File: simple.c

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (336 lines) | stat: -rw-r--r-- 13,045 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
/* Originally written by Bodo Moeller for the OpenSSL project.
 * ====================================================================
 * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */
/* ====================================================================
 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
 *
 * Portions of the attached software ("Contribution") are developed by
 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
 *
 * The Contribution is licensed pursuant to the OpenSSL open source
 * license provided above.
 *
 * The elliptic curve binary polynomial software is originally written by
 * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
 * Laboratories. */

#include <CCryptoBoringSSL_ec.h>

#include <string.h>

#include <CCryptoBoringSSL_bn.h>
#include <CCryptoBoringSSL_err.h>
#include <CCryptoBoringSSL_mem.h>

#include "internal.h"
#include "../../internal.h"


// Most method functions in this file are designed to work with non-trivial
// representations of field elements if necessary (see ecp_mont.c): while
// standard modular addition and subtraction are used, the field_mul and
// field_sqr methods will be used for multiplication, and field_encode and
// field_decode (if defined) will be used for converting between
// representations.
//
// Functions here specifically assume that if a non-trivial representation is
// used, it is a Montgomery representation (i.e. 'encoding' means multiplying
// by some factor R).

int ec_GFp_simple_group_set_curve(EC_GROUP *group, const BIGNUM *p,
                                  const BIGNUM *a, const BIGNUM *b,
                                  BN_CTX *ctx) {
  // p must be a prime > 3
  if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) {
    OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FIELD);
    return 0;
  }

  int ret = 0;
  BN_CTX_start(ctx);
  BIGNUM *tmp = BN_CTX_get(ctx);
  if (tmp == NULL) {
    goto err;
  }

  if (!BN_MONT_CTX_set(&group->field, p, ctx) ||
      !ec_bignum_to_felem(group, &group->a, a) ||
      !ec_bignum_to_felem(group, &group->b, b) ||
      // Reuse Z from the generator to cache the value one.
      !ec_bignum_to_felem(group, &group->generator.raw.Z, BN_value_one())) {
    goto err;
  }

  // group->a_is_minus3
  if (!BN_copy(tmp, a) ||
      !BN_add_word(tmp, 3)) {
    goto err;
  }
  group->a_is_minus3 = (0 == BN_cmp(tmp, &group->field.N));

  ret = 1;

err:
  BN_CTX_end(ctx);
  return ret;
}

int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a,
                                  BIGNUM *b) {
  if ((p != NULL && !BN_copy(p, &group->field.N)) ||
      (a != NULL && !ec_felem_to_bignum(group, a, &group->a)) ||
      (b != NULL && !ec_felem_to_bignum(group, b, &group->b))) {
    return 0;
  }
  return 1;
}

void ec_GFp_simple_point_init(EC_JACOBIAN *point) {
  OPENSSL_memset(&point->X, 0, sizeof(EC_FELEM));
  OPENSSL_memset(&point->Y, 0, sizeof(EC_FELEM));
  OPENSSL_memset(&point->Z, 0, sizeof(EC_FELEM));
}

void ec_GFp_simple_point_copy(EC_JACOBIAN *dest, const EC_JACOBIAN *src) {
  OPENSSL_memcpy(&dest->X, &src->X, sizeof(EC_FELEM));
  OPENSSL_memcpy(&dest->Y, &src->Y, sizeof(EC_FELEM));
  OPENSSL_memcpy(&dest->Z, &src->Z, sizeof(EC_FELEM));
}

void ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group,
                                         EC_JACOBIAN *point) {
  // Although it is strictly only necessary to zero Z, we zero the entire point
  // in case |point| was stack-allocated and yet to be initialized.
  ec_GFp_simple_point_init(point);
}

void ec_GFp_simple_invert(const EC_GROUP *group, EC_JACOBIAN *point) {
  ec_felem_neg(group, &point->Y, &point->Y);
}

int ec_GFp_simple_is_at_infinity(const EC_GROUP *group,
                                 const EC_JACOBIAN *point) {
  return ec_felem_non_zero_mask(group, &point->Z) == 0;
}

int ec_GFp_simple_is_on_curve(const EC_GROUP *group,
                              const EC_JACOBIAN *point) {
  // We have a curve defined by a Weierstrass equation
  //      y^2 = x^3 + a*x + b.
  // The point to consider is given in Jacobian projective coordinates
  // where  (X, Y, Z)  represents  (x, y) = (X/Z^2, Y/Z^3).
  // Substituting this and multiplying by  Z^6  transforms the above equation
  // into
  //      Y^2 = X^3 + a*X*Z^4 + b*Z^6.
  // To test this, we add up the right-hand side in 'rh'.
  //
  // This function may be used when double-checking the secret result of a point
  // multiplication, so we proceed in constant-time.

  void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a,
                          const EC_FELEM *b) = group->meth->felem_mul;
  void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) =
      group->meth->felem_sqr;

  // rh := X^2
  EC_FELEM rh;
  felem_sqr(group, &rh, &point->X);

  EC_FELEM tmp, Z4, Z6;
  felem_sqr(group, &tmp, &point->Z);
  felem_sqr(group, &Z4, &tmp);
  felem_mul(group, &Z6, &Z4, &tmp);

  // rh := rh + a*Z^4
  if (group->a_is_minus3) {
    ec_felem_add(group, &tmp, &Z4, &Z4);
    ec_felem_add(group, &tmp, &tmp, &Z4);
    ec_felem_sub(group, &rh, &rh, &tmp);
  } else {
    felem_mul(group, &tmp, &Z4, &group->a);
    ec_felem_add(group, &rh, &rh, &tmp);
  }

  // rh := (rh + a*Z^4)*X
  felem_mul(group, &rh, &rh, &point->X);

  // rh := rh + b*Z^6
  felem_mul(group, &tmp, &group->b, &Z6);
  ec_felem_add(group, &rh, &rh, &tmp);

  // 'lh' := Y^2
  felem_sqr(group, &tmp, &point->Y);

  ec_felem_sub(group, &tmp, &tmp, &rh);
  BN_ULONG not_equal = ec_felem_non_zero_mask(group, &tmp);

  // If Z = 0, the point is infinity, which is always on the curve.
  BN_ULONG not_infinity = ec_felem_non_zero_mask(group, &point->Z);

  return 1 & ~(not_infinity & not_equal);
}

int ec_GFp_simple_points_equal(const EC_GROUP *group, const EC_JACOBIAN *a,
                               const EC_JACOBIAN *b) {
  // This function is implemented in constant-time for two reasons. First,
  // although EC points are usually public, their Jacobian Z coordinates may be
  // secret, or at least are not obviously public. Second, more complex
  // protocols will sometimes manipulate secret points.
  //
  // This does mean that we pay a 6M+2S Jacobian comparison when comparing two
  // publicly affine points costs no field operations at all. If needed, we can
  // restore this optimization by keeping better track of affine vs. Jacobian
  // forms. See https://crbug.com/boringssl/326.

  // If neither |a| or |b| is infinity, we have to decide whether
  //     (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),
  // or equivalently, whether
  //     (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).

  void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a,
                          const EC_FELEM *b) = group->meth->felem_mul;
  void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) =
      group->meth->felem_sqr;

  EC_FELEM tmp1, tmp2, Za23, Zb23;
  felem_sqr(group, &Zb23, &b->Z);         // Zb23 = Z_b^2
  felem_mul(group, &tmp1, &a->X, &Zb23);  // tmp1 = X_a * Z_b^2
  felem_sqr(group, &Za23, &a->Z);         // Za23 = Z_a^2
  felem_mul(group, &tmp2, &b->X, &Za23);  // tmp2 = X_b * Z_a^2
  ec_felem_sub(group, &tmp1, &tmp1, &tmp2);
  const BN_ULONG x_not_equal = ec_felem_non_zero_mask(group, &tmp1);

  felem_mul(group, &Zb23, &Zb23, &b->Z);  // Zb23 = Z_b^3
  felem_mul(group, &tmp1, &a->Y, &Zb23);  // tmp1 = Y_a * Z_b^3
  felem_mul(group, &Za23, &Za23, &a->Z);  // Za23 = Z_a^3
  felem_mul(group, &tmp2, &b->Y, &Za23);  // tmp2 = Y_b * Z_a^3
  ec_felem_sub(group, &tmp1, &tmp1, &tmp2);
  const BN_ULONG y_not_equal = ec_felem_non_zero_mask(group, &tmp1);
  const BN_ULONG x_and_y_equal = ~(x_not_equal | y_not_equal);

  const BN_ULONG a_not_infinity = ec_felem_non_zero_mask(group, &a->Z);
  const BN_ULONG b_not_infinity = ec_felem_non_zero_mask(group, &b->Z);
  const BN_ULONG a_and_b_infinity = ~(a_not_infinity | b_not_infinity);

  const BN_ULONG equal =
      a_and_b_infinity | (a_not_infinity & b_not_infinity & x_and_y_equal);
  return equal & 1;
}

int ec_affine_jacobian_equal(const EC_GROUP *group, const EC_AFFINE *a,
                             const EC_JACOBIAN *b) {
  // If |b| is not infinity, we have to decide whether
  //     (X_a, Y_a) = (X_b/Z_b^2, Y_b/Z_b^3),
  // or equivalently, whether
  //     (X_a*Z_b^2, Y_a*Z_b^3) = (X_b, Y_b).

  void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a,
                          const EC_FELEM *b) = group->meth->felem_mul;
  void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) =
      group->meth->felem_sqr;

  EC_FELEM tmp, Zb2;
  felem_sqr(group, &Zb2, &b->Z);        // Zb2 = Z_b^2
  felem_mul(group, &tmp, &a->X, &Zb2);  // tmp = X_a * Z_b^2
  ec_felem_sub(group, &tmp, &tmp, &b->X);
  const BN_ULONG x_not_equal = ec_felem_non_zero_mask(group, &tmp);

  felem_mul(group, &tmp, &a->Y, &Zb2);  // tmp = Y_a * Z_b^2
  felem_mul(group, &tmp, &tmp, &b->Z);  // tmp = Y_a * Z_b^3
  ec_felem_sub(group, &tmp, &tmp, &b->Y);
  const BN_ULONG y_not_equal = ec_felem_non_zero_mask(group, &tmp);
  const BN_ULONG x_and_y_equal = ~(x_not_equal | y_not_equal);

  const BN_ULONG b_not_infinity = ec_felem_non_zero_mask(group, &b->Z);

  const BN_ULONG equal = b_not_infinity & x_and_y_equal;
  return equal & 1;
}

int ec_GFp_simple_cmp_x_coordinate(const EC_GROUP *group, const EC_JACOBIAN *p,
                                   const EC_SCALAR *r) {
  if (ec_GFp_simple_is_at_infinity(group, p)) {
    // |ec_get_x_coordinate_as_scalar| will check this internally, but this way
    // we do not push to the error queue.
    return 0;
  }

  EC_SCALAR x;
  return ec_get_x_coordinate_as_scalar(group, &x, p) &&
         ec_scalar_equal_vartime(group, &x, r);
}

void ec_GFp_simple_felem_to_bytes(const EC_GROUP *group, uint8_t *out,
                                  size_t *out_len, const EC_FELEM *in) {
  size_t len = BN_num_bytes(&group->field.N);
  bn_words_to_big_endian(out, len, in->words, group->field.N.width);
  *out_len = len;
}

int ec_GFp_simple_felem_from_bytes(const EC_GROUP *group, EC_FELEM *out,
                                   const uint8_t *in, size_t len) {
  if (len != BN_num_bytes(&group->field.N)) {
    OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR);
    return 0;
  }

  bn_big_endian_to_words(out->words, group->field.N.width, in, len);

  if (!bn_less_than_words(out->words, group->field.N.d, group->field.N.width)) {
    OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR);
    return 0;
  }

  return 1;
}