1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
/* Originally written by Bodo Moeller for the OpenSSL project.
* ====================================================================
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the OpenSSL open source
* license provided above.
*
* The elliptic curve binary polynomial software is originally written by
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
* Laboratories. */
#include <CCryptoBoringSSL_ec.h>
#include <assert.h>
#include <string.h>
#include <CCryptoBoringSSL_bn.h>
#include <CCryptoBoringSSL_err.h>
#include <CCryptoBoringSSL_mem.h>
#include <CCryptoBoringSSL_thread.h>
#include "internal.h"
#include "../bn/internal.h"
#include "../../internal.h"
// This file implements the wNAF-based interleaving multi-exponentiation method
// at:
// http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
// http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf
void ec_compute_wNAF(const EC_GROUP *group, int8_t *out,
const EC_SCALAR *scalar, size_t bits, int w) {
// 'int8_t' can represent integers with absolute values less than 2^7.
assert(0 < w && w <= 7);
assert(bits != 0);
int bit = 1 << w; // 2^w, at most 128
int next_bit = bit << 1; // 2^(w+1), at most 256
int mask = next_bit - 1; // at most 255
int window_val = scalar->words[0] & mask;
for (size_t j = 0; j < bits + 1; j++) {
assert(0 <= window_val && window_val <= next_bit);
int digit = 0;
if (window_val & 1) {
assert(0 < window_val && window_val < next_bit);
if (window_val & bit) {
digit = window_val - next_bit;
// We know -next_bit < digit < 0 and window_val - digit = next_bit.
// modified wNAF
if (j + w + 1 >= bits) {
// special case for generating modified wNAFs:
// no new bits will be added into window_val,
// so using a positive digit here will decrease
// the total length of the representation
digit = window_val & (mask >> 1);
// We know 0 < digit < bit and window_val - digit = bit.
}
} else {
digit = window_val;
// We know 0 < digit < bit and window_val - digit = 0.
}
window_val -= digit;
// Now window_val is 0 or 2^(w+1) in standard wNAF generation.
// For modified window NAFs, it may also be 2^w.
//
// See the comments above for the derivation of each of these bounds.
assert(window_val == 0 || window_val == next_bit || window_val == bit);
assert(-bit < digit && digit < bit);
// window_val was odd, so digit is also odd.
assert(digit & 1);
}
out[j] = digit;
// Incorporate the next bit. Previously, |window_val| <= |next_bit|, so if
// we shift and add at most one copy of |bit|, this will continue to hold
// afterwards.
window_val >>= 1;
window_val += bit * bn_is_bit_set_words(scalar->words, group->order.N.width,
j + w + 1);
assert(window_val <= next_bit);
}
// bits + 1 entries should be sufficient to consume all bits.
assert(window_val == 0);
}
// compute_precomp sets |out[i]| to (2*i+1)*p, for i from 0 to |len|.
static void compute_precomp(const EC_GROUP *group, EC_JACOBIAN *out,
const EC_JACOBIAN *p, size_t len) {
ec_GFp_simple_point_copy(&out[0], p);
EC_JACOBIAN two_p;
ec_GFp_mont_dbl(group, &two_p, p);
for (size_t i = 1; i < len; i++) {
ec_GFp_mont_add(group, &out[i], &out[i - 1], &two_p);
}
}
static void lookup_precomp(const EC_GROUP *group, EC_JACOBIAN *out,
const EC_JACOBIAN *precomp, int digit) {
if (digit < 0) {
digit = -digit;
ec_GFp_simple_point_copy(out, &precomp[digit >> 1]);
ec_GFp_simple_invert(group, out);
} else {
ec_GFp_simple_point_copy(out, &precomp[digit >> 1]);
}
}
// EC_WNAF_WINDOW_BITS is the window size to use for |ec_GFp_mont_mul_public|.
#define EC_WNAF_WINDOW_BITS 4
// EC_WNAF_TABLE_SIZE is the table size to use for |ec_GFp_mont_mul_public|.
#define EC_WNAF_TABLE_SIZE (1 << (EC_WNAF_WINDOW_BITS - 1))
// EC_WNAF_STACK is the number of points worth of data to stack-allocate and
// avoid a malloc.
#define EC_WNAF_STACK 3
int ec_GFp_mont_mul_public_batch(const EC_GROUP *group, EC_JACOBIAN *r,
const EC_SCALAR *g_scalar,
const EC_JACOBIAN *points,
const EC_SCALAR *scalars, size_t num) {
size_t bits = EC_GROUP_order_bits(group);
size_t wNAF_len = bits + 1;
int ret = 0;
int8_t wNAF_stack[EC_WNAF_STACK][EC_MAX_BYTES * 8 + 1];
int8_t (*wNAF_alloc)[EC_MAX_BYTES * 8 + 1] = NULL;
int8_t (*wNAF)[EC_MAX_BYTES * 8 + 1];
EC_JACOBIAN precomp_stack[EC_WNAF_STACK][EC_WNAF_TABLE_SIZE];
EC_JACOBIAN (*precomp_alloc)[EC_WNAF_TABLE_SIZE] = NULL;
EC_JACOBIAN (*precomp)[EC_WNAF_TABLE_SIZE];
if (num <= EC_WNAF_STACK) {
wNAF = wNAF_stack;
precomp = precomp_stack;
} else {
if (num >= ((size_t)-1) / sizeof(wNAF_alloc[0]) ||
num >= ((size_t)-1) / sizeof(precomp_alloc[0])) {
OPENSSL_PUT_ERROR(EC, ERR_R_OVERFLOW);
goto err;
}
wNAF_alloc = OPENSSL_malloc(num * sizeof(wNAF_alloc[0]));
precomp_alloc = OPENSSL_malloc(num * sizeof(precomp_alloc[0]));
if (wNAF_alloc == NULL || precomp_alloc == NULL) {
goto err;
}
wNAF = wNAF_alloc;
precomp = precomp_alloc;
}
int8_t g_wNAF[EC_MAX_BYTES * 8 + 1];
EC_JACOBIAN g_precomp[EC_WNAF_TABLE_SIZE];
assert(wNAF_len <= OPENSSL_ARRAY_SIZE(g_wNAF));
const EC_JACOBIAN *g = &group->generator.raw;
if (g_scalar != NULL) {
ec_compute_wNAF(group, g_wNAF, g_scalar, bits, EC_WNAF_WINDOW_BITS);
compute_precomp(group, g_precomp, g, EC_WNAF_TABLE_SIZE);
}
for (size_t i = 0; i < num; i++) {
assert(wNAF_len <= OPENSSL_ARRAY_SIZE(wNAF[i]));
ec_compute_wNAF(group, wNAF[i], &scalars[i], bits, EC_WNAF_WINDOW_BITS);
compute_precomp(group, precomp[i], &points[i], EC_WNAF_TABLE_SIZE);
}
EC_JACOBIAN tmp;
int r_is_at_infinity = 1;
for (size_t k = wNAF_len - 1; k < wNAF_len; k--) {
if (!r_is_at_infinity) {
ec_GFp_mont_dbl(group, r, r);
}
if (g_scalar != NULL && g_wNAF[k] != 0) {
lookup_precomp(group, &tmp, g_precomp, g_wNAF[k]);
if (r_is_at_infinity) {
ec_GFp_simple_point_copy(r, &tmp);
r_is_at_infinity = 0;
} else {
ec_GFp_mont_add(group, r, r, &tmp);
}
}
for (size_t i = 0; i < num; i++) {
if (wNAF[i][k] != 0) {
lookup_precomp(group, &tmp, precomp[i], wNAF[i][k]);
if (r_is_at_infinity) {
ec_GFp_simple_point_copy(r, &tmp);
r_is_at_infinity = 0;
} else {
ec_GFp_mont_add(group, r, r, &tmp);
}
}
}
}
if (r_is_at_infinity) {
ec_GFp_simple_point_set_to_infinity(group, r);
}
ret = 1;
err:
OPENSSL_free(wNAF_alloc);
OPENSSL_free(precomp_alloc);
return ret;
}
|