1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
/* Copyright (c) 2023, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <CCryptoBoringSSL_base.h>
#include <assert.h>
#include <stdlib.h>
#include "../internal.h"
#include "./internal.h"
// keccak_f implements the Keccak-1600 permutation as described at
// https://keccak.team/keccak_specs_summary.html. Each lane is represented as a
// 64-bit value and the 5×5 lanes are stored as an array in row-major order.
static void keccak_f(uint64_t state[25]) {
static const int kNumRounds = 24;
for (int round = 0; round < kNumRounds; round++) {
// θ step
uint64_t c[5];
for (int x = 0; x < 5; x++) {
c[x] = state[x] ^ state[x + 5] ^ state[x + 10] ^ state[x + 15] ^
state[x + 20];
}
for (int x = 0; x < 5; x++) {
const uint64_t d = c[(x + 4) % 5] ^ CRYPTO_rotl_u64(c[(x + 1) % 5], 1);
for (int y = 0; y < 5; y++) {
state[y * 5 + x] ^= d;
}
}
// ρ and π steps.
//
// These steps involve a mapping of the state matrix. Each input point,
// (x,y), is rotated and written to the point (y, 2x + 3y). In the Keccak
// pseudo-code a separate array is used because an in-place operation would
// overwrite some values that are subsequently needed. However, the mapping
// forms a trail through 24 of the 25 values so we can do it in place with
// only a single temporary variable.
//
// Start with (1, 0). The value here will be mapped and end up at (0, 2).
// That value will end up at (2, 1), then (1, 2), and so on. After 24
// steps, 24 of the 25 values have been hit (as this mapping is injective)
// and the sequence will repeat. All that remains is to handle the element
// at (0, 0), but the rotation for that element is zero, and it goes to (0,
// 0), so we can ignore it.
static const uint8_t kIndexes[24] = {10, 7, 11, 17, 18, 3, 5, 16,
8, 21, 24, 4, 15, 23, 19, 13,
12, 2, 20, 14, 22, 9, 6, 1};
static const uint8_t kRotations[24] = {1, 3, 6, 10, 15, 21, 28, 36,
45, 55, 2, 14, 27, 41, 56, 8,
25, 43, 62, 18, 39, 61, 20, 44};
uint64_t prev_value = state[1];
for (int i = 0; i < 24; i++) {
const uint64_t value = CRYPTO_rotl_u64(prev_value, kRotations[i]);
const size_t index = kIndexes[i];
prev_value = state[index];
state[index] = value;
}
// χ step
for (int y = 0; y < 5; y++) {
const int row_index = 5 * y;
const uint64_t orig_x0 = state[row_index];
const uint64_t orig_x1 = state[row_index + 1];
state[row_index] ^= ~orig_x1 & state[row_index + 2];
state[row_index + 1] ^= ~state[row_index + 2] & state[row_index + 3];
state[row_index + 2] ^= ~state[row_index + 3] & state[row_index + 4];
state[row_index + 3] ^= ~state[row_index + 4] & orig_x0;
state[row_index + 4] ^= ~orig_x0 & orig_x1;
}
// ι step
//
// From https://keccak.team/files/Keccak-reference-3.0.pdf, section
// 1.2, the round constants are based on the output of a LFSR. Thus, as
// suggested in the appendix of of
// https://keccak.team/keccak_specs_summary.html, the values are
// simply encoded here.
static const uint64_t kRoundConstants[24] = {
0x0000000000000001, 0x0000000000008082, 0x800000000000808a,
0x8000000080008000, 0x000000000000808b, 0x0000000080000001,
0x8000000080008081, 0x8000000000008009, 0x000000000000008a,
0x0000000000000088, 0x0000000080008009, 0x000000008000000a,
0x000000008000808b, 0x800000000000008b, 0x8000000000008089,
0x8000000000008003, 0x8000000000008002, 0x8000000000000080,
0x000000000000800a, 0x800000008000000a, 0x8000000080008081,
0x8000000000008080, 0x0000000080000001, 0x8000000080008008,
};
state[0] ^= kRoundConstants[round];
}
}
static void keccak_init(struct BORINGSSL_keccak_st *ctx,
size_t *out_required_out_len, const uint8_t *in,
size_t in_len, enum boringssl_keccak_config_t config) {
size_t capacity_bytes;
uint8_t terminator;
switch (config) {
case boringssl_sha3_256:
capacity_bytes = 512 / 8;
*out_required_out_len = 32;
terminator = 0x06;
break;
case boringssl_sha3_512:
capacity_bytes = 1024 / 8;
*out_required_out_len = 64;
terminator = 0x06;
break;
case boringssl_shake128:
capacity_bytes = 256 / 8;
*out_required_out_len = 0;
terminator = 0x1f;
break;
case boringssl_shake256:
capacity_bytes = 512 / 8;
*out_required_out_len = 0;
terminator = 0x1f;
break;
default:
abort();
}
OPENSSL_memset(ctx, 0, sizeof(*ctx));
ctx->rate_bytes = 200 - capacity_bytes;
assert(ctx->rate_bytes % 8 == 0);
const size_t rate_words = ctx->rate_bytes / 8;
while (in_len >= ctx->rate_bytes) {
for (size_t i = 0; i < rate_words; i++) {
ctx->state[i] ^= CRYPTO_load_u64_le(in + 8 * i);
}
keccak_f(ctx->state);
in += ctx->rate_bytes;
in_len -= ctx->rate_bytes;
}
// XOR the final block. Accessing |ctx->state| as a |uint8_t*| is allowed by
// strict aliasing because we require |uint8_t| to be a character type.
uint8_t *state_bytes = (uint8_t *)ctx->state;
assert(in_len < ctx->rate_bytes);
for (size_t i = 0; i < in_len; i++) {
state_bytes[i] ^= in[i];
}
state_bytes[in_len] ^= terminator;
state_bytes[ctx->rate_bytes - 1] ^= 0x80;
keccak_f(ctx->state);
}
void BORINGSSL_keccak(uint8_t *out, size_t out_len, const uint8_t *in,
size_t in_len, enum boringssl_keccak_config_t config) {
struct BORINGSSL_keccak_st ctx;
size_t required_out_len;
keccak_init(&ctx, &required_out_len, in, in_len, config);
if (required_out_len != 0 && out_len != required_out_len) {
abort();
}
BORINGSSL_keccak_squeeze(&ctx, out, out_len);
}
void BORINGSSL_keccak_init(struct BORINGSSL_keccak_st *ctx, const uint8_t *in,
size_t in_len,
enum boringssl_keccak_config_t config) {
size_t required_out_len;
keccak_init(ctx, &required_out_len, in, in_len, config);
if (required_out_len != 0) {
abort();
}
}
void BORINGSSL_keccak_squeeze(struct BORINGSSL_keccak_st *ctx, uint8_t *out,
size_t out_len) {
// Accessing |ctx->state| as a |uint8_t*| is allowed by strict aliasing
// because we require |uint8_t| to be a character type.
const uint8_t *state_bytes = (const uint8_t *)ctx->state;
while (out_len) {
size_t remaining = ctx->rate_bytes - ctx->offset;
size_t todo = out_len;
if (todo > remaining) {
todo = remaining;
}
OPENSSL_memcpy(out, &state_bytes[ctx->offset], todo);
out += todo;
out_len -= todo;
ctx->offset += todo;
if (ctx->offset == ctx->rate_bytes) {
keccak_f(ctx->state);
ctx->offset = 0;
}
}
}
|