1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <CCryptoBoringSSL_rsa.h>
#include <assert.h>
#include <limits.h>
#include <string.h>
#include <CCryptoBoringSSL_bn.h>
#include <CCryptoBoringSSL_err.h>
#include <CCryptoBoringSSL_mem.h>
#include <CCryptoBoringSSL_thread.h>
#include "../../internal.h"
#include "../bn/internal.h"
#include "../delocate.h"
#include "../rand/fork_detect.h"
#include "../service_indicator/internal.h"
#include "internal.h"
int rsa_check_public_key(const RSA *rsa) {
if (rsa->n == NULL) {
OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
return 0;
}
// TODO(davidben): 16384-bit RSA is huge. Can we bring this down to a limit of
// 8192-bit?
unsigned n_bits = BN_num_bits(rsa->n);
if (n_bits > 16 * 1024) {
OPENSSL_PUT_ERROR(RSA, RSA_R_MODULUS_TOO_LARGE);
return 0;
}
// TODO(crbug.com/boringssl/607): Raise this limit. 512-bit RSA was factored
// in 1999.
if (n_bits < 512) {
OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
return 0;
}
// RSA moduli must be positive and odd. In addition to being necessary for RSA
// in general, we cannot setup Montgomery reduction with even moduli.
if (!BN_is_odd(rsa->n) || BN_is_negative(rsa->n)) {
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_RSA_PARAMETERS);
return 0;
}
static const unsigned kMaxExponentBits = 33;
if (rsa->e != NULL) {
// Reject e = 1, negative e, and even e. e must be odd to be relatively
// prime with phi(n).
unsigned e_bits = BN_num_bits(rsa->e);
if (e_bits < 2 || BN_is_negative(rsa->e) || !BN_is_odd(rsa->e)) {
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE);
return 0;
}
if (rsa->flags & RSA_FLAG_LARGE_PUBLIC_EXPONENT) {
// The caller has requested disabling DoS protections. Still, e must be
// less than n.
if (BN_ucmp(rsa->n, rsa->e) <= 0) {
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE);
return 0;
}
} else {
// Mitigate DoS attacks by limiting the exponent size. 33 bits was chosen
// as the limit based on the recommendations in [1] and [2]. Windows
// CryptoAPI doesn't support values larger than 32 bits [3], so it is
// unlikely that exponents larger than 32 bits are being used for anything
// Windows commonly does.
//
// [1] https://www.imperialviolet.org/2012/03/16/rsae.html
// [2] https://www.imperialviolet.org/2012/03/17/rsados.html
// [3] https://msdn.microsoft.com/en-us/library/aa387685(VS.85).aspx
if (e_bits > kMaxExponentBits) {
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE);
return 0;
}
// The upper bound on |e_bits| and lower bound on |n_bits| imply e is
// bounded by n.
assert(BN_ucmp(rsa->n, rsa->e) > 0);
}
} else if (!(rsa->flags & RSA_FLAG_NO_PUBLIC_EXPONENT)) {
OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
return 0;
}
return 1;
}
static int ensure_fixed_copy(BIGNUM **out, const BIGNUM *in, int width) {
if (*out != NULL) {
return 1;
}
BIGNUM *copy = BN_dup(in);
if (copy == NULL ||
!bn_resize_words(copy, width)) {
BN_free(copy);
return 0;
}
*out = copy;
CONSTTIME_SECRET(copy->d, sizeof(BN_ULONG) * width);
return 1;
}
// freeze_private_key finishes initializing |rsa|'s private key components.
// After this function has returned, |rsa| may not be changed. This is needed
// because |RSA| is a public struct and, additionally, OpenSSL 1.1.0 opaquified
// it wrong (see https://github.com/openssl/openssl/issues/5158).
static int freeze_private_key(RSA *rsa, BN_CTX *ctx) {
CRYPTO_MUTEX_lock_read(&rsa->lock);
int frozen = rsa->private_key_frozen;
CRYPTO_MUTEX_unlock_read(&rsa->lock);
if (frozen) {
return 1;
}
int ret = 0;
CRYPTO_MUTEX_lock_write(&rsa->lock);
if (rsa->private_key_frozen) {
ret = 1;
goto err;
}
// Check the public components are within DoS bounds.
if (!rsa_check_public_key(rsa)) {
goto err;
}
// Pre-compute various intermediate values, as well as copies of private
// exponents with correct widths. Note that other threads may concurrently
// read from |rsa->n|, |rsa->e|, etc., so any fixes must be in separate
// copies. We use |mont_n->N|, |mont_p->N|, and |mont_q->N| as copies of |n|,
// |p|, and |q| with the correct minimal widths.
if (rsa->mont_n == NULL) {
rsa->mont_n = BN_MONT_CTX_new_for_modulus(rsa->n, ctx);
if (rsa->mont_n == NULL) {
goto err;
}
}
const BIGNUM *n_fixed = &rsa->mont_n->N;
// The only public upper-bound of |rsa->d| is the bit length of |rsa->n|. The
// ASN.1 serialization of RSA private keys unfortunately leaks the byte length
// of |rsa->d|, but normalize it so we only leak it once, rather than per
// operation.
if (rsa->d != NULL &&
!ensure_fixed_copy(&rsa->d_fixed, rsa->d, n_fixed->width)) {
goto err;
}
if (rsa->e != NULL && rsa->p != NULL && rsa->q != NULL) {
// TODO: p and q are also CONSTTIME_SECRET but not yet marked as such
// because the Montgomery code does things like test whether or not values
// are zero. So the secret marking probably needs to happen inside that
// code.
if (rsa->mont_p == NULL) {
rsa->mont_p = BN_MONT_CTX_new_consttime(rsa->p, ctx);
if (rsa->mont_p == NULL) {
goto err;
}
}
const BIGNUM *p_fixed = &rsa->mont_p->N;
if (rsa->mont_q == NULL) {
rsa->mont_q = BN_MONT_CTX_new_consttime(rsa->q, ctx);
if (rsa->mont_q == NULL) {
goto err;
}
}
const BIGNUM *q_fixed = &rsa->mont_q->N;
if (rsa->dmp1 != NULL && rsa->dmq1 != NULL) {
// Key generation relies on this function to compute |iqmp|.
if (rsa->iqmp == NULL) {
BIGNUM *iqmp = BN_new();
if (iqmp == NULL ||
!bn_mod_inverse_secret_prime(iqmp, rsa->q, rsa->p, ctx,
rsa->mont_p)) {
BN_free(iqmp);
goto err;
}
rsa->iqmp = iqmp;
}
// CRT components are only publicly bounded by their corresponding
// moduli's bit lengths.
if (!ensure_fixed_copy(&rsa->dmp1_fixed, rsa->dmp1, p_fixed->width) ||
!ensure_fixed_copy(&rsa->dmq1_fixed, rsa->dmq1, q_fixed->width)) {
goto err;
}
// Compute |iqmp_mont|, which is |iqmp| in Montgomery form and with the
// correct bit width.
if (rsa->iqmp_mont == NULL) {
BIGNUM *iqmp_mont = BN_new();
if (iqmp_mont == NULL ||
!BN_to_montgomery(iqmp_mont, rsa->iqmp, rsa->mont_p, ctx)) {
BN_free(iqmp_mont);
goto err;
}
rsa->iqmp_mont = iqmp_mont;
CONSTTIME_SECRET(rsa->iqmp_mont->d,
sizeof(BN_ULONG) * rsa->iqmp_mont->width);
}
}
}
rsa->private_key_frozen = 1;
ret = 1;
err:
CRYPTO_MUTEX_unlock_write(&rsa->lock);
return ret;
}
void rsa_invalidate_key(RSA *rsa) {
rsa->private_key_frozen = 0;
BN_MONT_CTX_free(rsa->mont_n);
rsa->mont_n = NULL;
BN_MONT_CTX_free(rsa->mont_p);
rsa->mont_p = NULL;
BN_MONT_CTX_free(rsa->mont_q);
rsa->mont_q = NULL;
BN_free(rsa->d_fixed);
rsa->d_fixed = NULL;
BN_free(rsa->dmp1_fixed);
rsa->dmp1_fixed = NULL;
BN_free(rsa->dmq1_fixed);
rsa->dmq1_fixed = NULL;
BN_free(rsa->iqmp_mont);
rsa->iqmp_mont = NULL;
for (size_t i = 0; i < rsa->num_blindings; i++) {
BN_BLINDING_free(rsa->blindings[i]);
}
OPENSSL_free(rsa->blindings);
rsa->blindings = NULL;
rsa->num_blindings = 0;
OPENSSL_free(rsa->blindings_inuse);
rsa->blindings_inuse = NULL;
rsa->blinding_fork_generation = 0;
}
size_t rsa_default_size(const RSA *rsa) {
return BN_num_bytes(rsa->n);
}
// MAX_BLINDINGS_PER_RSA defines the maximum number of cached BN_BLINDINGs per
// RSA*. Then this limit is exceeded, BN_BLINDING objects will be created and
// destroyed as needed.
#if defined(OPENSSL_TSAN)
// Smaller under TSAN so that the edge case can be hit with fewer threads.
#define MAX_BLINDINGS_PER_RSA 2
#else
#define MAX_BLINDINGS_PER_RSA 1024
#endif
// rsa_blinding_get returns a BN_BLINDING to use with |rsa|. It does this by
// allocating one of the cached BN_BLINDING objects in |rsa->blindings|. If
// none are free, the cache will be extended by a extra element and the new
// BN_BLINDING is returned.
//
// On success, the index of the assigned BN_BLINDING is written to
// |*index_used| and must be passed to |rsa_blinding_release| when finished.
static BN_BLINDING *rsa_blinding_get(RSA *rsa, size_t *index_used,
BN_CTX *ctx) {
assert(ctx != NULL);
assert(rsa->mont_n != NULL);
BN_BLINDING *ret = NULL;
const uint64_t fork_generation = CRYPTO_get_fork_generation();
CRYPTO_MUTEX_lock_write(&rsa->lock);
// Wipe the blinding cache on |fork|.
if (rsa->blinding_fork_generation != fork_generation) {
for (size_t i = 0; i < rsa->num_blindings; i++) {
// The inuse flag must be zero unless we were forked from a
// multi-threaded process, in which case calling back into BoringSSL is
// forbidden.
assert(rsa->blindings_inuse[i] == 0);
BN_BLINDING_invalidate(rsa->blindings[i]);
}
rsa->blinding_fork_generation = fork_generation;
}
uint8_t *const free_inuse_flag =
OPENSSL_memchr(rsa->blindings_inuse, 0, rsa->num_blindings);
if (free_inuse_flag != NULL) {
*free_inuse_flag = 1;
*index_used = free_inuse_flag - rsa->blindings_inuse;
ret = rsa->blindings[*index_used];
goto out;
}
if (rsa->num_blindings >= MAX_BLINDINGS_PER_RSA) {
// No |BN_BLINDING| is free and nor can the cache be extended. This index
// value is magic and indicates to |rsa_blinding_release| that a
// |BN_BLINDING| was not inserted into the array.
*index_used = MAX_BLINDINGS_PER_RSA;
ret = BN_BLINDING_new();
goto out;
}
// Double the length of the cache.
static_assert(MAX_BLINDINGS_PER_RSA < UINT_MAX / 2,
"MAX_BLINDINGS_PER_RSA too large");
size_t new_num_blindings = rsa->num_blindings * 2;
if (new_num_blindings == 0) {
new_num_blindings = 1;
}
if (new_num_blindings > MAX_BLINDINGS_PER_RSA) {
new_num_blindings = MAX_BLINDINGS_PER_RSA;
}
assert(new_num_blindings > rsa->num_blindings);
BN_BLINDING **new_blindings =
OPENSSL_malloc(sizeof(BN_BLINDING *) * new_num_blindings);
uint8_t *new_blindings_inuse = OPENSSL_malloc(new_num_blindings);
if (new_blindings == NULL || new_blindings_inuse == NULL) {
goto err;
}
OPENSSL_memcpy(new_blindings, rsa->blindings,
sizeof(BN_BLINDING *) * rsa->num_blindings);
OPENSSL_memcpy(new_blindings_inuse, rsa->blindings_inuse, rsa->num_blindings);
for (size_t i = rsa->num_blindings; i < new_num_blindings; i++) {
new_blindings[i] = BN_BLINDING_new();
if (new_blindings[i] == NULL) {
for (size_t j = rsa->num_blindings; j < i; j++) {
BN_BLINDING_free(new_blindings[j]);
}
goto err;
}
}
memset(&new_blindings_inuse[rsa->num_blindings], 0,
new_num_blindings - rsa->num_blindings);
new_blindings_inuse[rsa->num_blindings] = 1;
*index_used = rsa->num_blindings;
assert(*index_used != MAX_BLINDINGS_PER_RSA);
ret = new_blindings[rsa->num_blindings];
OPENSSL_free(rsa->blindings);
rsa->blindings = new_blindings;
OPENSSL_free(rsa->blindings_inuse);
rsa->blindings_inuse = new_blindings_inuse;
rsa->num_blindings = new_num_blindings;
goto out;
err:
OPENSSL_free(new_blindings_inuse);
OPENSSL_free(new_blindings);
out:
CRYPTO_MUTEX_unlock_write(&rsa->lock);
return ret;
}
// rsa_blinding_release marks the cached BN_BLINDING at the given index as free
// for other threads to use.
static void rsa_blinding_release(RSA *rsa, BN_BLINDING *blinding,
size_t blinding_index) {
if (blinding_index == MAX_BLINDINGS_PER_RSA) {
// This blinding wasn't cached.
BN_BLINDING_free(blinding);
return;
}
CRYPTO_MUTEX_lock_write(&rsa->lock);
rsa->blindings_inuse[blinding_index] = 0;
CRYPTO_MUTEX_unlock_write(&rsa->lock);
}
// signing
int rsa_default_sign_raw(RSA *rsa, size_t *out_len, uint8_t *out,
size_t max_out, const uint8_t *in, size_t in_len,
int padding) {
const unsigned rsa_size = RSA_size(rsa);
uint8_t *buf = NULL;
int i, ret = 0;
if (max_out < rsa_size) {
OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL);
return 0;
}
buf = OPENSSL_malloc(rsa_size);
if (buf == NULL) {
goto err;
}
switch (padding) {
case RSA_PKCS1_PADDING:
i = RSA_padding_add_PKCS1_type_1(buf, rsa_size, in, in_len);
break;
case RSA_NO_PADDING:
i = RSA_padding_add_none(buf, rsa_size, in, in_len);
break;
default:
OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE);
goto err;
}
if (i <= 0) {
goto err;
}
if (!rsa_private_transform_no_self_test(rsa, out, buf, rsa_size)) {
goto err;
}
CONSTTIME_DECLASSIFY(out, rsa_size);
*out_len = rsa_size;
ret = 1;
err:
OPENSSL_free(buf);
return ret;
}
static int mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx);
int rsa_verify_raw_no_self_test(RSA *rsa, size_t *out_len, uint8_t *out,
size_t max_out, const uint8_t *in,
size_t in_len, int padding) {
if (rsa->n == NULL || rsa->e == NULL) {
OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
return 0;
}
if (!rsa_check_public_key(rsa)) {
return 0;
}
const unsigned rsa_size = RSA_size(rsa);
BIGNUM *f, *result;
if (max_out < rsa_size) {
OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL);
return 0;
}
if (in_len != rsa_size) {
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_LEN_NOT_EQUAL_TO_MOD_LEN);
return 0;
}
BN_CTX *ctx = BN_CTX_new();
if (ctx == NULL) {
return 0;
}
int ret = 0;
uint8_t *buf = NULL;
BN_CTX_start(ctx);
f = BN_CTX_get(ctx);
result = BN_CTX_get(ctx);
if (f == NULL || result == NULL) {
goto err;
}
if (padding == RSA_NO_PADDING) {
buf = out;
} else {
// Allocate a temporary buffer to hold the padded plaintext.
buf = OPENSSL_malloc(rsa_size);
if (buf == NULL) {
goto err;
}
}
if (BN_bin2bn(in, in_len, f) == NULL) {
goto err;
}
if (BN_ucmp(f, rsa->n) >= 0) {
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS);
goto err;
}
if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx) ||
!BN_mod_exp_mont(result, f, rsa->e, &rsa->mont_n->N, ctx, rsa->mont_n)) {
goto err;
}
if (!BN_bn2bin_padded(buf, rsa_size, result)) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
switch (padding) {
case RSA_PKCS1_PADDING:
ret =
RSA_padding_check_PKCS1_type_1(out, out_len, rsa_size, buf, rsa_size);
break;
case RSA_NO_PADDING:
ret = 1;
*out_len = rsa_size;
break;
default:
OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE);
goto err;
}
if (!ret) {
OPENSSL_PUT_ERROR(RSA, RSA_R_PADDING_CHECK_FAILED);
goto err;
}
err:
BN_CTX_end(ctx);
BN_CTX_free(ctx);
if (buf != out) {
OPENSSL_free(buf);
}
return ret;
}
int RSA_verify_raw(RSA *rsa, size_t *out_len, uint8_t *out,
size_t max_out, const uint8_t *in,
size_t in_len, int padding) {
boringssl_ensure_rsa_self_test();
return rsa_verify_raw_no_self_test(rsa, out_len, out, max_out, in, in_len,
padding);
}
int rsa_default_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in,
size_t len) {
if (rsa->n == NULL || rsa->d == NULL) {
OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
return 0;
}
BIGNUM *f, *result;
BN_CTX *ctx = NULL;
size_t blinding_index = 0;
BN_BLINDING *blinding = NULL;
int ret = 0;
ctx = BN_CTX_new();
if (ctx == NULL) {
goto err;
}
BN_CTX_start(ctx);
f = BN_CTX_get(ctx);
result = BN_CTX_get(ctx);
if (f == NULL || result == NULL) {
goto err;
}
// The caller should have ensured this.
assert(len == BN_num_bytes(rsa->n));
if (BN_bin2bn(in, len, f) == NULL) {
goto err;
}
if (BN_ucmp(f, rsa->n) >= 0) {
// Usually the padding functions would catch this.
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS);
goto err;
}
if (!freeze_private_key(rsa, ctx)) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
const int do_blinding =
(rsa->flags & (RSA_FLAG_NO_BLINDING | RSA_FLAG_NO_PUBLIC_EXPONENT)) == 0;
if (rsa->e == NULL && do_blinding) {
// We cannot do blinding or verification without |e|, and continuing without
// those countermeasures is dangerous. However, the Java/Android RSA API
// requires support for keys where only |d| and |n| (and not |e|) are known.
// The callers that require that bad behavior must set
// |RSA_FLAG_NO_BLINDING| or use |RSA_new_private_key_no_e|.
//
// TODO(davidben): Update this comment when Conscrypt is updated to use
// |RSA_new_private_key_no_e|.
OPENSSL_PUT_ERROR(RSA, RSA_R_NO_PUBLIC_EXPONENT);
goto err;
}
if (do_blinding) {
blinding = rsa_blinding_get(rsa, &blinding_index, ctx);
if (blinding == NULL) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
if (!BN_BLINDING_convert(f, blinding, rsa->e, rsa->mont_n, ctx)) {
goto err;
}
}
if (rsa->p != NULL && rsa->q != NULL && rsa->e != NULL && rsa->dmp1 != NULL &&
rsa->dmq1 != NULL && rsa->iqmp != NULL &&
// Require that we can reduce |f| by |rsa->p| and |rsa->q| in constant
// time, which requires primes be the same size, rounded to the Montgomery
// coefficient. (See |mod_montgomery|.) This is not required by RFC 8017,
// but it is true for keys generated by us and all common implementations.
bn_less_than_montgomery_R(rsa->q, rsa->mont_p) &&
bn_less_than_montgomery_R(rsa->p, rsa->mont_q)) {
if (!mod_exp(result, f, rsa, ctx)) {
goto err;
}
} else if (!BN_mod_exp_mont_consttime(result, f, rsa->d_fixed, rsa->n, ctx,
rsa->mont_n)) {
goto err;
}
// Verify the result to protect against fault attacks as described in the
// 1997 paper "On the Importance of Checking Cryptographic Protocols for
// Faults" by Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. Some
// implementations do this only when the CRT is used, but we do it in all
// cases. Section 6 of the aforementioned paper describes an attack that
// works when the CRT isn't used. That attack is much less likely to succeed
// than the CRT attack, but there have likely been improvements since 1997.
//
// This check is cheap assuming |e| is small, which we require in
// |rsa_check_public_key|.
if (rsa->e != NULL) {
BIGNUM *vrfy = BN_CTX_get(ctx);
if (vrfy == NULL ||
!BN_mod_exp_mont(vrfy, result, rsa->e, rsa->n, ctx, rsa->mont_n) ||
!constant_time_declassify_int(BN_equal_consttime(vrfy, f))) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
}
if (do_blinding &&
!BN_BLINDING_invert(result, blinding, rsa->mont_n, ctx)) {
goto err;
}
// The computation should have left |result| as a maximally-wide number, so
// that it and serializing does not leak information about the magnitude of
// the result.
//
// See Falko Strenzke, "Manger's Attack revisited", ICICS 2010.
assert(result->width == rsa->mont_n->N.width);
bn_assert_fits_in_bytes(result, len);
if (!BN_bn2bin_padded(out, len, result)) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
ret = 1;
err:
if (ctx != NULL) {
BN_CTX_end(ctx);
BN_CTX_free(ctx);
}
if (blinding != NULL) {
rsa_blinding_release(rsa, blinding, blinding_index);
}
return ret;
}
// mod_montgomery sets |r| to |I| mod |p|. |I| must already be fully reduced
// modulo |p| times |q|. It returns one on success and zero on error.
static int mod_montgomery(BIGNUM *r, const BIGNUM *I, const BIGNUM *p,
const BN_MONT_CTX *mont_p, const BIGNUM *q,
BN_CTX *ctx) {
// Reducing in constant-time with Montgomery reduction requires I <= p * R. We
// have I < p * q, so this follows if q < R. The caller should have checked
// this already.
if (!bn_less_than_montgomery_R(q, mont_p)) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
return 0;
}
if (// Reduce mod p with Montgomery reduction. This computes I * R^-1 mod p.
!BN_from_montgomery(r, I, mont_p, ctx) ||
// Multiply by R^2 and do another Montgomery reduction to compute
// I * R^-1 * R^2 * R^-1 = I mod p.
!BN_to_montgomery(r, r, mont_p, ctx)) {
return 0;
}
// By precomputing R^3 mod p (normally |BN_MONT_CTX| only uses R^2 mod p) and
// adjusting the API for |BN_mod_exp_mont_consttime|, we could instead compute
// I * R mod p here and save a reduction per prime. But this would require
// changing the RSAZ code and may not be worth it. Note that the RSAZ code
// uses a different radix, so it uses R' = 2^1044. There we'd actually want
// R^2 * R', and would futher benefit from a precomputed R'^2. It currently
// converts |mont_p->RR| to R'^2.
return 1;
}
static int mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx) {
assert(ctx != NULL);
assert(rsa->n != NULL);
assert(rsa->e != NULL);
assert(rsa->d != NULL);
assert(rsa->p != NULL);
assert(rsa->q != NULL);
assert(rsa->dmp1 != NULL);
assert(rsa->dmq1 != NULL);
assert(rsa->iqmp != NULL);
BIGNUM *r1, *m1;
int ret = 0;
BN_CTX_start(ctx);
r1 = BN_CTX_get(ctx);
m1 = BN_CTX_get(ctx);
if (r1 == NULL ||
m1 == NULL) {
goto err;
}
if (!freeze_private_key(rsa, ctx)) {
goto err;
}
// Use the minimal-width versions of |n|, |p|, and |q|. Either works, but if
// someone gives us non-minimal values, these will be slightly more efficient
// on the non-Montgomery operations.
const BIGNUM *n = &rsa->mont_n->N;
const BIGNUM *p = &rsa->mont_p->N;
const BIGNUM *q = &rsa->mont_q->N;
// This is a pre-condition for |mod_montgomery|. It was already checked by the
// caller.
assert(BN_ucmp(I, n) < 0);
if (// |m1| is the result modulo |q|.
!mod_montgomery(r1, I, q, rsa->mont_q, p, ctx) ||
!BN_mod_exp_mont_consttime(m1, r1, rsa->dmq1_fixed, q, ctx,
rsa->mont_q) ||
// |r0| is the result modulo |p|.
!mod_montgomery(r1, I, p, rsa->mont_p, q, ctx) ||
!BN_mod_exp_mont_consttime(r0, r1, rsa->dmp1_fixed, p, ctx,
rsa->mont_p) ||
// Compute r0 = r0 - m1 mod p. |m1| is reduced mod |q|, not |p|, so we
// just run |mod_montgomery| again for simplicity. This could be more
// efficient with more cases: if |p > q|, |m1| is already reduced. If
// |p < q| but they have the same bit width, |bn_reduce_once| suffices.
// However, compared to over 2048 Montgomery multiplications above, this
// difference is not measurable.
!mod_montgomery(r1, m1, p, rsa->mont_p, q, ctx) ||
!bn_mod_sub_consttime(r0, r0, r1, p, ctx) ||
// r0 = r0 * iqmp mod p. We use Montgomery multiplication to compute this
// in constant time. |iqmp_mont| is in Montgomery form and r0 is not, so
// the result is taken out of Montgomery form.
!BN_mod_mul_montgomery(r0, r0, rsa->iqmp_mont, rsa->mont_p, ctx) ||
// r0 = r0 * q + m1 gives the final result. Reducing modulo q gives m1, so
// it is correct mod p. Reducing modulo p gives (r0-m1)*iqmp*q + m1 = r0,
// so it is correct mod q. Finally, the result is bounded by [m1, n + m1),
// and the result is at least |m1|, so this must be the unique answer in
// [0, n).
!bn_mul_consttime(r0, r0, q, ctx) || //
!bn_uadd_consttime(r0, r0, m1)) {
goto err;
}
// The result should be bounded by |n|, but fixed-width operations may
// bound the width slightly higher, so fix it. This trips constant-time checks
// because a naive data flow analysis does not realize the excess words are
// publicly zero.
assert(BN_cmp(r0, n) < 0);
bn_assert_fits_in_bytes(r0, BN_num_bytes(n));
if (!bn_resize_words(r0, n->width)) {
goto err;
}
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
static int ensure_bignum(BIGNUM **out) {
if (*out == NULL) {
*out = BN_new();
}
return *out != NULL;
}
// kBoringSSLRSASqrtTwo is the BIGNUM representation of ⌊2²⁰⁴⁷×√2⌋. This is
// chosen to give enough precision for 4096-bit RSA, the largest key size FIPS
// specifies. Key sizes beyond this will round up.
//
// To calculate, use the following Haskell code:
//
// import Text.Printf (printf)
// import Data.List (intercalate)
//
// pow2 = 4095
// target = 2^pow2
//
// f x = x*x - (toRational target)
//
// fprime x = 2*x
//
// newtonIteration x = x - (f x) / (fprime x)
//
// converge x =
// let n = floor x in
// if n*n - target < 0 && (n+1)*(n+1) - target > 0
// then n
// else converge (newtonIteration x)
//
// divrem bits x = (x `div` (2^bits), x `rem` (2^bits))
//
// bnWords :: Integer -> [Integer]
// bnWords x =
// if x == 0
// then []
// else let (high, low) = divrem 64 x in low : bnWords high
//
// showWord x = let (high, low) = divrem 32 x in printf "TOBN(0x%08x, 0x%08x)" high low
//
// output :: String
// output = intercalate ", " $ map showWord $ bnWords $ converge (2 ^ (pow2 `div` 2))
//
// To verify this number, check that n² < 2⁴⁰⁹⁵ < (n+1)², where n is value
// represented here. Note the components are listed in little-endian order. Here
// is some sample Python code to check:
//
// >>> TOBN = lambda a, b: a << 32 | b
// >>> l = [ <paste the contents of kSqrtTwo> ]
// >>> n = sum(a * 2**(64*i) for i, a in enumerate(l))
// >>> n**2 < 2**4095 < (n+1)**2
// True
const BN_ULONG kBoringSSLRSASqrtTwo[] = {
TOBN(0x4d7c60a5, 0xe633e3e1), TOBN(0x5fcf8f7b, 0xca3ea33b),
TOBN(0xc246785e, 0x92957023), TOBN(0xf9acce41, 0x797f2805),
TOBN(0xfdfe170f, 0xd3b1f780), TOBN(0xd24f4a76, 0x3facb882),
TOBN(0x18838a2e, 0xaff5f3b2), TOBN(0xc1fcbdde, 0xa2f7dc33),
TOBN(0xdea06241, 0xf7aa81c2), TOBN(0xf6a1be3f, 0xca221307),
TOBN(0x332a5e9f, 0x7bda1ebf), TOBN(0x0104dc01, 0xfe32352f),
TOBN(0xb8cf341b, 0x6f8236c7), TOBN(0x4264dabc, 0xd528b651),
TOBN(0xf4d3a02c, 0xebc93e0c), TOBN(0x81394ab6, 0xd8fd0efd),
TOBN(0xeaa4a089, 0x9040ca4a), TOBN(0xf52f120f, 0x836e582e),
TOBN(0xcb2a6343, 0x31f3c84d), TOBN(0xc6d5a8a3, 0x8bb7e9dc),
TOBN(0x460abc72, 0x2f7c4e33), TOBN(0xcab1bc91, 0x1688458a),
TOBN(0x53059c60, 0x11bc337b), TOBN(0xd2202e87, 0x42af1f4e),
TOBN(0x78048736, 0x3dfa2768), TOBN(0x0f74a85e, 0x439c7b4a),
TOBN(0xa8b1fe6f, 0xdc83db39), TOBN(0x4afc8304, 0x3ab8a2c3),
TOBN(0xed17ac85, 0x83339915), TOBN(0x1d6f60ba, 0x893ba84c),
TOBN(0x597d89b3, 0x754abe9f), TOBN(0xb504f333, 0xf9de6484),
};
const size_t kBoringSSLRSASqrtTwoLen = OPENSSL_ARRAY_SIZE(kBoringSSLRSASqrtTwo);
// generate_prime sets |out| to a prime with length |bits| such that |out|-1 is
// relatively prime to |e|. If |p| is non-NULL, |out| will also not be close to
// |p|. |sqrt2| must be ⌊2^(bits-1)×√2⌋ (or a slightly overestimate for large
// sizes), and |pow2_bits_100| must be 2^(bits-100).
//
// This function fails with probability around 2^-21.
static int generate_prime(BIGNUM *out, int bits, const BIGNUM *e,
const BIGNUM *p, const BIGNUM *sqrt2,
const BIGNUM *pow2_bits_100, BN_CTX *ctx,
BN_GENCB *cb) {
if (bits < 128 || (bits % BN_BITS2) != 0) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
return 0;
}
assert(BN_is_pow2(pow2_bits_100));
assert(BN_is_bit_set(pow2_bits_100, bits - 100));
// See FIPS 186-4 appendix B.3.3, steps 4 and 5. Note |bits| here is nlen/2.
// Use the limit from steps 4.7 and 5.8 for most values of |e|. When |e| is 3,
// the 186-4 limit is too low, so we use a higher one. Note this case is not
// reachable from |RSA_generate_key_fips|.
//
// |limit| determines the failure probability. We must find a prime that is
// not 1 mod |e|. By the prime number theorem, we'll find one with probability
// p = (e-1)/e * 2/(ln(2)*bits). Note the second term is doubled because we
// discard even numbers.
//
// The failure probability is thus (1-p)^limit. To convert that to a power of
// two, we take logs. -log_2((1-p)^limit) = -limit * ln(1-p) / ln(2).
//
// >>> def f(bits, e, limit):
// ... p = (e-1.0)/e * 2.0/(math.log(2)*bits)
// ... return -limit * math.log(1 - p) / math.log(2)
// ...
// >>> f(1024, 65537, 5*1024)
// 20.842750558272634
// >>> f(1536, 65537, 5*1536)
// 20.83294549602474
// >>> f(2048, 65537, 5*2048)
// 20.828047576234948
// >>> f(1024, 3, 8*1024)
// 22.222147925962307
// >>> f(1536, 3, 8*1536)
// 22.21518251065506
// >>> f(2048, 3, 8*2048)
// 22.211701985875937
if (bits >= INT_MAX/32) {
OPENSSL_PUT_ERROR(RSA, RSA_R_MODULUS_TOO_LARGE);
return 0;
}
int limit = BN_is_word(e, 3) ? bits * 8 : bits * 5;
int ret = 0, tries = 0, rand_tries = 0;
BN_CTX_start(ctx);
BIGNUM *tmp = BN_CTX_get(ctx);
if (tmp == NULL) {
goto err;
}
for (;;) {
// Generate a random number of length |bits| where the bottom bit is set
// (steps 4.2, 4.3, 5.2 and 5.3) and the top bit is set (implied by the
// bound checked below in steps 4.4 and 5.5).
if (!BN_rand(out, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD) ||
!BN_GENCB_call(cb, BN_GENCB_GENERATED, rand_tries++)) {
goto err;
}
if (p != NULL) {
// If |p| and |out| are too close, try again (step 5.4).
if (!bn_abs_sub_consttime(tmp, out, p, ctx)) {
goto err;
}
if (BN_cmp(tmp, pow2_bits_100) <= 0) {
continue;
}
}
// If out < 2^(bits-1)×√2, try again (steps 4.4 and 5.5). This is equivalent
// to out <= ⌊2^(bits-1)×√2⌋, or out <= sqrt2 for FIPS key sizes.
//
// For larger keys, the comparison is approximate, leaning towards
// retrying. That is, we reject a negligible fraction of primes that are
// within the FIPS bound, but we will never accept a prime outside the
// bound, ensuring the resulting RSA key is the right size.
if (BN_cmp(out, sqrt2) <= 0) {
continue;
}
// RSA key generation's bottleneck is discarding composites. If it fails
// trial division, do not bother computing a GCD or performing Miller-Rabin.
if (!bn_odd_number_is_obviously_composite(out)) {
// Check gcd(out-1, e) is one (steps 4.5 and 5.6).
int relatively_prime;
if (!BN_sub(tmp, out, BN_value_one()) ||
!bn_is_relatively_prime(&relatively_prime, tmp, e, ctx)) {
goto err;
}
if (relatively_prime) {
// Test |out| for primality (steps 4.5.1 and 5.6.1).
int is_probable_prime;
if (!BN_primality_test(&is_probable_prime, out,
BN_prime_checks_for_generation, ctx, 0, cb)) {
goto err;
}
if (is_probable_prime) {
ret = 1;
goto err;
}
}
}
// If we've tried too many times to find a prime, abort (steps 4.7 and
// 5.8).
tries++;
if (tries >= limit) {
OPENSSL_PUT_ERROR(RSA, RSA_R_TOO_MANY_ITERATIONS);
goto err;
}
if (!BN_GENCB_call(cb, 2, tries)) {
goto err;
}
}
err:
BN_CTX_end(ctx);
return ret;
}
// rsa_generate_key_impl generates an RSA key using a generalized version of
// FIPS 186-4 appendix B.3. |RSA_generate_key_fips| performs additional checks
// for FIPS-compliant key generation.
//
// This function returns one on success and zero on failure. It has a failure
// probability of about 2^-20.
static int rsa_generate_key_impl(RSA *rsa, int bits, const BIGNUM *e_value,
BN_GENCB *cb) {
// See FIPS 186-4 appendix B.3. This function implements a generalized version
// of the FIPS algorithm. |RSA_generate_key_fips| performs additional checks
// for FIPS-compliant key generation.
// Always generate RSA keys which are a multiple of 128 bits. Round |bits|
// down as needed.
bits &= ~127;
// Reject excessively small keys.
if (bits < 256) {
OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
return 0;
}
// Reject excessively large public exponents. Windows CryptoAPI and Go don't
// support values larger than 32 bits, so match their limits for generating
// keys. (|rsa_check_public_key| uses a slightly more conservative value, but
// we don't need to support generating such keys.)
// https://github.com/golang/go/issues/3161
// https://msdn.microsoft.com/en-us/library/aa387685(VS.85).aspx
if (BN_num_bits(e_value) > 32) {
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE);
return 0;
}
int ret = 0;
int prime_bits = bits / 2;
BN_CTX *ctx = BN_CTX_new();
if (ctx == NULL) {
goto bn_err;
}
BN_CTX_start(ctx);
BIGNUM *totient = BN_CTX_get(ctx);
BIGNUM *pm1 = BN_CTX_get(ctx);
BIGNUM *qm1 = BN_CTX_get(ctx);
BIGNUM *sqrt2 = BN_CTX_get(ctx);
BIGNUM *pow2_prime_bits_100 = BN_CTX_get(ctx);
BIGNUM *pow2_prime_bits = BN_CTX_get(ctx);
if (totient == NULL || pm1 == NULL || qm1 == NULL || sqrt2 == NULL ||
pow2_prime_bits_100 == NULL || pow2_prime_bits == NULL ||
!BN_set_bit(pow2_prime_bits_100, prime_bits - 100) ||
!BN_set_bit(pow2_prime_bits, prime_bits)) {
goto bn_err;
}
// We need the RSA components non-NULL.
if (!ensure_bignum(&rsa->n) ||
!ensure_bignum(&rsa->d) ||
!ensure_bignum(&rsa->e) ||
!ensure_bignum(&rsa->p) ||
!ensure_bignum(&rsa->q) ||
!ensure_bignum(&rsa->dmp1) ||
!ensure_bignum(&rsa->dmq1)) {
goto bn_err;
}
if (!BN_copy(rsa->e, e_value)) {
goto bn_err;
}
// Compute sqrt2 >= ⌊2^(prime_bits-1)×√2⌋.
if (!bn_set_words(sqrt2, kBoringSSLRSASqrtTwo, kBoringSSLRSASqrtTwoLen)) {
goto bn_err;
}
int sqrt2_bits = kBoringSSLRSASqrtTwoLen * BN_BITS2;
assert(sqrt2_bits == (int)BN_num_bits(sqrt2));
if (sqrt2_bits > prime_bits) {
// For key sizes up to 4096 (prime_bits = 2048), this is exactly
// ⌊2^(prime_bits-1)×√2⌋.
if (!BN_rshift(sqrt2, sqrt2, sqrt2_bits - prime_bits)) {
goto bn_err;
}
} else if (prime_bits > sqrt2_bits) {
// For key sizes beyond 4096, this is approximate. We err towards retrying
// to ensure our key is the right size and round up.
if (!BN_add_word(sqrt2, 1) ||
!BN_lshift(sqrt2, sqrt2, prime_bits - sqrt2_bits)) {
goto bn_err;
}
}
assert(prime_bits == (int)BN_num_bits(sqrt2));
do {
// Generate p and q, each of size |prime_bits|, using the steps outlined in
// appendix FIPS 186-4 appendix B.3.3.
//
// Each call to |generate_prime| fails with probability p = 2^-21. The
// probability that either call fails is 1 - (1-p)^2, which is around 2^-20.
if (!generate_prime(rsa->p, prime_bits, rsa->e, NULL, sqrt2,
pow2_prime_bits_100, ctx, cb) ||
!BN_GENCB_call(cb, 3, 0) ||
!generate_prime(rsa->q, prime_bits, rsa->e, rsa->p, sqrt2,
pow2_prime_bits_100, ctx, cb) ||
!BN_GENCB_call(cb, 3, 1)) {
goto bn_err;
}
if (BN_cmp(rsa->p, rsa->q) < 0) {
BIGNUM *tmp = rsa->p;
rsa->p = rsa->q;
rsa->q = tmp;
}
// Calculate d = e^(-1) (mod lcm(p-1, q-1)), per FIPS 186-4. This differs
// from typical RSA implementations which use (p-1)*(q-1).
//
// Note this means the size of d might reveal information about p-1 and
// q-1. However, we do operations with Chinese Remainder Theorem, so we only
// use d (mod p-1) and d (mod q-1) as exponents. Using a minimal totient
// does not affect those two values.
int no_inverse;
if (!bn_usub_consttime(pm1, rsa->p, BN_value_one()) ||
!bn_usub_consttime(qm1, rsa->q, BN_value_one()) ||
!bn_lcm_consttime(totient, pm1, qm1, ctx) ||
!bn_mod_inverse_consttime(rsa->d, &no_inverse, rsa->e, totient, ctx)) {
goto bn_err;
}
// Retry if |rsa->d| <= 2^|prime_bits|. See appendix B.3.1's guidance on
// values for d.
} while (BN_cmp(rsa->d, pow2_prime_bits) <= 0);
assert(BN_num_bits(pm1) == (unsigned)prime_bits);
assert(BN_num_bits(qm1) == (unsigned)prime_bits);
if (// Calculate n.
!bn_mul_consttime(rsa->n, rsa->p, rsa->q, ctx) ||
// Calculate d mod (p-1).
!bn_div_consttime(NULL, rsa->dmp1, rsa->d, pm1, prime_bits, ctx) ||
// Calculate d mod (q-1)
!bn_div_consttime(NULL, rsa->dmq1, rsa->d, qm1, prime_bits, ctx)) {
goto bn_err;
}
bn_set_minimal_width(rsa->n);
// Sanity-check that |rsa->n| has the specified size. This is implied by
// |generate_prime|'s bounds.
if (BN_num_bits(rsa->n) != (unsigned)bits) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
// Call |freeze_private_key| to compute the inverse of q mod p, by way of
// |rsa->mont_p|.
if (!freeze_private_key(rsa, ctx)) {
goto bn_err;
}
// The key generation process is complex and thus error-prone. It could be
// disastrous to generate and then use a bad key so double-check that the key
// makes sense.
if (!RSA_check_key(rsa)) {
OPENSSL_PUT_ERROR(RSA, RSA_R_INTERNAL_ERROR);
goto err;
}
ret = 1;
bn_err:
if (!ret) {
OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN);
}
err:
if (ctx != NULL) {
BN_CTX_end(ctx);
BN_CTX_free(ctx);
}
return ret;
}
static void replace_bignum(BIGNUM **out, BIGNUM **in) {
BN_free(*out);
*out = *in;
*in = NULL;
}
static void replace_bn_mont_ctx(BN_MONT_CTX **out, BN_MONT_CTX **in) {
BN_MONT_CTX_free(*out);
*out = *in;
*in = NULL;
}
static int RSA_generate_key_ex_maybe_fips(RSA *rsa, int bits,
const BIGNUM *e_value, BN_GENCB *cb,
int check_fips) {
boringssl_ensure_rsa_self_test();
RSA *tmp = NULL;
uint32_t err;
int ret = 0;
// |rsa_generate_key_impl|'s 2^-20 failure probability is too high at scale,
// so we run the FIPS algorithm four times, bringing it down to 2^-80. We
// should just adjust the retry limit, but FIPS 186-4 prescribes that value
// and thus results in unnecessary complexity.
int failures = 0;
do {
ERR_clear_error();
// Generate into scratch space, to avoid leaving partial work on failure.
tmp = RSA_new();
if (tmp == NULL) {
goto out;
}
if (rsa_generate_key_impl(tmp, bits, e_value, cb)) {
break;
}
err = ERR_peek_error();
RSA_free(tmp);
tmp = NULL;
failures++;
// Only retry on |RSA_R_TOO_MANY_ITERATIONS|. This is so a caller-induced
// failure in |BN_GENCB_call| is still fatal.
} while (failures < 4 && ERR_GET_LIB(err) == ERR_LIB_RSA &&
ERR_GET_REASON(err) == RSA_R_TOO_MANY_ITERATIONS);
if (tmp == NULL || (check_fips && !RSA_check_fips(tmp))) {
goto out;
}
rsa_invalidate_key(rsa);
replace_bignum(&rsa->n, &tmp->n);
replace_bignum(&rsa->e, &tmp->e);
replace_bignum(&rsa->d, &tmp->d);
replace_bignum(&rsa->p, &tmp->p);
replace_bignum(&rsa->q, &tmp->q);
replace_bignum(&rsa->dmp1, &tmp->dmp1);
replace_bignum(&rsa->dmq1, &tmp->dmq1);
replace_bignum(&rsa->iqmp, &tmp->iqmp);
replace_bn_mont_ctx(&rsa->mont_n, &tmp->mont_n);
replace_bn_mont_ctx(&rsa->mont_p, &tmp->mont_p);
replace_bn_mont_ctx(&rsa->mont_q, &tmp->mont_q);
replace_bignum(&rsa->d_fixed, &tmp->d_fixed);
replace_bignum(&rsa->dmp1_fixed, &tmp->dmp1_fixed);
replace_bignum(&rsa->dmq1_fixed, &tmp->dmq1_fixed);
replace_bignum(&rsa->iqmp_mont, &tmp->iqmp_mont);
rsa->private_key_frozen = tmp->private_key_frozen;
ret = 1;
out:
RSA_free(tmp);
return ret;
}
int RSA_generate_key_ex(RSA *rsa, int bits, const BIGNUM *e_value,
BN_GENCB *cb) {
return RSA_generate_key_ex_maybe_fips(rsa, bits, e_value, cb,
/*check_fips=*/0);
}
int RSA_generate_key_fips(RSA *rsa, int bits, BN_GENCB *cb) {
// FIPS 186-4 allows 2048-bit and 3072-bit RSA keys (1024-bit and 1536-bit
// primes, respectively) with the prime generation method we use.
// Subsequently, IG A.14 stated that larger modulus sizes can be used and ACVP
// testing supports 4096 bits.
if (bits != 2048 && bits != 3072 && bits != 4096) {
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_RSA_PARAMETERS);
return 0;
}
BIGNUM *e = BN_new();
int ret = e != NULL &&
BN_set_word(e, RSA_F4) &&
RSA_generate_key_ex_maybe_fips(rsa, bits, e, cb, /*check_fips=*/1);
BN_free(e);
if (ret) {
FIPS_service_indicator_update_state();
}
return ret;
}
DEFINE_METHOD_FUNCTION(RSA_METHOD, RSA_default_method) {
// All of the methods are NULL to make it easier for the compiler/linker to
// drop unused functions. The wrapper functions will select the appropriate
// |rsa_default_*| implementation.
OPENSSL_memset(out, 0, sizeof(RSA_METHOD));
out->common.is_static = 1;
}
|