1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
|
/* Copyright (c) 2023, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <CCryptoBoringSSL_kyber.h>
#include <assert.h>
#include <stdlib.h>
#include <CCryptoBoringSSL_bytestring.h>
#include <CCryptoBoringSSL_rand.h>
#include "../internal.h"
#include "./internal.h"
// See
// https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
#define DEGREE 256
#define RANK 3
static const size_t kBarrettMultiplier = 5039;
static const unsigned kBarrettShift = 24;
static const uint16_t kPrime = 3329;
static const int kLog2Prime = 12;
static const uint16_t kHalfPrime = (/*kPrime=*/3329 - 1) / 2;
static const int kDU = 10;
static const int kDV = 4;
// kInverseDegree is 128^-1 mod 3329; 128 because kPrime does not have a 512th
// root of unity.
static const uint16_t kInverseDegree = 3303;
static const size_t kEncodedVectorSize =
(/*kLog2Prime=*/12 * DEGREE / 8) * RANK;
static const size_t kCompressedVectorSize = /*kDU=*/10 * RANK * DEGREE / 8;
typedef struct scalar {
// On every function entry and exit, 0 <= c < kPrime.
uint16_t c[DEGREE];
} scalar;
typedef struct vector {
scalar v[RANK];
} vector;
typedef struct matrix {
scalar v[RANK][RANK];
} matrix;
// This bit of Python will be referenced in some of the following comments:
//
// p = 3329
//
// def bitreverse(i):
// ret = 0
// for n in range(7):
// bit = i & 1
// ret <<= 1
// ret |= bit
// i >>= 1
// return ret
// kNTTRoots = [pow(17, bitreverse(i), p) for i in range(128)]
static const uint16_t kNTTRoots[128] = {
1, 1729, 2580, 3289, 2642, 630, 1897, 848, 1062, 1919, 193, 797,
2786, 3260, 569, 1746, 296, 2447, 1339, 1476, 3046, 56, 2240, 1333,
1426, 2094, 535, 2882, 2393, 2879, 1974, 821, 289, 331, 3253, 1756,
1197, 2304, 2277, 2055, 650, 1977, 2513, 632, 2865, 33, 1320, 1915,
2319, 1435, 807, 452, 1438, 2868, 1534, 2402, 2647, 2617, 1481, 648,
2474, 3110, 1227, 910, 17, 2761, 583, 2649, 1637, 723, 2288, 1100,
1409, 2662, 3281, 233, 756, 2156, 3015, 3050, 1703, 1651, 2789, 1789,
1847, 952, 1461, 2687, 939, 2308, 2437, 2388, 733, 2337, 268, 641,
1584, 2298, 2037, 3220, 375, 2549, 2090, 1645, 1063, 319, 2773, 757,
2099, 561, 2466, 2594, 2804, 1092, 403, 1026, 1143, 2150, 2775, 886,
1722, 1212, 1874, 1029, 2110, 2935, 885, 2154,
};
// kInverseNTTRoots = [pow(17, -bitreverse(i), p) for i in range(128)]
static const uint16_t kInverseNTTRoots[128] = {
1, 1600, 40, 749, 2481, 1432, 2699, 687, 1583, 2760, 69, 543,
2532, 3136, 1410, 2267, 2508, 1355, 450, 936, 447, 2794, 1235, 1903,
1996, 1089, 3273, 283, 1853, 1990, 882, 3033, 2419, 2102, 219, 855,
2681, 1848, 712, 682, 927, 1795, 461, 1891, 2877, 2522, 1894, 1010,
1414, 2009, 3296, 464, 2697, 816, 1352, 2679, 1274, 1052, 1025, 2132,
1573, 76, 2998, 3040, 1175, 2444, 394, 1219, 2300, 1455, 2117, 1607,
2443, 554, 1179, 2186, 2303, 2926, 2237, 525, 735, 863, 2768, 1230,
2572, 556, 3010, 2266, 1684, 1239, 780, 2954, 109, 1292, 1031, 1745,
2688, 3061, 992, 2596, 941, 892, 1021, 2390, 642, 1868, 2377, 1482,
1540, 540, 1678, 1626, 279, 314, 1173, 2573, 3096, 48, 667, 1920,
2229, 1041, 2606, 1692, 680, 2746, 568, 3312,
};
// kModRoots = [pow(17, 2*bitreverse(i) + 1, p) for i in range(128)]
static const uint16_t kModRoots[128] = {
17, 3312, 2761, 568, 583, 2746, 2649, 680, 1637, 1692, 723, 2606,
2288, 1041, 1100, 2229, 1409, 1920, 2662, 667, 3281, 48, 233, 3096,
756, 2573, 2156, 1173, 3015, 314, 3050, 279, 1703, 1626, 1651, 1678,
2789, 540, 1789, 1540, 1847, 1482, 952, 2377, 1461, 1868, 2687, 642,
939, 2390, 2308, 1021, 2437, 892, 2388, 941, 733, 2596, 2337, 992,
268, 3061, 641, 2688, 1584, 1745, 2298, 1031, 2037, 1292, 3220, 109,
375, 2954, 2549, 780, 2090, 1239, 1645, 1684, 1063, 2266, 319, 3010,
2773, 556, 757, 2572, 2099, 1230, 561, 2768, 2466, 863, 2594, 735,
2804, 525, 1092, 2237, 403, 2926, 1026, 2303, 1143, 2186, 2150, 1179,
2775, 554, 886, 2443, 1722, 1607, 1212, 2117, 1874, 1455, 1029, 2300,
2110, 1219, 2935, 394, 885, 2444, 2154, 1175,
};
// reduce_once reduces 0 <= x < 2*kPrime, mod kPrime.
static uint16_t reduce_once(uint16_t x) {
assert(x < 2 * kPrime);
const uint16_t subtracted = x - kPrime;
uint16_t mask = 0u - (subtracted >> 15);
// On Aarch64, omitting a |value_barrier_u16| results in a 2x speedup of Kyber
// overall and Clang still produces constant-time code using `csel`. On other
// platforms & compilers on godbolt that we care about, this code also
// produces constant-time output.
return (mask & x) | (~mask & subtracted);
}
// constant time reduce x mod kPrime using Barrett reduction. x must be less
// than kPrime + 2×kPrime².
static uint16_t reduce(uint32_t x) {
assert(x < kPrime + 2u * kPrime * kPrime);
uint64_t product = (uint64_t)x * kBarrettMultiplier;
uint32_t quotient = (uint32_t)(product >> kBarrettShift);
uint32_t remainder = x - quotient * kPrime;
return reduce_once(remainder);
}
static void scalar_zero(scalar *out) { OPENSSL_memset(out, 0, sizeof(*out)); }
static void vector_zero(vector *out) { OPENSSL_memset(out, 0, sizeof(*out)); }
// In place number theoretic transform of a given scalar.
// Note that Kyber's kPrime 3329 does not have a 512th root of unity, so this
// transform leaves off the last iteration of the usual FFT code, with the 128
// relevant roots of unity being stored in |kNTTRoots|. This means the output
// should be seen as 128 elements in GF(3329^2), with the coefficients of the
// elements being consecutive entries in |s->c|.
static void scalar_ntt(scalar *s) {
int offset = DEGREE;
// `int` is used here because using `size_t` throughout caused a ~5% slowdown
// with Clang 14 on Aarch64.
for (int step = 1; step < DEGREE / 2; step <<= 1) {
offset >>= 1;
int k = 0;
for (int i = 0; i < step; i++) {
const uint32_t step_root = kNTTRoots[i + step];
for (int j = k; j < k + offset; j++) {
uint16_t odd = reduce(step_root * s->c[j + offset]);
uint16_t even = s->c[j];
s->c[j] = reduce_once(odd + even);
s->c[j + offset] = reduce_once(even - odd + kPrime);
}
k += 2 * offset;
}
}
}
static void vector_ntt(vector *a) {
for (int i = 0; i < RANK; i++) {
scalar_ntt(&a->v[i]);
}
}
// In place inverse number theoretic transform of a given scalar, with pairs of
// entries of s->v being interpreted as elements of GF(3329^2). Just as with the
// number theoretic transform, this leaves off the first step of the normal iFFT
// to account for the fact that 3329 does not have a 512th root of unity, using
// the precomputed 128 roots of unity stored in |kInverseNTTRoots|.
static void scalar_inverse_ntt(scalar *s) {
int step = DEGREE / 2;
// `int` is used here because using `size_t` throughout caused a ~5% slowdown
// with Clang 14 on Aarch64.
for (int offset = 2; offset < DEGREE; offset <<= 1) {
step >>= 1;
int k = 0;
for (int i = 0; i < step; i++) {
uint32_t step_root = kInverseNTTRoots[i + step];
for (int j = k; j < k + offset; j++) {
uint16_t odd = s->c[j + offset];
uint16_t even = s->c[j];
s->c[j] = reduce_once(odd + even);
s->c[j + offset] = reduce(step_root * (even - odd + kPrime));
}
k += 2 * offset;
}
}
for (int i = 0; i < DEGREE; i++) {
s->c[i] = reduce(s->c[i] * kInverseDegree);
}
}
static void vector_inverse_ntt(vector *a) {
for (int i = 0; i < RANK; i++) {
scalar_inverse_ntt(&a->v[i]);
}
}
static void scalar_add(scalar *lhs, const scalar *rhs) {
for (int i = 0; i < DEGREE; i++) {
lhs->c[i] = reduce_once(lhs->c[i] + rhs->c[i]);
}
}
static void scalar_sub(scalar *lhs, const scalar *rhs) {
for (int i = 0; i < DEGREE; i++) {
lhs->c[i] = reduce_once(lhs->c[i] - rhs->c[i] + kPrime);
}
}
// Multiplying two scalars in the number theoretically transformed state. Since
// 3329 does not have a 512th root of unity, this means we have to interpret
// the 2*ith and (2*i+1)th entries of the scalar as elements of GF(3329)[X]/(X^2
// - 17^(2*bitreverse(i)+1)) The value of 17^(2*bitreverse(i)+1) mod 3329 is
// stored in the precomputed |kModRoots| table. Note that our Barrett transform
// only allows us to multipy two reduced numbers together, so we need some
// intermediate reduction steps, even if an uint64_t could hold 3 multiplied
// numbers.
static void scalar_mult(scalar *out, const scalar *lhs, const scalar *rhs) {
for (int i = 0; i < DEGREE / 2; i++) {
uint32_t real_real = (uint32_t)lhs->c[2 * i] * rhs->c[2 * i];
uint32_t img_img = (uint32_t)lhs->c[2 * i + 1] * rhs->c[2 * i + 1];
uint32_t real_img = (uint32_t)lhs->c[2 * i] * rhs->c[2 * i + 1];
uint32_t img_real = (uint32_t)lhs->c[2 * i + 1] * rhs->c[2 * i];
out->c[2 * i] =
reduce(real_real + (uint32_t)reduce(img_img) * kModRoots[i]);
out->c[2 * i + 1] = reduce(img_real + real_img);
}
}
static void vector_add(vector *lhs, const vector *rhs) {
for (int i = 0; i < RANK; i++) {
scalar_add(&lhs->v[i], &rhs->v[i]);
}
}
static void matrix_mult(vector *out, const matrix *m, const vector *a) {
vector_zero(out);
for (int i = 0; i < RANK; i++) {
for (int j = 0; j < RANK; j++) {
scalar product;
scalar_mult(&product, &m->v[i][j], &a->v[j]);
scalar_add(&out->v[i], &product);
}
}
}
static void matrix_mult_transpose(vector *out, const matrix *m,
const vector *a) {
vector_zero(out);
for (int i = 0; i < RANK; i++) {
for (int j = 0; j < RANK; j++) {
scalar product;
scalar_mult(&product, &m->v[j][i], &a->v[j]);
scalar_add(&out->v[i], &product);
}
}
}
static void scalar_inner_product(scalar *out, const vector *lhs,
const vector *rhs) {
scalar_zero(out);
for (int i = 0; i < RANK; i++) {
scalar product;
scalar_mult(&product, &lhs->v[i], &rhs->v[i]);
scalar_add(out, &product);
}
}
// Algorithm 1 of the Kyber spec. Rejection samples a Keccak stream to get
// uniformly distributed elements. This is used for matrix expansion and only
// operates on public inputs.
static void scalar_from_keccak_vartime(scalar *out,
struct BORINGSSL_keccak_st *keccak_ctx) {
assert(keccak_ctx->offset == 0);
assert(keccak_ctx->rate_bytes == 168);
static_assert(168 % 3 == 0, "block and coefficient boundaries do not align");
int done = 0;
while (done < DEGREE) {
uint8_t block[168];
BORINGSSL_keccak_squeeze(keccak_ctx, block, sizeof(block));
for (size_t i = 0; i < sizeof(block) && done < DEGREE; i += 3) {
uint16_t d1 = block[i] + 256 * (block[i + 1] % 16);
uint16_t d2 = block[i + 1] / 16 + 16 * block[i + 2];
if (d1 < kPrime) {
out->c[done++] = d1;
}
if (d2 < kPrime && done < DEGREE) {
out->c[done++] = d2;
}
}
}
}
// Algorithm 2 of the Kyber spec, with eta fixed to two and the PRF call
// included. Creates binominally distributed elements by sampling 2*|eta| bits,
// and setting the coefficient to the count of the first bits minus the count of
// the second bits, resulting in a centered binomial distribution. Since eta is
// two this gives -2/2 with a probability of 1/16, -1/1 with probability 1/4,
// and 0 with probability 3/8.
static void scalar_centered_binomial_distribution_eta_2_with_prf(
scalar *out, const uint8_t input[33]) {
uint8_t entropy[128];
static_assert(sizeof(entropy) == 2 * /*kEta=*/2 * DEGREE / 8, "");
BORINGSSL_keccak(entropy, sizeof(entropy), input, 33, boringssl_shake256);
for (int i = 0; i < DEGREE; i += 2) {
uint8_t byte = entropy[i / 2];
uint16_t value = kPrime;
value += (byte & 1) + ((byte >> 1) & 1);
value -= ((byte >> 2) & 1) + ((byte >> 3) & 1);
out->c[i] = reduce_once(value);
byte >>= 4;
value = kPrime;
value += (byte & 1) + ((byte >> 1) & 1);
value -= ((byte >> 2) & 1) + ((byte >> 3) & 1);
out->c[i + 1] = reduce_once(value);
}
}
// Generates a secret vector by using
// |scalar_centered_binomial_distribution_eta_2_with_prf|, using the given seed
// appending and incrementing |counter| for entry of the vector.
static void vector_generate_secret_eta_2(vector *out, uint8_t *counter,
const uint8_t seed[32]) {
uint8_t input[33];
OPENSSL_memcpy(input, seed, 32);
for (int i = 0; i < RANK; i++) {
input[32] = (*counter)++;
scalar_centered_binomial_distribution_eta_2_with_prf(&out->v[i], input);
}
}
// Expands the matrix of a seed for key generation and for encaps-CPA.
static void matrix_expand(matrix *out, const uint8_t rho[32]) {
uint8_t input[34];
OPENSSL_memcpy(input, rho, 32);
for (int i = 0; i < RANK; i++) {
for (int j = 0; j < RANK; j++) {
input[32] = i;
input[33] = j;
struct BORINGSSL_keccak_st keccak_ctx;
BORINGSSL_keccak_init(&keccak_ctx, input, sizeof(input),
boringssl_shake128);
scalar_from_keccak_vartime(&out->v[i][j], &keccak_ctx);
}
}
}
static const uint8_t kMasks[8] = {0x01, 0x03, 0x07, 0x0f,
0x1f, 0x3f, 0x7f, 0xff};
static void scalar_encode(uint8_t *out, const scalar *s, int bits) {
assert(bits <= (int)sizeof(*s->c) * 8 && bits != 1);
uint8_t out_byte = 0;
int out_byte_bits = 0;
for (int i = 0; i < DEGREE; i++) {
uint16_t element = s->c[i];
int element_bits_done = 0;
while (element_bits_done < bits) {
int chunk_bits = bits - element_bits_done;
int out_bits_remaining = 8 - out_byte_bits;
if (chunk_bits >= out_bits_remaining) {
chunk_bits = out_bits_remaining;
out_byte |= (element & kMasks[chunk_bits - 1]) << out_byte_bits;
*out = out_byte;
out++;
out_byte_bits = 0;
out_byte = 0;
} else {
out_byte |= (element & kMasks[chunk_bits - 1]) << out_byte_bits;
out_byte_bits += chunk_bits;
}
element_bits_done += chunk_bits;
element >>= chunk_bits;
}
}
if (out_byte_bits > 0) {
*out = out_byte;
}
}
// scalar_encode_1 is |scalar_encode| specialised for |bits| == 1.
static void scalar_encode_1(uint8_t out[32], const scalar *s) {
for (int i = 0; i < DEGREE; i += 8) {
uint8_t out_byte = 0;
for (int j = 0; j < 8; j++) {
out_byte |= (s->c[i + j] & 1) << j;
}
*out = out_byte;
out++;
}
}
// Encodes an entire vector into 32*|RANK|*|bits| bytes. Note that since 256
// (DEGREE) is divisible by 8, the individual vector entries will always fill a
// whole number of bytes, so we do not need to worry about bit packing here.
static void vector_encode(uint8_t *out, const vector *a, int bits) {
for (int i = 0; i < RANK; i++) {
scalar_encode(out + i * bits * DEGREE / 8, &a->v[i], bits);
}
}
// scalar_decode parses |DEGREE * bits| bits from |in| into |DEGREE| values in
// |out|. It returns one on success and zero if any parsed value is >=
// |kPrime|.
static int scalar_decode(scalar *out, const uint8_t *in, int bits) {
assert(bits <= (int)sizeof(*out->c) * 8 && bits != 1);
uint8_t in_byte = 0;
int in_byte_bits_left = 0;
for (int i = 0; i < DEGREE; i++) {
uint16_t element = 0;
int element_bits_done = 0;
while (element_bits_done < bits) {
if (in_byte_bits_left == 0) {
in_byte = *in;
in++;
in_byte_bits_left = 8;
}
int chunk_bits = bits - element_bits_done;
if (chunk_bits > in_byte_bits_left) {
chunk_bits = in_byte_bits_left;
}
element |= (in_byte & kMasks[chunk_bits - 1]) << element_bits_done;
in_byte_bits_left -= chunk_bits;
in_byte >>= chunk_bits;
element_bits_done += chunk_bits;
}
if (element >= kPrime) {
return 0;
}
out->c[i] = element;
}
return 1;
}
// scalar_decode_1 is |scalar_decode| specialised for |bits| == 1.
static void scalar_decode_1(scalar *out, const uint8_t in[32]) {
for (int i = 0; i < DEGREE; i += 8) {
uint8_t in_byte = *in;
in++;
for (int j = 0; j < 8; j++) {
out->c[i + j] = in_byte & 1;
in_byte >>= 1;
}
}
}
// Decodes 32*|RANK|*|bits| bytes from |in| into |out|. It returns one on
// success or zero if any parsed value is >= |kPrime|.
static int vector_decode(vector *out, const uint8_t *in, int bits) {
for (int i = 0; i < RANK; i++) {
if (!scalar_decode(&out->v[i], in + i * bits * DEGREE / 8, bits)) {
return 0;
}
}
return 1;
}
// Compresses (lossily) an input |x| mod 3329 into |bits| many bits by grouping
// numbers close to each other together. The formula used is
// round(2^|bits|/kPrime*x) mod 2^|bits|.
// Uses Barrett reduction to achieve constant time. Since we need both the
// remainder (for rounding) and the quotient (as the result), we cannot use
// |reduce| here, but need to do the Barrett reduction directly.
static uint16_t compress(uint16_t x, int bits) {
uint32_t shifted = (uint32_t)x << bits;
uint64_t product = (uint64_t)shifted * kBarrettMultiplier;
uint32_t quotient = (uint32_t)(product >> kBarrettShift);
uint32_t remainder = shifted - quotient * kPrime;
// Adjust the quotient to round correctly:
// 0 <= remainder <= kHalfPrime round to 0
// kHalfPrime < remainder <= kPrime + kHalfPrime round to 1
// kPrime + kHalfPrime < remainder < 2 * kPrime round to 2
assert(remainder < 2u * kPrime);
quotient += 1 & constant_time_lt_w(kHalfPrime, remainder);
quotient += 1 & constant_time_lt_w(kPrime + kHalfPrime, remainder);
return quotient & ((1 << bits) - 1);
}
// Decompresses |x| by using an equi-distant representative. The formula is
// round(kPrime/2^|bits|*x). Note that 2^|bits| being the divisor allows us to
// implement this logic using only bit operations.
static uint16_t decompress(uint16_t x, int bits) {
uint32_t product = (uint32_t)x * kPrime;
uint32_t power = 1 << bits;
// This is |product| % power, since |power| is a power of 2.
uint32_t remainder = product & (power - 1);
// This is |product| / power, since |power| is a power of 2.
uint32_t lower = product >> bits;
// The rounding logic works since the first half of numbers mod |power| have a
// 0 as first bit, and the second half has a 1 as first bit, since |power| is
// a power of 2. As a 12 bit number, |remainder| is always positive, so we
// will shift in 0s for a right shift.
return lower + (remainder >> (bits - 1));
}
static void scalar_compress(scalar *s, int bits) {
for (int i = 0; i < DEGREE; i++) {
s->c[i] = compress(s->c[i], bits);
}
}
static void scalar_decompress(scalar *s, int bits) {
for (int i = 0; i < DEGREE; i++) {
s->c[i] = decompress(s->c[i], bits);
}
}
static void vector_compress(vector *a, int bits) {
for (int i = 0; i < RANK; i++) {
scalar_compress(&a->v[i], bits);
}
}
static void vector_decompress(vector *a, int bits) {
for (int i = 0; i < RANK; i++) {
scalar_decompress(&a->v[i], bits);
}
}
struct public_key {
vector t;
uint8_t rho[32];
uint8_t public_key_hash[32];
matrix m;
};
static struct public_key *public_key_from_external(
const struct KYBER_public_key *external) {
static_assert(sizeof(struct KYBER_public_key) >= sizeof(struct public_key),
"Kyber public key is too small");
static_assert(alignof(struct KYBER_public_key) >= alignof(struct public_key),
"Kyber public key align incorrect");
return (struct public_key *)external;
}
struct private_key {
struct public_key pub;
vector s;
uint8_t fo_failure_secret[32];
};
static struct private_key *private_key_from_external(
const struct KYBER_private_key *external) {
static_assert(sizeof(struct KYBER_private_key) >= sizeof(struct private_key),
"Kyber private key too small");
static_assert(
alignof(struct KYBER_private_key) >= alignof(struct private_key),
"Kyber private key align incorrect");
return (struct private_key *)external;
}
// Calls |KYBER_generate_key_external_entropy| with random bytes from
// |RAND_bytes|.
void KYBER_generate_key(uint8_t out_encoded_public_key[KYBER_PUBLIC_KEY_BYTES],
struct KYBER_private_key *out_private_key) {
uint8_t entropy[KYBER_GENERATE_KEY_ENTROPY];
RAND_bytes(entropy, sizeof(entropy));
KYBER_generate_key_external_entropy(out_encoded_public_key, out_private_key,
entropy);
}
static int kyber_marshal_public_key(CBB *out, const struct public_key *pub) {
uint8_t *vector_output;
if (!CBB_add_space(out, &vector_output, kEncodedVectorSize)) {
return 0;
}
vector_encode(vector_output, &pub->t, kLog2Prime);
if (!CBB_add_bytes(out, pub->rho, sizeof(pub->rho))) {
return 0;
}
return 1;
}
// Algorithms 4 and 7 of the Kyber spec. Algorithms are combined since key
// generation is not part of the FO transform, and the spec uses Algorithm 7 to
// specify the actual key format.
void KYBER_generate_key_external_entropy(
uint8_t out_encoded_public_key[KYBER_PUBLIC_KEY_BYTES],
struct KYBER_private_key *out_private_key,
const uint8_t entropy[KYBER_GENERATE_KEY_ENTROPY]) {
struct private_key *priv = private_key_from_external(out_private_key);
uint8_t hashed[64];
BORINGSSL_keccak(hashed, sizeof(hashed), entropy, 32, boringssl_sha3_512);
const uint8_t *const rho = hashed;
const uint8_t *const sigma = hashed + 32;
OPENSSL_memcpy(priv->pub.rho, hashed, sizeof(priv->pub.rho));
matrix_expand(&priv->pub.m, rho);
uint8_t counter = 0;
vector_generate_secret_eta_2(&priv->s, &counter, sigma);
vector_ntt(&priv->s);
vector error;
vector_generate_secret_eta_2(&error, &counter, sigma);
vector_ntt(&error);
matrix_mult_transpose(&priv->pub.t, &priv->pub.m, &priv->s);
vector_add(&priv->pub.t, &error);
CBB cbb;
CBB_init_fixed(&cbb, out_encoded_public_key, KYBER_PUBLIC_KEY_BYTES);
if (!kyber_marshal_public_key(&cbb, &priv->pub)) {
abort();
}
BORINGSSL_keccak(priv->pub.public_key_hash, sizeof(priv->pub.public_key_hash),
out_encoded_public_key, KYBER_PUBLIC_KEY_BYTES,
boringssl_sha3_256);
OPENSSL_memcpy(priv->fo_failure_secret, entropy + 32, 32);
}
void KYBER_public_from_private(struct KYBER_public_key *out_public_key,
const struct KYBER_private_key *private_key) {
struct public_key *const pub = public_key_from_external(out_public_key);
const struct private_key *const priv = private_key_from_external(private_key);
*pub = priv->pub;
}
// Algorithm 5 of the Kyber spec. Encrypts a message with given randomness to
// the ciphertext in |out|. Without applying the Fujisaki-Okamoto transform this
// would not result in a CCA secure scheme, since lattice schemes are vulnerable
// to decryption failure oracles.
static void encrypt_cpa(uint8_t out[KYBER_CIPHERTEXT_BYTES],
const struct public_key *pub, const uint8_t message[32],
const uint8_t randomness[32]) {
uint8_t counter = 0;
vector secret;
vector_generate_secret_eta_2(&secret, &counter, randomness);
vector_ntt(&secret);
vector error;
vector_generate_secret_eta_2(&error, &counter, randomness);
uint8_t input[33];
OPENSSL_memcpy(input, randomness, 32);
input[32] = counter;
scalar scalar_error;
scalar_centered_binomial_distribution_eta_2_with_prf(&scalar_error, input);
vector u;
matrix_mult(&u, &pub->m, &secret);
vector_inverse_ntt(&u);
vector_add(&u, &error);
scalar v;
scalar_inner_product(&v, &pub->t, &secret);
scalar_inverse_ntt(&v);
scalar_add(&v, &scalar_error);
scalar expanded_message;
scalar_decode_1(&expanded_message, message);
scalar_decompress(&expanded_message, 1);
scalar_add(&v, &expanded_message);
vector_compress(&u, kDU);
vector_encode(out, &u, kDU);
scalar_compress(&v, kDV);
scalar_encode(out + kCompressedVectorSize, &v, kDV);
}
// Calls KYBER_encap_external_entropy| with random bytes from |RAND_bytes|
void KYBER_encap(uint8_t out_ciphertext[KYBER_CIPHERTEXT_BYTES],
uint8_t *out_shared_secret, size_t out_shared_secret_len,
const struct KYBER_public_key *public_key) {
uint8_t entropy[KYBER_ENCAP_ENTROPY];
RAND_bytes(entropy, KYBER_ENCAP_ENTROPY);
KYBER_encap_external_entropy(out_ciphertext, out_shared_secret,
out_shared_secret_len, public_key, entropy);
}
// Algorithm 8 of the Kyber spec, safe for line 2 of the spec. The spec there
// hashes the output of the system's random number generator, since the FO
// transform will reveal it to the decrypting party. There is no reason to do
// this when a secure random number generator is used. When an insecure random
// number generator is used, the caller should switch to a secure one before
// calling this method.
void KYBER_encap_external_entropy(
uint8_t out_ciphertext[KYBER_CIPHERTEXT_BYTES], uint8_t *out_shared_secret,
size_t out_shared_secret_len, const struct KYBER_public_key *public_key,
const uint8_t entropy[KYBER_ENCAP_ENTROPY]) {
const struct public_key *pub = public_key_from_external(public_key);
uint8_t input[64];
OPENSSL_memcpy(input, entropy, KYBER_ENCAP_ENTROPY);
OPENSSL_memcpy(input + KYBER_ENCAP_ENTROPY, pub->public_key_hash,
sizeof(input) - KYBER_ENCAP_ENTROPY);
uint8_t prekey_and_randomness[64];
BORINGSSL_keccak(prekey_and_randomness, sizeof(prekey_and_randomness), input,
sizeof(input), boringssl_sha3_512);
encrypt_cpa(out_ciphertext, pub, entropy, prekey_and_randomness + 32);
BORINGSSL_keccak(prekey_and_randomness + 32, 32, out_ciphertext,
KYBER_CIPHERTEXT_BYTES, boringssl_sha3_256);
BORINGSSL_keccak(out_shared_secret, out_shared_secret_len,
prekey_and_randomness, sizeof(prekey_and_randomness),
boringssl_shake256);
}
// Algorithm 6 of the Kyber spec.
static void decrypt_cpa(uint8_t out[32], const struct private_key *priv,
const uint8_t ciphertext[KYBER_CIPHERTEXT_BYTES]) {
vector u;
vector_decode(&u, ciphertext, kDU);
vector_decompress(&u, kDU);
vector_ntt(&u);
scalar v;
scalar_decode(&v, ciphertext + kCompressedVectorSize, kDV);
scalar_decompress(&v, kDV);
scalar mask;
scalar_inner_product(&mask, &priv->s, &u);
scalar_inverse_ntt(&mask);
scalar_sub(&v, &mask);
scalar_compress(&v, 1);
scalar_encode_1(out, &v);
}
// Algorithm 9 of the Kyber spec, performing the FO transform by running
// encrypt_cpa on the decrypted message. The spec does not allow the decryption
// failure to be passed on to the caller, and instead returns a result that is
// deterministic but unpredictable to anyone without knowledge of the private
// key.
void KYBER_decap(uint8_t *out_shared_secret, size_t out_shared_secret_len,
const uint8_t ciphertext[KYBER_CIPHERTEXT_BYTES],
const struct KYBER_private_key *private_key) {
const struct private_key *priv = private_key_from_external(private_key);
uint8_t decrypted[64];
decrypt_cpa(decrypted, priv, ciphertext);
OPENSSL_memcpy(decrypted + 32, priv->pub.public_key_hash,
sizeof(decrypted) - 32);
uint8_t prekey_and_randomness[64];
BORINGSSL_keccak(prekey_and_randomness, sizeof(prekey_and_randomness),
decrypted, sizeof(decrypted), boringssl_sha3_512);
uint8_t expected_ciphertext[KYBER_CIPHERTEXT_BYTES];
encrypt_cpa(expected_ciphertext, &priv->pub, decrypted,
prekey_and_randomness + 32);
uint8_t mask =
constant_time_eq_int_8(CRYPTO_memcmp(ciphertext, expected_ciphertext,
sizeof(expected_ciphertext)),
0);
uint8_t input[64];
for (int i = 0; i < 32; i++) {
input[i] = constant_time_select_8(mask, prekey_and_randomness[i],
priv->fo_failure_secret[i]);
}
BORINGSSL_keccak(input + 32, 32, ciphertext, KYBER_CIPHERTEXT_BYTES,
boringssl_sha3_256);
BORINGSSL_keccak(out_shared_secret, out_shared_secret_len, input,
sizeof(input), boringssl_shake256);
}
int KYBER_marshal_public_key(CBB *out,
const struct KYBER_public_key *public_key) {
return kyber_marshal_public_key(out, public_key_from_external(public_key));
}
// kyber_parse_public_key_no_hash parses |in| into |pub| but doesn't calculate
// the value of |pub->public_key_hash|.
static int kyber_parse_public_key_no_hash(struct public_key *pub, CBS *in) {
CBS t_bytes;
if (!CBS_get_bytes(in, &t_bytes, kEncodedVectorSize) ||
!vector_decode(&pub->t, CBS_data(&t_bytes), kLog2Prime) ||
!CBS_copy_bytes(in, pub->rho, sizeof(pub->rho))) {
return 0;
}
matrix_expand(&pub->m, pub->rho);
return 1;
}
int KYBER_parse_public_key(struct KYBER_public_key *public_key, CBS *in) {
struct public_key *pub = public_key_from_external(public_key);
CBS orig_in = *in;
if (!kyber_parse_public_key_no_hash(pub, in) || //
CBS_len(in) != 0) {
return 0;
}
BORINGSSL_keccak(pub->public_key_hash, sizeof(pub->public_key_hash),
CBS_data(&orig_in), CBS_len(&orig_in), boringssl_sha3_256);
return 1;
}
int KYBER_marshal_private_key(CBB *out,
const struct KYBER_private_key *private_key) {
const struct private_key *const priv = private_key_from_external(private_key);
uint8_t *s_output;
if (!CBB_add_space(out, &s_output, kEncodedVectorSize)) {
return 0;
}
vector_encode(s_output, &priv->s, kLog2Prime);
if (!kyber_marshal_public_key(out, &priv->pub) ||
!CBB_add_bytes(out, priv->pub.public_key_hash,
sizeof(priv->pub.public_key_hash)) ||
!CBB_add_bytes(out, priv->fo_failure_secret,
sizeof(priv->fo_failure_secret))) {
return 0;
}
return 1;
}
int KYBER_parse_private_key(struct KYBER_private_key *out_private_key,
CBS *in) {
struct private_key *const priv = private_key_from_external(out_private_key);
CBS s_bytes;
if (!CBS_get_bytes(in, &s_bytes, kEncodedVectorSize) ||
!vector_decode(&priv->s, CBS_data(&s_bytes), kLog2Prime) ||
!kyber_parse_public_key_no_hash(&priv->pub, in) ||
!CBS_copy_bytes(in, priv->pub.public_key_hash,
sizeof(priv->pub.public_key_hash)) ||
!CBS_copy_bytes(in, priv->fo_failure_secret,
sizeof(priv->fo_failure_secret)) ||
CBS_len(in) != 0) {
return 0;
}
return 1;
}
|