1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
|
/* ====================================================================
* Copyright (c) 2008 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==================================================================== */
#include <CCryptoBoringSSL_base.h>
#include <assert.h>
#include <string.h>
#include <CCryptoBoringSSL_mem.h>
#include "internal.h"
#include "../../internal.h"
// kSizeTWithoutLower4Bits is a mask that can be used to zero the lower four
// bits of a |size_t|.
static const size_t kSizeTWithoutLower4Bits = (size_t) -16;
#define GCM_MUL(ctx, Xi) gcm_gmult_nohw((ctx)->Xi, (ctx)->gcm_key.Htable)
#define GHASH(ctx, in, len) \
gcm_ghash_nohw((ctx)->Xi, (ctx)->gcm_key.Htable, in, len)
// GHASH_CHUNK is "stride parameter" missioned to mitigate cache
// trashing effect. In other words idea is to hash data while it's
// still in L1 cache after encryption pass...
#define GHASH_CHUNK (3 * 1024)
#if defined(GHASH_ASM_X86_64) || defined(GHASH_ASM_X86)
static inline void gcm_reduce_1bit(u128 *V) {
if (sizeof(crypto_word_t) == 8) {
uint64_t T = UINT64_C(0xe100000000000000) & (0 - (V->hi & 1));
V->hi = (V->lo << 63) | (V->hi >> 1);
V->lo = (V->lo >> 1) ^ T;
} else {
uint32_t T = 0xe1000000U & (0 - (uint32_t)(V->hi & 1));
V->hi = (V->lo << 63) | (V->hi >> 1);
V->lo = (V->lo >> 1) ^ ((uint64_t)T << 32);
}
}
void gcm_init_ssse3(u128 Htable[16], const uint64_t H[2]) {
Htable[0].hi = 0;
Htable[0].lo = 0;
u128 V;
V.hi = H[1];
V.lo = H[0];
Htable[8] = V;
gcm_reduce_1bit(&V);
Htable[4] = V;
gcm_reduce_1bit(&V);
Htable[2] = V;
gcm_reduce_1bit(&V);
Htable[1] = V;
Htable[3].hi = V.hi ^ Htable[2].hi, Htable[3].lo = V.lo ^ Htable[2].lo;
V = Htable[4];
Htable[5].hi = V.hi ^ Htable[1].hi, Htable[5].lo = V.lo ^ Htable[1].lo;
Htable[6].hi = V.hi ^ Htable[2].hi, Htable[6].lo = V.lo ^ Htable[2].lo;
Htable[7].hi = V.hi ^ Htable[3].hi, Htable[7].lo = V.lo ^ Htable[3].lo;
V = Htable[8];
Htable[9].hi = V.hi ^ Htable[1].hi, Htable[9].lo = V.lo ^ Htable[1].lo;
Htable[10].hi = V.hi ^ Htable[2].hi, Htable[10].lo = V.lo ^ Htable[2].lo;
Htable[11].hi = V.hi ^ Htable[3].hi, Htable[11].lo = V.lo ^ Htable[3].lo;
Htable[12].hi = V.hi ^ Htable[4].hi, Htable[12].lo = V.lo ^ Htable[4].lo;
Htable[13].hi = V.hi ^ Htable[5].hi, Htable[13].lo = V.lo ^ Htable[5].lo;
Htable[14].hi = V.hi ^ Htable[6].hi, Htable[14].lo = V.lo ^ Htable[6].lo;
Htable[15].hi = V.hi ^ Htable[7].hi, Htable[15].lo = V.lo ^ Htable[7].lo;
// Treat |Htable| as a 16x16 byte table and transpose it. Thus, Htable[i]
// contains the i'th byte of j*H for all j.
uint8_t *Hbytes = (uint8_t *)Htable;
for (int i = 0; i < 16; i++) {
for (int j = 0; j < i; j++) {
uint8_t tmp = Hbytes[16*i + j];
Hbytes[16*i + j] = Hbytes[16*j + i];
Hbytes[16*j + i] = tmp;
}
}
}
#endif // GHASH_ASM_X86_64 || GHASH_ASM_X86
#ifdef GCM_FUNCREF
#undef GCM_MUL
#define GCM_MUL(ctx, Xi) (*gcm_gmult_p)((ctx)->Xi, (ctx)->gcm_key.Htable)
#undef GHASH
#define GHASH(ctx, in, len) \
(*gcm_ghash_p)((ctx)->Xi, (ctx)->gcm_key.Htable, in, len)
#endif // GCM_FUNCREF
#if defined(HW_GCM) && defined(OPENSSL_X86_64)
static size_t hw_gcm_encrypt(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, uint8_t ivec[16],
uint8_t Xi[16], const u128 Htable[16]) {
return aesni_gcm_encrypt(in, out, len, key, ivec, Htable, Xi);
}
static size_t hw_gcm_decrypt(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, uint8_t ivec[16],
uint8_t Xi[16], const u128 Htable[16]) {
return aesni_gcm_decrypt(in, out, len, key, ivec, Htable, Xi);
}
#endif // HW_GCM && X86_64
#if defined(HW_GCM) && defined(OPENSSL_AARCH64)
static size_t hw_gcm_encrypt(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, uint8_t ivec[16],
uint8_t Xi[16], const u128 Htable[16]) {
const size_t len_blocks = len & kSizeTWithoutLower4Bits;
if (!len_blocks) {
return 0;
}
aes_gcm_enc_kernel(in, len_blocks * 8, out, Xi, ivec, key, Htable);
return len_blocks;
}
static size_t hw_gcm_decrypt(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, uint8_t ivec[16],
uint8_t Xi[16], const u128 Htable[16]) {
const size_t len_blocks = len & kSizeTWithoutLower4Bits;
if (!len_blocks) {
return 0;
}
aes_gcm_dec_kernel(in, len_blocks * 8, out, Xi, ivec, key, Htable);
return len_blocks;
}
#endif // HW_GCM && AARCH64
void CRYPTO_ghash_init(gmult_func *out_mult, ghash_func *out_hash,
u128 out_table[16], int *out_is_avx,
const uint8_t gcm_key[16]) {
*out_is_avx = 0;
// H is passed to |gcm_init_*| as a pair of byte-swapped, 64-bit values.
uint64_t H[2] = {CRYPTO_load_u64_be(gcm_key),
CRYPTO_load_u64_be(gcm_key + 8)};
#if defined(GHASH_ASM_X86_64)
if (crypto_gcm_clmul_enabled()) {
if (CRYPTO_is_AVX_capable() && CRYPTO_is_MOVBE_capable()) {
gcm_init_avx(out_table, H);
*out_mult = gcm_gmult_avx;
*out_hash = gcm_ghash_avx;
*out_is_avx = 1;
return;
}
gcm_init_clmul(out_table, H);
*out_mult = gcm_gmult_clmul;
*out_hash = gcm_ghash_clmul;
return;
}
if (CRYPTO_is_SSSE3_capable()) {
gcm_init_ssse3(out_table, H);
*out_mult = gcm_gmult_ssse3;
*out_hash = gcm_ghash_ssse3;
return;
}
#elif defined(GHASH_ASM_X86)
if (crypto_gcm_clmul_enabled()) {
gcm_init_clmul(out_table, H);
*out_mult = gcm_gmult_clmul;
*out_hash = gcm_ghash_clmul;
return;
}
if (CRYPTO_is_SSSE3_capable()) {
gcm_init_ssse3(out_table, H);
*out_mult = gcm_gmult_ssse3;
*out_hash = gcm_ghash_ssse3;
return;
}
#elif defined(GHASH_ASM_ARM)
if (gcm_pmull_capable()) {
gcm_init_v8(out_table, H);
*out_mult = gcm_gmult_v8;
*out_hash = gcm_ghash_v8;
return;
}
if (gcm_neon_capable()) {
gcm_init_neon(out_table, H);
*out_mult = gcm_gmult_neon;
*out_hash = gcm_ghash_neon;
return;
}
#endif
gcm_init_nohw(out_table, H);
*out_mult = gcm_gmult_nohw;
*out_hash = gcm_ghash_nohw;
}
void CRYPTO_gcm128_init_key(GCM128_KEY *gcm_key, const AES_KEY *aes_key,
block128_f block, int block_is_hwaes) {
OPENSSL_memset(gcm_key, 0, sizeof(*gcm_key));
gcm_key->block = block;
uint8_t ghash_key[16];
OPENSSL_memset(ghash_key, 0, sizeof(ghash_key));
(*block)(ghash_key, ghash_key, aes_key);
int is_avx;
CRYPTO_ghash_init(&gcm_key->gmult, &gcm_key->ghash, gcm_key->Htable, &is_avx,
ghash_key);
#if defined(OPENSSL_AARCH64) && !defined(OPENSSL_NO_ASM)
gcm_key->use_hw_gcm_crypt = (gcm_pmull_capable() && block_is_hwaes) ? 1 : 0;
#else
gcm_key->use_hw_gcm_crypt = (is_avx && block_is_hwaes) ? 1 : 0;
#endif
}
void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const AES_KEY *key,
const uint8_t *iv, size_t len) {
#ifdef GCM_FUNCREF
void (*gcm_gmult_p)(uint8_t Xi[16], const u128 Htable[16]) =
ctx->gcm_key.gmult;
#endif
OPENSSL_memset(&ctx->Yi, 0, sizeof(ctx->Yi));
OPENSSL_memset(&ctx->Xi, 0, sizeof(ctx->Xi));
ctx->len.aad = 0;
ctx->len.msg = 0;
ctx->ares = 0;
ctx->mres = 0;
uint32_t ctr;
if (len == 12) {
OPENSSL_memcpy(ctx->Yi, iv, 12);
ctx->Yi[15] = 1;
ctr = 1;
} else {
uint64_t len0 = len;
while (len >= 16) {
CRYPTO_xor16(ctx->Yi, ctx->Yi, iv);
GCM_MUL(ctx, Yi);
iv += 16;
len -= 16;
}
if (len) {
for (size_t i = 0; i < len; ++i) {
ctx->Yi[i] ^= iv[i];
}
GCM_MUL(ctx, Yi);
}
uint8_t len_block[16];
OPENSSL_memset(len_block, 0, 8);
CRYPTO_store_u64_be(len_block + 8, len0 << 3);
CRYPTO_xor16(ctx->Yi, ctx->Yi, len_block);
GCM_MUL(ctx, Yi);
ctr = CRYPTO_load_u32_be(ctx->Yi + 12);
}
(*ctx->gcm_key.block)(ctx->Yi, ctx->EK0, key);
++ctr;
CRYPTO_store_u32_be(ctx->Yi + 12, ctr);
}
int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const uint8_t *aad, size_t len) {
#ifdef GCM_FUNCREF
void (*gcm_gmult_p)(uint8_t Xi[16], const u128 Htable[16]) =
ctx->gcm_key.gmult;
void (*gcm_ghash_p)(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp,
size_t len) = ctx->gcm_key.ghash;
#endif
if (ctx->len.msg != 0) {
// The caller must have finished the AAD before providing other input.
return 0;
}
uint64_t alen = ctx->len.aad + len;
if (alen > (UINT64_C(1) << 61) || (sizeof(len) == 8 && alen < len)) {
return 0;
}
ctx->len.aad = alen;
unsigned n = ctx->ares;
if (n) {
while (n && len) {
ctx->Xi[n] ^= *(aad++);
--len;
n = (n + 1) % 16;
}
if (n == 0) {
GCM_MUL(ctx, Xi);
} else {
ctx->ares = n;
return 1;
}
}
// Process a whole number of blocks.
size_t len_blocks = len & kSizeTWithoutLower4Bits;
if (len_blocks != 0) {
GHASH(ctx, aad, len_blocks);
aad += len_blocks;
len -= len_blocks;
}
// Process the remainder.
if (len != 0) {
n = (unsigned int)len;
for (size_t i = 0; i < len; ++i) {
ctx->Xi[i] ^= aad[i];
}
}
ctx->ares = n;
return 1;
}
int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, const AES_KEY *key,
const uint8_t *in, uint8_t *out, size_t len) {
block128_f block = ctx->gcm_key.block;
#ifdef GCM_FUNCREF
void (*gcm_gmult_p)(uint8_t Xi[16], const u128 Htable[16]) =
ctx->gcm_key.gmult;
void (*gcm_ghash_p)(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp,
size_t len) = ctx->gcm_key.ghash;
#endif
uint64_t mlen = ctx->len.msg + len;
if (mlen > ((UINT64_C(1) << 36) - 32) ||
(sizeof(len) == 8 && mlen < len)) {
return 0;
}
ctx->len.msg = mlen;
if (ctx->ares) {
// First call to encrypt finalizes GHASH(AAD)
GCM_MUL(ctx, Xi);
ctx->ares = 0;
}
unsigned n = ctx->mres;
if (n) {
while (n && len) {
ctx->Xi[n] ^= *(out++) = *(in++) ^ ctx->EKi[n];
--len;
n = (n + 1) % 16;
}
if (n == 0) {
GCM_MUL(ctx, Xi);
} else {
ctx->mres = n;
return 1;
}
}
uint32_t ctr = CRYPTO_load_u32_be(ctx->Yi + 12);
while (len >= GHASH_CHUNK) {
size_t j = GHASH_CHUNK;
while (j) {
(*block)(ctx->Yi, ctx->EKi, key);
++ctr;
CRYPTO_store_u32_be(ctx->Yi + 12, ctr);
CRYPTO_xor16(out, in, ctx->EKi);
out += 16;
in += 16;
j -= 16;
}
GHASH(ctx, out - GHASH_CHUNK, GHASH_CHUNK);
len -= GHASH_CHUNK;
}
size_t len_blocks = len & kSizeTWithoutLower4Bits;
if (len_blocks != 0) {
while (len >= 16) {
(*block)(ctx->Yi, ctx->EKi, key);
++ctr;
CRYPTO_store_u32_be(ctx->Yi + 12, ctr);
CRYPTO_xor16(out, in, ctx->EKi);
out += 16;
in += 16;
len -= 16;
}
GHASH(ctx, out - len_blocks, len_blocks);
}
if (len) {
(*block)(ctx->Yi, ctx->EKi, key);
++ctr;
CRYPTO_store_u32_be(ctx->Yi + 12, ctr);
while (len--) {
ctx->Xi[n] ^= out[n] = in[n] ^ ctx->EKi[n];
++n;
}
}
ctx->mres = n;
return 1;
}
int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, const AES_KEY *key,
const unsigned char *in, unsigned char *out,
size_t len) {
block128_f block = ctx->gcm_key.block;
#ifdef GCM_FUNCREF
void (*gcm_gmult_p)(uint8_t Xi[16], const u128 Htable[16]) =
ctx->gcm_key.gmult;
void (*gcm_ghash_p)(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp,
size_t len) = ctx->gcm_key.ghash;
#endif
uint64_t mlen = ctx->len.msg + len;
if (mlen > ((UINT64_C(1) << 36) - 32) ||
(sizeof(len) == 8 && mlen < len)) {
return 0;
}
ctx->len.msg = mlen;
if (ctx->ares) {
// First call to decrypt finalizes GHASH(AAD)
GCM_MUL(ctx, Xi);
ctx->ares = 0;
}
unsigned n = ctx->mres;
if (n) {
while (n && len) {
uint8_t c = *(in++);
*(out++) = c ^ ctx->EKi[n];
ctx->Xi[n] ^= c;
--len;
n = (n + 1) % 16;
}
if (n == 0) {
GCM_MUL(ctx, Xi);
} else {
ctx->mres = n;
return 1;
}
}
uint32_t ctr = CRYPTO_load_u32_be(ctx->Yi + 12);
while (len >= GHASH_CHUNK) {
size_t j = GHASH_CHUNK;
GHASH(ctx, in, GHASH_CHUNK);
while (j) {
(*block)(ctx->Yi, ctx->EKi, key);
++ctr;
CRYPTO_store_u32_be(ctx->Yi + 12, ctr);
CRYPTO_xor16(out, in, ctx->EKi);
out += 16;
in += 16;
j -= 16;
}
len -= GHASH_CHUNK;
}
size_t len_blocks = len & kSizeTWithoutLower4Bits;
if (len_blocks != 0) {
GHASH(ctx, in, len_blocks);
while (len >= 16) {
(*block)(ctx->Yi, ctx->EKi, key);
++ctr;
CRYPTO_store_u32_be(ctx->Yi + 12, ctr);
CRYPTO_xor16(out, in, ctx->EKi);
out += 16;
in += 16;
len -= 16;
}
}
if (len) {
(*block)(ctx->Yi, ctx->EKi, key);
++ctr;
CRYPTO_store_u32_be(ctx->Yi + 12, ctr);
while (len--) {
uint8_t c = in[n];
ctx->Xi[n] ^= c;
out[n] = c ^ ctx->EKi[n];
++n;
}
}
ctx->mres = n;
return 1;
}
int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx, const AES_KEY *key,
const uint8_t *in, uint8_t *out, size_t len,
ctr128_f stream) {
#ifdef GCM_FUNCREF
void (*gcm_gmult_p)(uint8_t Xi[16], const u128 Htable[16]) =
ctx->gcm_key.gmult;
void (*gcm_ghash_p)(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp,
size_t len) = ctx->gcm_key.ghash;
#endif
uint64_t mlen = ctx->len.msg + len;
if (mlen > ((UINT64_C(1) << 36) - 32) ||
(sizeof(len) == 8 && mlen < len)) {
return 0;
}
ctx->len.msg = mlen;
if (ctx->ares) {
// First call to encrypt finalizes GHASH(AAD)
GCM_MUL(ctx, Xi);
ctx->ares = 0;
}
unsigned n = ctx->mres;
if (n) {
while (n && len) {
ctx->Xi[n] ^= *(out++) = *(in++) ^ ctx->EKi[n];
--len;
n = (n + 1) % 16;
}
if (n == 0) {
GCM_MUL(ctx, Xi);
} else {
ctx->mres = n;
return 1;
}
}
#if defined(HW_GCM)
// Check |len| to work around a C language bug. See https://crbug.com/1019588.
if (ctx->gcm_key.use_hw_gcm_crypt && len > 0) {
// |hw_gcm_encrypt| may not process all the input given to it. It may
// not process *any* of its input if it is deemed too small.
size_t bulk = hw_gcm_encrypt(in, out, len, key, ctx->Yi, ctx->Xi,
ctx->gcm_key.Htable);
in += bulk;
out += bulk;
len -= bulk;
}
#endif
uint32_t ctr = CRYPTO_load_u32_be(ctx->Yi + 12);
while (len >= GHASH_CHUNK) {
(*stream)(in, out, GHASH_CHUNK / 16, key, ctx->Yi);
ctr += GHASH_CHUNK / 16;
CRYPTO_store_u32_be(ctx->Yi + 12, ctr);
GHASH(ctx, out, GHASH_CHUNK);
out += GHASH_CHUNK;
in += GHASH_CHUNK;
len -= GHASH_CHUNK;
}
size_t len_blocks = len & kSizeTWithoutLower4Bits;
if (len_blocks != 0) {
size_t j = len_blocks / 16;
(*stream)(in, out, j, key, ctx->Yi);
ctr += (unsigned int)j;
CRYPTO_store_u32_be(ctx->Yi + 12, ctr);
in += len_blocks;
len -= len_blocks;
GHASH(ctx, out, len_blocks);
out += len_blocks;
}
if (len) {
(*ctx->gcm_key.block)(ctx->Yi, ctx->EKi, key);
++ctr;
CRYPTO_store_u32_be(ctx->Yi + 12, ctr);
while (len--) {
ctx->Xi[n] ^= out[n] = in[n] ^ ctx->EKi[n];
++n;
}
}
ctx->mres = n;
return 1;
}
int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx, const AES_KEY *key,
const uint8_t *in, uint8_t *out, size_t len,
ctr128_f stream) {
#ifdef GCM_FUNCREF
void (*gcm_gmult_p)(uint8_t Xi[16], const u128 Htable[16]) =
ctx->gcm_key.gmult;
void (*gcm_ghash_p)(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp,
size_t len) = ctx->gcm_key.ghash;
#endif
uint64_t mlen = ctx->len.msg + len;
if (mlen > ((UINT64_C(1) << 36) - 32) ||
(sizeof(len) == 8 && mlen < len)) {
return 0;
}
ctx->len.msg = mlen;
if (ctx->ares) {
// First call to decrypt finalizes GHASH(AAD)
GCM_MUL(ctx, Xi);
ctx->ares = 0;
}
unsigned n = ctx->mres;
if (n) {
while (n && len) {
uint8_t c = *(in++);
*(out++) = c ^ ctx->EKi[n];
ctx->Xi[n] ^= c;
--len;
n = (n + 1) % 16;
}
if (n == 0) {
GCM_MUL(ctx, Xi);
} else {
ctx->mres = n;
return 1;
}
}
#if defined(HW_GCM)
// Check |len| to work around a C language bug. See https://crbug.com/1019588.
if (ctx->gcm_key.use_hw_gcm_crypt && len > 0) {
// |hw_gcm_decrypt| may not process all the input given to it. It may
// not process *any* of its input if it is deemed too small.
size_t bulk = hw_gcm_decrypt(in, out, len, key, ctx->Yi, ctx->Xi,
ctx->gcm_key.Htable);
in += bulk;
out += bulk;
len -= bulk;
}
#endif
uint32_t ctr = CRYPTO_load_u32_be(ctx->Yi + 12);
while (len >= GHASH_CHUNK) {
GHASH(ctx, in, GHASH_CHUNK);
(*stream)(in, out, GHASH_CHUNK / 16, key, ctx->Yi);
ctr += GHASH_CHUNK / 16;
CRYPTO_store_u32_be(ctx->Yi + 12, ctr);
out += GHASH_CHUNK;
in += GHASH_CHUNK;
len -= GHASH_CHUNK;
}
size_t len_blocks = len & kSizeTWithoutLower4Bits;
if (len_blocks != 0) {
size_t j = len_blocks / 16;
GHASH(ctx, in, len_blocks);
(*stream)(in, out, j, key, ctx->Yi);
ctr += (unsigned int)j;
CRYPTO_store_u32_be(ctx->Yi + 12, ctr);
out += len_blocks;
in += len_blocks;
len -= len_blocks;
}
if (len) {
(*ctx->gcm_key.block)(ctx->Yi, ctx->EKi, key);
++ctr;
CRYPTO_store_u32_be(ctx->Yi + 12, ctr);
while (len--) {
uint8_t c = in[n];
ctx->Xi[n] ^= c;
out[n] = c ^ ctx->EKi[n];
++n;
}
}
ctx->mres = n;
return 1;
}
int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const uint8_t *tag, size_t len) {
#ifdef GCM_FUNCREF
void (*gcm_gmult_p)(uint8_t Xi[16], const u128 Htable[16]) =
ctx->gcm_key.gmult;
#endif
if (ctx->mres || ctx->ares) {
GCM_MUL(ctx, Xi);
}
uint8_t len_block[16];
CRYPTO_store_u64_be(len_block, ctx->len.aad << 3);
CRYPTO_store_u64_be(len_block + 8, ctx->len.msg << 3);
CRYPTO_xor16(ctx->Xi, ctx->Xi, len_block);
GCM_MUL(ctx, Xi);
CRYPTO_xor16(ctx->Xi, ctx->Xi, ctx->EK0);
if (tag && len <= sizeof(ctx->Xi)) {
return CRYPTO_memcmp(ctx->Xi, tag, len) == 0;
} else {
return 0;
}
}
void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len) {
CRYPTO_gcm128_finish(ctx, NULL, 0);
OPENSSL_memcpy(tag, ctx->Xi, len <= sizeof(ctx->Xi) ? len : sizeof(ctx->Xi));
}
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
int crypto_gcm_clmul_enabled(void) {
#if defined(GHASH_ASM_X86) || defined(GHASH_ASM_X86_64)
return CRYPTO_is_FXSR_capable() && CRYPTO_is_PCLMUL_capable();
#else
return 0;
#endif
}
#endif
|