File: gcm_nohw.c

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (302 lines) | stat: -rw-r--r-- 11,167 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
/* Copyright (c) 2019, Google Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */

#include <CCryptoBoringSSL_base.h>

#include "../../internal.h"
#include "internal.h"

#if !defined(BORINGSSL_HAS_UINT128) && defined(OPENSSL_SSE2)
#include <emmintrin.h>
#endif


// This file contains a constant-time implementation of GHASH based on the notes
// in https://bearssl.org/constanttime.html#ghash-for-gcm and the reduction
// algorithm described in
// https://crypto.stanford.edu/RealWorldCrypto/slides/gueron.pdf.
//
// Unlike the BearSSL notes, we use uint128_t in the 64-bit implementation. Our
// primary compilers (clang, clang-cl, and gcc) all support it. MSVC will run
// the 32-bit implementation, but we can use its intrinsics if necessary.

#if defined(BORINGSSL_HAS_UINT128)

static void gcm_mul64_nohw(uint64_t *out_lo, uint64_t *out_hi, uint64_t a,
                           uint64_t b) {
  // One term every four bits means the largest term is 64/4 = 16, which barely
  // overflows into the next term. Using one term every five bits would cost 25
  // multiplications instead of 16. It is faster to mask off the bottom four
  // bits of |a|, giving a largest term of 60/4 = 15, and apply the bottom bits
  // separately.
  uint64_t a0 = a & UINT64_C(0x1111111111111110);
  uint64_t a1 = a & UINT64_C(0x2222222222222220);
  uint64_t a2 = a & UINT64_C(0x4444444444444440);
  uint64_t a3 = a & UINT64_C(0x8888888888888880);

  uint64_t b0 = b & UINT64_C(0x1111111111111111);
  uint64_t b1 = b & UINT64_C(0x2222222222222222);
  uint64_t b2 = b & UINT64_C(0x4444444444444444);
  uint64_t b3 = b & UINT64_C(0x8888888888888888);

  uint128_t c0 = (a0 * (uint128_t)b0) ^ (a1 * (uint128_t)b3) ^
                 (a2 * (uint128_t)b2) ^ (a3 * (uint128_t)b1);
  uint128_t c1 = (a0 * (uint128_t)b1) ^ (a1 * (uint128_t)b0) ^
                 (a2 * (uint128_t)b3) ^ (a3 * (uint128_t)b2);
  uint128_t c2 = (a0 * (uint128_t)b2) ^ (a1 * (uint128_t)b1) ^
                 (a2 * (uint128_t)b0) ^ (a3 * (uint128_t)b3);
  uint128_t c3 = (a0 * (uint128_t)b3) ^ (a1 * (uint128_t)b2) ^
                 (a2 * (uint128_t)b1) ^ (a3 * (uint128_t)b0);

  // Multiply the bottom four bits of |a| with |b|.
  uint64_t a0_mask = UINT64_C(0) - (a & 1);
  uint64_t a1_mask = UINT64_C(0) - ((a >> 1) & 1);
  uint64_t a2_mask = UINT64_C(0) - ((a >> 2) & 1);
  uint64_t a3_mask = UINT64_C(0) - ((a >> 3) & 1);
  uint128_t extra = (a0_mask & b) ^ ((uint128_t)(a1_mask & b) << 1) ^
                    ((uint128_t)(a2_mask & b) << 2) ^
                    ((uint128_t)(a3_mask & b) << 3);

  *out_lo = (((uint64_t)c0) & UINT64_C(0x1111111111111111)) ^
            (((uint64_t)c1) & UINT64_C(0x2222222222222222)) ^
            (((uint64_t)c2) & UINT64_C(0x4444444444444444)) ^
            (((uint64_t)c3) & UINT64_C(0x8888888888888888)) ^ ((uint64_t)extra);
  *out_hi = (((uint64_t)(c0 >> 64)) & UINT64_C(0x1111111111111111)) ^
            (((uint64_t)(c1 >> 64)) & UINT64_C(0x2222222222222222)) ^
            (((uint64_t)(c2 >> 64)) & UINT64_C(0x4444444444444444)) ^
            (((uint64_t)(c3 >> 64)) & UINT64_C(0x8888888888888888)) ^
            ((uint64_t)(extra >> 64));
}

#elif defined(OPENSSL_SSE2)

static __m128i gcm_mul32_nohw(uint32_t a, uint32_t b) {
  // One term every four bits means the largest term is 32/4 = 8, which does not
  // overflow into the next term.
  __m128i aa = _mm_setr_epi32(a, 0, a, 0);
  __m128i bb = _mm_setr_epi32(b, 0, b, 0);

  __m128i a0a0 =
      _mm_and_si128(aa, _mm_setr_epi32(0x11111111, 0, 0x11111111, 0));
  __m128i a2a2 =
      _mm_and_si128(aa, _mm_setr_epi32(0x44444444, 0, 0x44444444, 0));
  __m128i b0b1 =
      _mm_and_si128(bb, _mm_setr_epi32(0x11111111, 0, 0x22222222, 0));
  __m128i b2b3 =
      _mm_and_si128(bb, _mm_setr_epi32(0x44444444, 0, 0x88888888, 0));

  __m128i c0c1 =
      _mm_xor_si128(_mm_mul_epu32(a0a0, b0b1), _mm_mul_epu32(a2a2, b2b3));
  __m128i c2c3 =
      _mm_xor_si128(_mm_mul_epu32(a2a2, b0b1), _mm_mul_epu32(a0a0, b2b3));

  __m128i a1a1 =
      _mm_and_si128(aa, _mm_setr_epi32(0x22222222, 0, 0x22222222, 0));
  __m128i a3a3 =
      _mm_and_si128(aa, _mm_setr_epi32(0x88888888, 0, 0x88888888, 0));
  __m128i b3b0 =
      _mm_and_si128(bb, _mm_setr_epi32(0x88888888, 0, 0x11111111, 0));
  __m128i b1b2 =
      _mm_and_si128(bb, _mm_setr_epi32(0x22222222, 0, 0x44444444, 0));

  c0c1 = _mm_xor_si128(c0c1, _mm_mul_epu32(a1a1, b3b0));
  c0c1 = _mm_xor_si128(c0c1, _mm_mul_epu32(a3a3, b1b2));
  c2c3 = _mm_xor_si128(c2c3, _mm_mul_epu32(a3a3, b3b0));
  c2c3 = _mm_xor_si128(c2c3, _mm_mul_epu32(a1a1, b1b2));

  c0c1 = _mm_and_si128(
      c0c1, _mm_setr_epi32(0x11111111, 0x11111111, 0x22222222, 0x22222222));
  c2c3 = _mm_and_si128(
      c2c3, _mm_setr_epi32(0x44444444, 0x44444444, 0x88888888, 0x88888888));

  c0c1 = _mm_xor_si128(c0c1, c2c3);
  // c0 ^= c1
  c0c1 = _mm_xor_si128(c0c1, _mm_srli_si128(c0c1, 8));
  return c0c1;
}

static void gcm_mul64_nohw(uint64_t *out_lo, uint64_t *out_hi, uint64_t a,
                           uint64_t b) {
  uint32_t a0 = a & 0xffffffff;
  uint32_t a1 = a >> 32;
  uint32_t b0 = b & 0xffffffff;
  uint32_t b1 = b >> 32;
  // Karatsuba multiplication.
  __m128i lo = gcm_mul32_nohw(a0, b0);
  __m128i hi = gcm_mul32_nohw(a1, b1);
  __m128i mid = gcm_mul32_nohw(a0 ^ a1, b0 ^ b1);
  mid = _mm_xor_si128(mid, lo);
  mid = _mm_xor_si128(mid, hi);
  __m128i ret = _mm_unpacklo_epi64(lo, hi);
  mid = _mm_slli_si128(mid, 4);
  mid = _mm_and_si128(mid, _mm_setr_epi32(0, 0xffffffff, 0xffffffff, 0));
  ret = _mm_xor_si128(ret, mid);
  memcpy(out_lo, &ret, 8);
  memcpy(out_hi, ((char*)&ret) + 8, 8);
}

#else  // !BORINGSSL_HAS_UINT128 && !OPENSSL_SSE2

static uint64_t gcm_mul32_nohw(uint32_t a, uint32_t b) {
  // One term every four bits means the largest term is 32/4 = 8, which does not
  // overflow into the next term.
  uint32_t a0 = a & 0x11111111;
  uint32_t a1 = a & 0x22222222;
  uint32_t a2 = a & 0x44444444;
  uint32_t a3 = a & 0x88888888;

  uint32_t b0 = b & 0x11111111;
  uint32_t b1 = b & 0x22222222;
  uint32_t b2 = b & 0x44444444;
  uint32_t b3 = b & 0x88888888;

  uint64_t c0 = (a0 * (uint64_t)b0) ^ (a1 * (uint64_t)b3) ^
                (a2 * (uint64_t)b2) ^ (a3 * (uint64_t)b1);
  uint64_t c1 = (a0 * (uint64_t)b1) ^ (a1 * (uint64_t)b0) ^
                (a2 * (uint64_t)b3) ^ (a3 * (uint64_t)b2);
  uint64_t c2 = (a0 * (uint64_t)b2) ^ (a1 * (uint64_t)b1) ^
                (a2 * (uint64_t)b0) ^ (a3 * (uint64_t)b3);
  uint64_t c3 = (a0 * (uint64_t)b3) ^ (a1 * (uint64_t)b2) ^
                (a2 * (uint64_t)b1) ^ (a3 * (uint64_t)b0);

  return (c0 & UINT64_C(0x1111111111111111)) |
         (c1 & UINT64_C(0x2222222222222222)) |
         (c2 & UINT64_C(0x4444444444444444)) |
         (c3 & UINT64_C(0x8888888888888888));
}

static void gcm_mul64_nohw(uint64_t *out_lo, uint64_t *out_hi, uint64_t a,
                           uint64_t b) {
  uint32_t a0 = a & 0xffffffff;
  uint32_t a1 = a >> 32;
  uint32_t b0 = b & 0xffffffff;
  uint32_t b1 = b >> 32;
  // Karatsuba multiplication.
  uint64_t lo = gcm_mul32_nohw(a0, b0);
  uint64_t hi = gcm_mul32_nohw(a1, b1);
  uint64_t mid = gcm_mul32_nohw(a0 ^ a1, b0 ^ b1) ^ lo ^ hi;
  *out_lo = lo ^ (mid << 32);
  *out_hi = hi ^ (mid >> 32);
}

#endif  // BORINGSSL_HAS_UINT128

void gcm_init_nohw(u128 Htable[16], const uint64_t Xi[2]) {
  // We implement GHASH in terms of POLYVAL, as described in RFC 8452. This
  // avoids a shift by 1 in the multiplication, needed to account for bit
  // reversal losing a bit after multiplication, that is,
  // rev128(X) * rev128(Y) = rev255(X*Y).
  //
  // Per Appendix A, we run mulX_POLYVAL. Note this is the same transformation
  // applied by |gcm_init_clmul|, etc. Note |Xi| has already been byteswapped.
  //
  // See also slide 16 of
  // https://crypto.stanford.edu/RealWorldCrypto/slides/gueron.pdf
  Htable[0].lo = Xi[1];
  Htable[0].hi = Xi[0];

  uint64_t carry = Htable[0].hi >> 63;
  carry = 0u - carry;

  Htable[0].hi <<= 1;
  Htable[0].hi |= Htable[0].lo >> 63;
  Htable[0].lo <<= 1;

  // The irreducible polynomial is 1 + x^121 + x^126 + x^127 + x^128, so we
  // conditionally add 0xc200...0001.
  Htable[0].lo ^= carry & 1;
  Htable[0].hi ^= carry & UINT64_C(0xc200000000000000);

  // This implementation does not use the rest of |Htable|.
}

static void gcm_polyval_nohw(uint64_t Xi[2], const u128 *H) {
  // Karatsuba multiplication. The product of |Xi| and |H| is stored in |r0|
  // through |r3|. Note there is no byte or bit reversal because we are
  // evaluating POLYVAL.
  uint64_t r0, r1;
  gcm_mul64_nohw(&r0, &r1, Xi[0], H->lo);
  uint64_t r2, r3;
  gcm_mul64_nohw(&r2, &r3, Xi[1], H->hi);
  uint64_t mid0, mid1;
  gcm_mul64_nohw(&mid0, &mid1, Xi[0] ^ Xi[1], H->hi ^ H->lo);
  mid0 ^= r0 ^ r2;
  mid1 ^= r1 ^ r3;
  r2 ^= mid1;
  r1 ^= mid0;

  // Now we multiply our 256-bit result by x^-128 and reduce. |r2| and
  // |r3| shifts into position and we must multiply |r0| and |r1| by x^-128. We
  // have:
  //
  //       1 = x^121 + x^126 + x^127 + x^128
  //  x^-128 = x^-7 + x^-2 + x^-1 + 1
  //
  // This is the GHASH reduction step, but with bits flowing in reverse.

  // The x^-7, x^-2, and x^-1 terms shift bits past x^0, which would require
  // another reduction steps. Instead, we gather the excess bits, incorporate
  // them into |r0| and |r1| and reduce once. See slides 17-19
  // of https://crypto.stanford.edu/RealWorldCrypto/slides/gueron.pdf.
  r1 ^= (r0 << 63) ^ (r0 << 62) ^ (r0 << 57);

  // 1
  r2 ^= r0;
  r3 ^= r1;

  // x^-1
  r2 ^= r0 >> 1;
  r2 ^= r1 << 63;
  r3 ^= r1 >> 1;

  // x^-2
  r2 ^= r0 >> 2;
  r2 ^= r1 << 62;
  r3 ^= r1 >> 2;

  // x^-7
  r2 ^= r0 >> 7;
  r2 ^= r1 << 57;
  r3 ^= r1 >> 7;

  Xi[0] = r2;
  Xi[1] = r3;
}

void gcm_gmult_nohw(uint8_t Xi[16], const u128 Htable[16]) {
  uint64_t swapped[2];
  swapped[0] = CRYPTO_load_u64_be(Xi + 8);
  swapped[1] = CRYPTO_load_u64_be(Xi);
  gcm_polyval_nohw(swapped, &Htable[0]);
  CRYPTO_store_u64_be(Xi, swapped[1]);
  CRYPTO_store_u64_be(Xi + 8, swapped[0]);
}

void gcm_ghash_nohw(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp,
                    size_t len) {
  uint64_t swapped[2];
  swapped[0] = CRYPTO_load_u64_be(Xi + 8);
  swapped[1] = CRYPTO_load_u64_be(Xi);

  while (len >= 16) {
    swapped[0] ^= CRYPTO_load_u64_be(inp + 8);
    swapped[1] ^= CRYPTO_load_u64_be(inp);
    gcm_polyval_nohw(swapped, &Htable[0]);
    inp += 16;
    len -= 16;
  }

  CRYPTO_store_u64_be(Xi, swapped[1]);
  CRYPTO_store_u64_be(Xi + 8, swapped[0]);
}