File: internal.h

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (428 lines) | stat: -rw-r--r-- 18,775 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
/* ====================================================================
 * Copyright (c) 2008 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ==================================================================== */

#ifndef OPENSSL_HEADER_MODES_INTERNAL_H
#define OPENSSL_HEADER_MODES_INTERNAL_H

#include <CCryptoBoringSSL_base.h>

#include <CCryptoBoringSSL_aes.h>

#include <assert.h>
#include <stdlib.h>
#include <string.h>

#include "../../internal.h"

#if defined(__cplusplus)
extern "C" {
#endif


// block128_f is the type of an AES block cipher implementation.
//
// Unlike upstream OpenSSL, it and the other functions in this file hard-code
// |AES_KEY|. It is undefined in C to call a function pointer with anything
// other than the original type. Thus we either must match |block128_f| to the
// type signature of |AES_encrypt| and friends or pass in |void*| wrapper
// functions.
//
// These functions are called exclusively with AES, so we use the former.
typedef void (*block128_f)(const uint8_t in[16], uint8_t out[16],
                           const AES_KEY *key);

OPENSSL_INLINE void CRYPTO_xor16(uint8_t out[16], const uint8_t a[16],
                                 const uint8_t b[16]) {
  // TODO(davidben): Ideally we'd leave this to the compiler, which could use
  // vector registers, etc. But the compiler doesn't know that |in| and |out|
  // cannot partially alias. |restrict| is slightly two strict (we allow exact
  // aliasing), but perhaps in-place could be a separate function?
  static_assert(16 % sizeof(crypto_word_t) == 0,
                "block cannot be evenly divided into words");
  for (size_t i = 0; i < 16; i += sizeof(crypto_word_t)) {
    CRYPTO_store_word_le(
        out + i, CRYPTO_load_word_le(a + i) ^ CRYPTO_load_word_le(b + i));
  }
}


// CTR.

// ctr128_f is the type of a function that performs CTR-mode encryption.
typedef void (*ctr128_f)(const uint8_t *in, uint8_t *out, size_t blocks,
                         const AES_KEY *key, const uint8_t ivec[16]);

// CRYPTO_ctr128_encrypt encrypts (or decrypts, it's the same in CTR mode)
// |len| bytes from |in| to |out| using |block| in counter mode. There's no
// requirement that |len| be a multiple of any value and any partial blocks are
// stored in |ecount_buf| and |*num|, which must be zeroed before the initial
// call. The counter is a 128-bit, big-endian value in |ivec| and is
// incremented by this function.
void CRYPTO_ctr128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
                           const AES_KEY *key, uint8_t ivec[16],
                           uint8_t ecount_buf[16], unsigned *num,
                           block128_f block);

// CRYPTO_ctr128_encrypt_ctr32 acts like |CRYPTO_ctr128_encrypt| but takes
// |ctr|, a function that performs CTR mode but only deals with the lower 32
// bits of the counter. This is useful when |ctr| can be an optimised
// function.
void CRYPTO_ctr128_encrypt_ctr32(const uint8_t *in, uint8_t *out, size_t len,
                                 const AES_KEY *key, uint8_t ivec[16],
                                 uint8_t ecount_buf[16], unsigned *num,
                                 ctr128_f ctr);


// GCM.
//
// This API differs from the upstream API slightly. The |GCM128_CONTEXT| does
// not have a |key| pointer that points to the key as upstream's version does.
// Instead, every function takes a |key| parameter. This way |GCM128_CONTEXT|
// can be safely copied. Additionally, |gcm_key| is split into a separate
// struct.

typedef struct { uint64_t hi,lo; } u128;

// gmult_func multiplies |Xi| by the GCM key and writes the result back to
// |Xi|.
typedef void (*gmult_func)(uint8_t Xi[16], const u128 Htable[16]);

// ghash_func repeatedly multiplies |Xi| by the GCM key and adds in blocks from
// |inp|. The result is written back to |Xi| and the |len| argument must be a
// multiple of 16.
typedef void (*ghash_func)(uint8_t Xi[16], const u128 Htable[16],
                           const uint8_t *inp, size_t len);

typedef struct gcm128_key_st {
  // |gcm_*_ssse3| require a 16-byte-aligned |Htable| when hashing data, but not
  // initialization. |GCM128_KEY| is not itself aligned to simplify embedding in
  // |EVP_AEAD_CTX|, but |Htable|'s offset must be a multiple of 16.
  // TODO(crbug.com/boringssl/604): Revisit this.
  u128 Htable[16];
  gmult_func gmult;
  ghash_func ghash;

  block128_f block;

  // use_hw_gcm_crypt is true if this context should use platform-specific
  // assembly to process GCM data.
  unsigned use_hw_gcm_crypt:1;
} GCM128_KEY;

// GCM128_CONTEXT contains state for a single GCM operation. The structure
// should be zero-initialized before use.
typedef struct {
  // The following 5 names follow names in GCM specification
  uint8_t Yi[16];
  uint8_t EKi[16];
  uint8_t EK0[16];
  struct {
    uint64_t aad;
    uint64_t msg;
  } len;
  uint8_t Xi[16];

  // |gcm_*_ssse3| require |Htable| to be 16-byte-aligned.
  // TODO(crbug.com/boringssl/604): Revisit this.
  alignas(16) GCM128_KEY gcm_key;

  unsigned mres, ares;
} GCM128_CONTEXT;

#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
// crypto_gcm_clmul_enabled returns one if the CLMUL implementation of GCM is
// used.
int crypto_gcm_clmul_enabled(void);
#endif

// CRYPTO_ghash_init writes a precomputed table of powers of |gcm_key| to
// |out_table| and sets |*out_mult| and |*out_hash| to (potentially hardware
// accelerated) functions for performing operations in the GHASH field. If the
// AVX implementation was used |*out_is_avx| will be true.
void CRYPTO_ghash_init(gmult_func *out_mult, ghash_func *out_hash,
                       u128 out_table[16], int *out_is_avx,
                       const uint8_t gcm_key[16]);

// CRYPTO_gcm128_init_key initialises |gcm_key| to use |block| (typically AES)
// with the given key. |block_is_hwaes| is one if |block| is |aes_hw_encrypt|.
OPENSSL_EXPORT void CRYPTO_gcm128_init_key(GCM128_KEY *gcm_key,
                                           const AES_KEY *key, block128_f block,
                                           int block_is_hwaes);

// CRYPTO_gcm128_setiv sets the IV (nonce) for |ctx|. The |key| must be the
// same key that was passed to |CRYPTO_gcm128_init|.
OPENSSL_EXPORT void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const AES_KEY *key,
                                        const uint8_t *iv, size_t iv_len);

// CRYPTO_gcm128_aad sets the authenticated data for an instance of GCM.
// This must be called before and data is encrypted. It returns one on success
// and zero otherwise.
OPENSSL_EXPORT int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const uint8_t *aad,
                                     size_t len);

// CRYPTO_gcm128_encrypt encrypts |len| bytes from |in| to |out|. The |key|
// must be the same key that was passed to |CRYPTO_gcm128_init|. It returns one
// on success and zero otherwise.
OPENSSL_EXPORT int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx,
                                         const AES_KEY *key, const uint8_t *in,
                                         uint8_t *out, size_t len);

// CRYPTO_gcm128_decrypt decrypts |len| bytes from |in| to |out|. The |key|
// must be the same key that was passed to |CRYPTO_gcm128_init|. It returns one
// on success and zero otherwise.
OPENSSL_EXPORT int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx,
                                         const AES_KEY *key, const uint8_t *in,
                                         uint8_t *out, size_t len);

// CRYPTO_gcm128_encrypt_ctr32 encrypts |len| bytes from |in| to |out| using
// a CTR function that only handles the bottom 32 bits of the nonce, like
// |CRYPTO_ctr128_encrypt_ctr32|. The |key| must be the same key that was
// passed to |CRYPTO_gcm128_init|. It returns one on success and zero
// otherwise.
OPENSSL_EXPORT int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx,
                                               const AES_KEY *key,
                                               const uint8_t *in, uint8_t *out,
                                               size_t len, ctr128_f stream);

// CRYPTO_gcm128_decrypt_ctr32 decrypts |len| bytes from |in| to |out| using
// a CTR function that only handles the bottom 32 bits of the nonce, like
// |CRYPTO_ctr128_encrypt_ctr32|. The |key| must be the same key that was
// passed to |CRYPTO_gcm128_init|. It returns one on success and zero
// otherwise.
OPENSSL_EXPORT int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx,
                                               const AES_KEY *key,
                                               const uint8_t *in, uint8_t *out,
                                               size_t len, ctr128_f stream);

// CRYPTO_gcm128_finish calculates the authenticator and compares it against
// |len| bytes of |tag|. It returns one on success and zero otherwise.
OPENSSL_EXPORT int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const uint8_t *tag,
                                        size_t len);

// CRYPTO_gcm128_tag calculates the authenticator and copies it into |tag|.
// The minimum of |len| and 16 bytes are copied into |tag|.
OPENSSL_EXPORT void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, uint8_t *tag,
                                      size_t len);


// GCM assembly.

void gcm_init_nohw(u128 Htable[16], const uint64_t H[2]);
void gcm_gmult_nohw(uint8_t Xi[16], const u128 Htable[16]);
void gcm_ghash_nohw(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp,
                    size_t len);

#if !defined(OPENSSL_NO_ASM)

#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
#define GCM_FUNCREF
void gcm_init_clmul(u128 Htable[16], const uint64_t Xi[2]);
void gcm_gmult_clmul(uint8_t Xi[16], const u128 Htable[16]);
void gcm_ghash_clmul(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp,
                     size_t len);

// |gcm_gmult_ssse3| and |gcm_ghash_ssse3| require |Htable| to be
// 16-byte-aligned, but |gcm_init_ssse3| does not.
void gcm_init_ssse3(u128 Htable[16], const uint64_t Xi[2]);
void gcm_gmult_ssse3(uint8_t Xi[16], const u128 Htable[16]);
void gcm_ghash_ssse3(uint8_t Xi[16], const u128 Htable[16], const uint8_t *in,
                     size_t len);

#if defined(OPENSSL_X86_64)
#define GHASH_ASM_X86_64
void gcm_init_avx(u128 Htable[16], const uint64_t Xi[2]);
void gcm_gmult_avx(uint8_t Xi[16], const u128 Htable[16]);
void gcm_ghash_avx(uint8_t Xi[16], const u128 Htable[16], const uint8_t *in,
                   size_t len);

#define HW_GCM
size_t aesni_gcm_encrypt(const uint8_t *in, uint8_t *out, size_t len,
                         const AES_KEY *key, uint8_t ivec[16],
                         const u128 Htable[16], uint8_t Xi[16]);
size_t aesni_gcm_decrypt(const uint8_t *in, uint8_t *out, size_t len,
                         const AES_KEY *key, uint8_t ivec[16],
                         const u128 Htable[16], uint8_t Xi[16]);
#endif  // OPENSSL_X86_64

#if defined(OPENSSL_X86)
#define GHASH_ASM_X86
#endif  // OPENSSL_X86

#elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)

#define GHASH_ASM_ARM
#define GCM_FUNCREF

OPENSSL_INLINE int gcm_pmull_capable(void) {
  return CRYPTO_is_ARMv8_PMULL_capable();
}

void gcm_init_v8(u128 Htable[16], const uint64_t H[2]);
void gcm_gmult_v8(uint8_t Xi[16], const u128 Htable[16]);
void gcm_ghash_v8(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp,
                  size_t len);

OPENSSL_INLINE int gcm_neon_capable(void) { return CRYPTO_is_NEON_capable(); }

void gcm_init_neon(u128 Htable[16], const uint64_t H[2]);
void gcm_gmult_neon(uint8_t Xi[16], const u128 Htable[16]);
void gcm_ghash_neon(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp,
                    size_t len);

#if defined(OPENSSL_AARCH64)
#define HW_GCM
// These functions are defined in aesv8-gcm-armv8.pl.
void aes_gcm_enc_kernel(const uint8_t *in, uint64_t in_bits, void *out,
                        void *Xi, uint8_t *ivec, const AES_KEY *key,
                        const u128 Htable[16]);
void aes_gcm_dec_kernel(const uint8_t *in, uint64_t in_bits, void *out,
                        void *Xi, uint8_t *ivec, const AES_KEY *key,
                        const u128 Htable[16]);
#endif

#endif
#endif  // OPENSSL_NO_ASM


// CBC.

// cbc128_f is the type of a function that performs CBC-mode encryption.
typedef void (*cbc128_f)(const uint8_t *in, uint8_t *out, size_t len,
                         const AES_KEY *key, uint8_t ivec[16], int enc);

// CRYPTO_cbc128_encrypt encrypts |len| bytes from |in| to |out| using the
// given IV and block cipher in CBC mode. The input need not be a multiple of
// 128 bits long, but the output will round up to the nearest 128 bit multiple,
// zero padding the input if needed. The IV will be updated on return.
void CRYPTO_cbc128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
                           const AES_KEY *key, uint8_t ivec[16],
                           block128_f block);

// CRYPTO_cbc128_decrypt decrypts |len| bytes from |in| to |out| using the
// given IV and block cipher in CBC mode. If |len| is not a multiple of 128
// bits then only that many bytes will be written, but a multiple of 128 bits
// is always read from |in|. The IV will be updated on return.
void CRYPTO_cbc128_decrypt(const uint8_t *in, uint8_t *out, size_t len,
                           const AES_KEY *key, uint8_t ivec[16],
                           block128_f block);


// OFB.

// CRYPTO_ofb128_encrypt encrypts (or decrypts, it's the same with OFB mode)
// |len| bytes from |in| to |out| using |block| in OFB mode. There's no
// requirement that |len| be a multiple of any value and any partial blocks are
// stored in |ivec| and |*num|, the latter must be zero before the initial
// call.
void CRYPTO_ofb128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
                           const AES_KEY *key, uint8_t ivec[16], unsigned *num,
                           block128_f block);


// CFB.

// CRYPTO_cfb128_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
// from |in| to |out| using |block| in CFB mode. There's no requirement that
// |len| be a multiple of any value and any partial blocks are stored in |ivec|
// and |*num|, the latter must be zero before the initial call.
void CRYPTO_cfb128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
                           const AES_KEY *key, uint8_t ivec[16], unsigned *num,
                           int enc, block128_f block);

// CRYPTO_cfb128_8_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
// from |in| to |out| using |block| in CFB-8 mode. Prior to the first call
// |num| should be set to zero.
void CRYPTO_cfb128_8_encrypt(const uint8_t *in, uint8_t *out, size_t len,
                             const AES_KEY *key, uint8_t ivec[16],
                             unsigned *num, int enc, block128_f block);

// CRYPTO_cfb128_1_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
// from |in| to |out| using |block| in CFB-1 mode. Prior to the first call
// |num| should be set to zero.
void CRYPTO_cfb128_1_encrypt(const uint8_t *in, uint8_t *out, size_t bits,
                             const AES_KEY *key, uint8_t ivec[16],
                             unsigned *num, int enc, block128_f block);

size_t CRYPTO_cts128_encrypt_block(const uint8_t *in, uint8_t *out, size_t len,
                                   const AES_KEY *key, uint8_t ivec[16],
                                   block128_f block);


// POLYVAL.
//
// POLYVAL is a polynomial authenticator that operates over a field very
// similar to the one that GHASH uses. See
// https://www.rfc-editor.org/rfc/rfc8452.html#section-3.

struct polyval_ctx {
  uint8_t S[16];
  // |gcm_*_ssse3| require |Htable| to be 16-byte-aligned.
  // TODO(crbug.com/boringssl/604): Revisit this.
  alignas(16) u128 Htable[16];
  gmult_func gmult;
  ghash_func ghash;
};

// CRYPTO_POLYVAL_init initialises |ctx| using |key|.
void CRYPTO_POLYVAL_init(struct polyval_ctx *ctx, const uint8_t key[16]);

// CRYPTO_POLYVAL_update_blocks updates the accumulator in |ctx| given the
// blocks from |in|. Only a whole number of blocks can be processed so |in_len|
// must be a multiple of 16.
void CRYPTO_POLYVAL_update_blocks(struct polyval_ctx *ctx, const uint8_t *in,
                                  size_t in_len);

// CRYPTO_POLYVAL_finish writes the accumulator from |ctx| to |out|.
void CRYPTO_POLYVAL_finish(const struct polyval_ctx *ctx, uint8_t out[16]);


#if defined(__cplusplus)
}  // extern C
#endif

#endif  // OPENSSL_HEADER_MODES_INTERNAL_H