bit, BN_CTX *ctx) {
  if (EC_GROUP_cmp(group, point->group, NULL) != 0) {
    OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
    return 0;
  }

  const BIGNUM *field = &group->field.N;
  if (BN_is_negative(x) || BN_cmp(x, field) >= 0) {
    OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COMPRESSED_POINT);
    return 0;
  }

  BN_CTX *new_ctx = NULL;
  int ret = 0;

  ERR_clear_error();

  if (ctx == NULL) {
    ctx = new_ctx = BN_CTX_new();
    if (ctx == NULL) {
      return 0;
    }
  }

  y_bit = (y_bit != 0);

  BN_CTX_start(ctx);
  BIGNUM *tmp1 = BN_CTX_get(ctx);
  BIGNUM *tmp2 = BN_CTX_get(ctx);
  BIGNUM *a = BN_CTX_get(ctx);
  BIGNUM *b = BN_CTX_get(ctx);
  BIGNUM *y = BN_CTX_get(ctx);
  if (y == NULL ||
      !EC_GROUP_get_curve_GFp(group, NULL, a, b, ctx)) {
    goto err;
  }

  // Recover y.  We have a Weierstrass equation
  //     y^2 = x^3 + a*x + b,
  // so  y  is one of the square roots of  x^3 + a*x + b.

  // tmp1 := x^3
  if (!BN_mod_sqr(tmp2, x, field, ctx) ||
      !BN_mod_mul(tmp1, tmp2, x, field, ctx)) {
    goto err;
  }

  // tmp1 := tmp1 + a*x
  if (group->a_is_minus3) {
    if (!bn_mod_lshift1_consttime(tmp2, x, field, ctx) ||
        !bn_mod_add_consttime(tmp2, tmp2, x, field, ctx) ||
        !bn_mod_sub_consttime(tmp1, tmp1, tmp2, field, ctx)) {
      goto err;
    }
  } else {
    if (!BN_mod_mul(tmp2, a, x, field, ctx) ||
        !bn_mod_add_consttime(tmp1, tmp1, tmp2, field, ctx)) {
      goto err;
    }
  }

  // tmp1 := tmp1 + b
  if (!bn_mod_add_consttime(tmp1, tmp1, b, field, ctx)) {
    goto err;
  }

  if (!BN_mod_sqrt(y, tmp1, field, ctx)) {
    uint32_t err = ERR_peek_last_error();
    if (ERR_GET_LIB(err) == ERR_LIB_BN &&
        ERR_GET_REASON(err) == BN_R_NOT_A_SQUARE) {
      ERR_clear_error();
      OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COMPRESSED_POINT);
    } else {
      OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
    }
    goto err;
  }

  if (y_bit != BN_is_odd(y)) {
    if (BN_is_zero(y)) {
      OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COMPRESSION_BIT);
      goto err;
    }
    if (!BN_usub(y, field, y)) {
      goto err;
    }
  }
  if (y_bit != BN_is_odd(y)) {
    OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
    goto err;
  }

  if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) {
    goto err;
  }

  ret = 1;

err:
  BN_CTX_end(ctx);
  BN_CTX_free(new_ctx);
  return ret;
}