File: ecdsa.c

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (372 lines) | stat: -rw-r--r-- 12,846 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
/* ====================================================================
 * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@OpenSSL.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com). */

#include <CCryptoBoringSSL_ecdsa.h>

#include <assert.h>
#include <string.h>

#include <CCryptoBoringSSL_bn.h>
#include <CCryptoBoringSSL_err.h>
#include <CCryptoBoringSSL_mem.h>
#include <CCryptoBoringSSL_sha.h>

#include "../../internal.h"
#include "../bn/internal.h"
#include "../ec/internal.h"
#include "../service_indicator/internal.h"
#include "internal.h"


// digest_to_scalar interprets |digest_len| bytes from |digest| as a scalar for
// ECDSA.
static void digest_to_scalar(const EC_GROUP *group, EC_SCALAR *out,
                             const uint8_t *digest, size_t digest_len) {
  const BIGNUM *order = EC_GROUP_get0_order(group);
  size_t num_bits = BN_num_bits(order);
  // Need to truncate digest if it is too long: first truncate whole bytes.
  size_t num_bytes = (num_bits + 7) / 8;
  if (digest_len > num_bytes) {
    digest_len = num_bytes;
  }
  bn_big_endian_to_words(out->words, order->width, digest, digest_len);

  // If it is still too long, truncate remaining bits with a shift.
  if (8 * digest_len > num_bits) {
    bn_rshift_words(out->words, out->words, 8 - (num_bits & 0x7), order->width);
  }

  // |out| now has the same bit width as |order|, but this only bounds by
  // 2*|order|. Subtract the order if out of range.
  //
  // Montgomery multiplication accepts the looser bounds, so this isn't strictly
  // necessary, but it is a cleaner abstraction and has no performance impact.
  BN_ULONG tmp[EC_MAX_WORDS];
  bn_reduce_once_in_place(out->words, 0 /* no carry */, order->d, tmp,
                          order->width);
}

ECDSA_SIG *ECDSA_SIG_new(void) {
  ECDSA_SIG *sig = OPENSSL_malloc(sizeof(ECDSA_SIG));
  if (sig == NULL) {
    return NULL;
  }
  sig->r = BN_new();
  sig->s = BN_new();
  if (sig->r == NULL || sig->s == NULL) {
    ECDSA_SIG_free(sig);
    return NULL;
  }
  return sig;
}

void ECDSA_SIG_free(ECDSA_SIG *sig) {
  if (sig == NULL) {
    return;
  }

  BN_free(sig->r);
  BN_free(sig->s);
  OPENSSL_free(sig);
}

const BIGNUM *ECDSA_SIG_get0_r(const ECDSA_SIG *sig) {
  return sig->r;
}

const BIGNUM *ECDSA_SIG_get0_s(const ECDSA_SIG *sig) {
  return sig->s;
}

void ECDSA_SIG_get0(const ECDSA_SIG *sig, const BIGNUM **out_r,
                    const BIGNUM **out_s) {
  if (out_r != NULL) {
    *out_r = sig->r;
  }
  if (out_s != NULL) {
    *out_s = sig->s;
  }
}

int ECDSA_SIG_set0(ECDSA_SIG *sig, BIGNUM *r, BIGNUM *s) {
  if (r == NULL || s == NULL) {
    return 0;
  }
  BN_free(sig->r);
  BN_free(sig->s);
  sig->r = r;
  sig->s = s;
  return 1;
}

int ecdsa_do_verify_no_self_test(const uint8_t *digest, size_t digest_len,
                                 const ECDSA_SIG *sig, const EC_KEY *eckey) {
  const EC_GROUP *group = EC_KEY_get0_group(eckey);
  const EC_POINT *pub_key = EC_KEY_get0_public_key(eckey);
  if (group == NULL || pub_key == NULL || sig == NULL) {
    OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_MISSING_PARAMETERS);
    return 0;
  }

  EC_SCALAR r, s, u1, u2, s_inv_mont, m;
  if (BN_is_zero(sig->r) ||
      !ec_bignum_to_scalar(group, &r, sig->r) ||
      BN_is_zero(sig->s) ||
      !ec_bignum_to_scalar(group, &s, sig->s)) {
    OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE);
    return 0;
  }

  // s_inv_mont = s^-1 in the Montgomery domain.
  if (!ec_scalar_to_montgomery_inv_vartime(group, &s_inv_mont, &s)) {
    OPENSSL_PUT_ERROR(ECDSA, ERR_R_INTERNAL_ERROR);
    return 0;
  }

  // u1 = m * s^-1 mod order
  // u2 = r * s^-1 mod order
  //
  // |s_inv_mont| is in Montgomery form while |m| and |r| are not, so |u1| and
  // |u2| will be taken out of Montgomery form, as desired.
  digest_to_scalar(group, &m, digest, digest_len);
  ec_scalar_mul_montgomery(group, &u1, &m, &s_inv_mont);
  ec_scalar_mul_montgomery(group, &u2, &r, &s_inv_mont);

  EC_JACOBIAN point;
  if (!ec_point_mul_scalar_public(group, &point, &u1, &pub_key->raw, &u2)) {
    OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB);
    return 0;
  }

  if (!ec_cmp_x_coordinate(group, &point, &r)) {
    OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE);
    return 0;
  }

  return 1;
}

int ECDSA_do_verify(const uint8_t *digest, size_t digest_len,
                    const ECDSA_SIG *sig, const EC_KEY *eckey) {
  boringssl_ensure_ecc_self_test();

  return ecdsa_do_verify_no_self_test(digest, digest_len, sig, eckey);
}

static ECDSA_SIG *ecdsa_sign_impl(const EC_GROUP *group, int *out_retry,
                                  const EC_SCALAR *priv_key, const EC_SCALAR *k,
                                  const uint8_t *digest, size_t digest_len) {
  *out_retry = 0;

  // Check that the size of the group order is FIPS compliant (FIPS 186-4
  // B.5.2).
  const BIGNUM *order = EC_GROUP_get0_order(group);
  if (BN_num_bits(order) < 160) {
    OPENSSL_PUT_ERROR(ECDSA, EC_R_INVALID_GROUP_ORDER);
    return NULL;
  }

  // Compute r, the x-coordinate of k * generator.
  EC_JACOBIAN tmp_point;
  EC_SCALAR r;
  if (!ec_point_mul_scalar_base(group, &tmp_point, k) ||
      !ec_get_x_coordinate_as_scalar(group, &r, &tmp_point)) {
    return NULL;
  }

  if (constant_time_declassify_int(ec_scalar_is_zero(group, &r))) {
    *out_retry = 1;
    return NULL;
  }

  // s = priv_key * r. Note if only one parameter is in the Montgomery domain,
  // |ec_scalar_mod_mul_montgomery| will compute the answer in the normal
  // domain.
  EC_SCALAR s;
  ec_scalar_to_montgomery(group, &s, &r);
  ec_scalar_mul_montgomery(group, &s, priv_key, &s);

  // s = m + priv_key * r.
  EC_SCALAR tmp;
  digest_to_scalar(group, &tmp, digest, digest_len);
  ec_scalar_add(group, &s, &s, &tmp);

  // s = k^-1 * (m + priv_key * r). First, we compute k^-1 in the Montgomery
  // domain. This is |ec_scalar_to_montgomery| followed by
  // |ec_scalar_inv0_montgomery|, but |ec_scalar_inv0_montgomery| followed by
  // |ec_scalar_from_montgomery| is equivalent and slightly more efficient.
  // Then, as above, only one parameter is in the Montgomery domain, so the
  // result is in the normal domain. Finally, note k is non-zero (or computing r
  // would fail), so the inverse must exist.
  ec_scalar_inv0_montgomery(group, &tmp, k);     // tmp = k^-1 R^2
  ec_scalar_from_montgomery(group, &tmp, &tmp);  // tmp = k^-1 R
  ec_scalar_mul_montgomery(group, &s, &s, &tmp);
  if (constant_time_declassify_int(ec_scalar_is_zero(group, &s))) {
    *out_retry = 1;
    return NULL;
  }

  CONSTTIME_DECLASSIFY(r.words, sizeof(r.words));
  CONSTTIME_DECLASSIFY(s.words, sizeof(r.words));
  ECDSA_SIG *ret = ECDSA_SIG_new();
  if (ret == NULL ||  //
      !bn_set_words(ret->r, r.words, order->width) ||
      !bn_set_words(ret->s, s.words, order->width)) {
    ECDSA_SIG_free(ret);
    return NULL;
  }
  return ret;
}

ECDSA_SIG *ecdsa_sign_with_nonce_for_known_answer_test(const uint8_t *digest,
                                                       size_t digest_len,
                                                       const EC_KEY *eckey,
                                                       const uint8_t *nonce,
                                                       size_t nonce_len) {
  if (eckey->ecdsa_meth && eckey->ecdsa_meth->sign) {
    OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_NOT_IMPLEMENTED);
    return NULL;
  }

  const EC_GROUP *group = EC_KEY_get0_group(eckey);
  if (group == NULL || eckey->priv_key == NULL) {
    OPENSSL_PUT_ERROR(ECDSA, ERR_R_PASSED_NULL_PARAMETER);
    return NULL;
  }
  const EC_SCALAR *priv_key = &eckey->priv_key->scalar;

  EC_SCALAR k;
  if (!ec_scalar_from_bytes(group, &k, nonce, nonce_len)) {
    return NULL;
  }
  int retry_ignored;
  return ecdsa_sign_impl(group, &retry_ignored, priv_key, &k, digest,
                         digest_len);
}

// This function is only exported for testing and is not called in production
// code.
ECDSA_SIG *ECDSA_sign_with_nonce_and_leak_private_key_for_testing(
    const uint8_t *digest, size_t digest_len, const EC_KEY *eckey,
    const uint8_t *nonce, size_t nonce_len) {
  boringssl_ensure_ecc_self_test();

  return ecdsa_sign_with_nonce_for_known_answer_test(digest, digest_len, eckey,
                                                     nonce, nonce_len);
}

ECDSA_SIG *ECDSA_do_sign(const uint8_t *digest, size_t digest_len,
                         const EC_KEY *eckey) {
  boringssl_ensure_ecc_self_test();

  if (eckey->ecdsa_meth && eckey->ecdsa_meth->sign) {
    OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_NOT_IMPLEMENTED);
    return NULL;
  }

  const EC_GROUP *group = EC_KEY_get0_group(eckey);
  if (group == NULL || eckey->priv_key == NULL) {
    OPENSSL_PUT_ERROR(ECDSA, ERR_R_PASSED_NULL_PARAMETER);
    return NULL;
  }
  const BIGNUM *order = EC_GROUP_get0_order(group);
  const EC_SCALAR *priv_key = &eckey->priv_key->scalar;

  // Pass a SHA512 hash of the private key and digest as additional data
  // into the RBG. This is a hardening measure against entropy failure.
  static_assert(SHA512_DIGEST_LENGTH >= 32,
                "additional_data is too large for SHA-512");

  FIPS_service_indicator_lock_state();

  SHA512_CTX sha;
  uint8_t additional_data[SHA512_DIGEST_LENGTH];
  SHA512_Init(&sha);
  SHA512_Update(&sha, priv_key->words, order->width * sizeof(BN_ULONG));
  SHA512_Update(&sha, digest, digest_len);
  SHA512_Final(additional_data, &sha);

  // Cap iterations so callers who supply invalid values as custom groups do not
  // infinite loop. This does not impact valid parameters (e.g. those covered by
  // FIPS) because the probability of requiring even one retry is negligible,
  // let alone 32.
  static const int kMaxIterations = 32;
  ECDSA_SIG *ret = NULL;
  int iters = 0;
  for (;;) {
    EC_SCALAR k;
    if (!ec_random_nonzero_scalar(group, &k, additional_data)) {
      ret = NULL;
      goto out;
    }

    // TODO(davidben): Move this inside |ec_random_nonzero_scalar| or lower, so
    // that all scalars we generate are, by default, secret.
    CONSTTIME_SECRET(k.words, sizeof(k.words));

    int retry;
    ret = ecdsa_sign_impl(group, &retry, priv_key, &k, digest, digest_len);
    if (ret != NULL || !retry) {
      goto out;
    }

    iters++;
    if (iters > kMaxIterations) {
      OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_TOO_MANY_ITERATIONS);
      goto out;
    }
  }

out:
  FIPS_service_indicator_unlock_state();
  return ret;
}