1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <CCryptoBoringSSL_base.h>
#include <limits.h>
#include <CCryptoBoringSSL_err.h>
#include <CCryptoBoringSSL_rsa.h>
#include <CCryptoBoringSSL_bn.h>
#include <CCryptoBoringSSL_rand.h>
#include <CCryptoBoringSSL_mem.h>
#include <CCryptoBoringSSL_evp.h>
#include "../fipsmodule/bn/internal.h"
#include "../fipsmodule/rsa/internal.h"
#include "../internal.h"
#include "internal.h"
static void rand_nonzero(uint8_t *out, size_t len) {
RAND_bytes(out, len);
for (size_t i = 0; i < len; i++) {
while (out[i] == 0) {
RAND_bytes(out + i, 1);
}
}
}
int RSA_padding_add_PKCS1_OAEP_mgf1(uint8_t *to, size_t to_len,
const uint8_t *from, size_t from_len,
const uint8_t *param, size_t param_len,
const EVP_MD *md, const EVP_MD *mgf1md) {
if (md == NULL) {
md = EVP_sha1();
}
if (mgf1md == NULL) {
mgf1md = md;
}
size_t mdlen = EVP_MD_size(md);
if (to_len < 2 * mdlen + 2) {
OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
return 0;
}
size_t emlen = to_len - 1;
if (from_len > emlen - 2 * mdlen - 1) {
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
return 0;
}
if (emlen < 2 * mdlen + 1) {
OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
return 0;
}
to[0] = 0;
uint8_t *seed = to + 1;
uint8_t *db = to + mdlen + 1;
uint8_t *dbmask = NULL;
int ret = 0;
if (!EVP_Digest(param, param_len, db, NULL, md, NULL)) {
goto out;
}
OPENSSL_memset(db + mdlen, 0, emlen - from_len - 2 * mdlen - 1);
db[emlen - from_len - mdlen - 1] = 0x01;
OPENSSL_memcpy(db + emlen - from_len - mdlen, from, from_len);
if (!RAND_bytes(seed, mdlen)) {
goto out;
}
dbmask = OPENSSL_malloc(emlen - mdlen);
if (dbmask == NULL) {
goto out;
}
if (!PKCS1_MGF1(dbmask, emlen - mdlen, seed, mdlen, mgf1md)) {
goto out;
}
for (size_t i = 0; i < emlen - mdlen; i++) {
db[i] ^= dbmask[i];
}
uint8_t seedmask[EVP_MAX_MD_SIZE];
if (!PKCS1_MGF1(seedmask, mdlen, db, emlen - mdlen, mgf1md)) {
goto out;
}
for (size_t i = 0; i < mdlen; i++) {
seed[i] ^= seedmask[i];
}
ret = 1;
out:
OPENSSL_free(dbmask);
return ret;
}
int RSA_padding_check_PKCS1_OAEP_mgf1(uint8_t *out, size_t *out_len,
size_t max_out, const uint8_t *from,
size_t from_len, const uint8_t *param,
size_t param_len, const EVP_MD *md,
const EVP_MD *mgf1md) {
uint8_t *db = NULL;
if (md == NULL) {
md = EVP_sha1();
}
if (mgf1md == NULL) {
mgf1md = md;
}
size_t mdlen = EVP_MD_size(md);
// The encoded message is one byte smaller than the modulus to ensure that it
// doesn't end up greater than the modulus. Thus there's an extra "+1" here
// compared to https://tools.ietf.org/html/rfc2437#section-9.1.1.2.
if (from_len < 1 + 2 * mdlen + 1) {
// 'from_len' is the length of the modulus, i.e. does not depend on the
// particular ciphertext.
goto decoding_err;
}
size_t dblen = from_len - mdlen - 1;
db = OPENSSL_malloc(dblen);
if (db == NULL) {
goto err;
}
const uint8_t *maskedseed = from + 1;
const uint8_t *maskeddb = from + 1 + mdlen;
uint8_t seed[EVP_MAX_MD_SIZE];
if (!PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md)) {
goto err;
}
for (size_t i = 0; i < mdlen; i++) {
seed[i] ^= maskedseed[i];
}
if (!PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md)) {
goto err;
}
for (size_t i = 0; i < dblen; i++) {
db[i] ^= maskeddb[i];
}
uint8_t phash[EVP_MAX_MD_SIZE];
if (!EVP_Digest(param, param_len, phash, NULL, md, NULL)) {
goto err;
}
crypto_word_t bad = ~constant_time_is_zero_w(CRYPTO_memcmp(db, phash, mdlen));
bad |= ~constant_time_is_zero_w(from[0]);
crypto_word_t looking_for_one_byte = CONSTTIME_TRUE_W;
size_t one_index = 0;
for (size_t i = mdlen; i < dblen; i++) {
crypto_word_t equals1 = constant_time_eq_w(db[i], 1);
crypto_word_t equals0 = constant_time_eq_w(db[i], 0);
one_index =
constant_time_select_w(looking_for_one_byte & equals1, i, one_index);
looking_for_one_byte =
constant_time_select_w(equals1, 0, looking_for_one_byte);
bad |= looking_for_one_byte & ~equals0;
}
bad |= looking_for_one_byte;
// Whether the overall padding was valid or not in OAEP is public.
if (constant_time_declassify_w(bad)) {
goto decoding_err;
}
// Once the padding is known to be valid, the output length is also public.
static_assert(sizeof(size_t) <= sizeof(crypto_word_t),
"size_t does not fit in crypto_word_t");
one_index = constant_time_declassify_w(one_index);
one_index++;
size_t mlen = dblen - one_index;
if (max_out < mlen) {
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE);
goto err;
}
OPENSSL_memcpy(out, db + one_index, mlen);
*out_len = mlen;
OPENSSL_free(db);
return 1;
decoding_err:
// To avoid chosen ciphertext attacks, the error message should not reveal
// which kind of decoding error happened.
OPENSSL_PUT_ERROR(RSA, RSA_R_OAEP_DECODING_ERROR);
err:
OPENSSL_free(db);
return 0;
}
static int rsa_padding_add_PKCS1_type_2(uint8_t *to, size_t to_len,
const uint8_t *from, size_t from_len) {
// See RFC 8017, section 7.2.1.
if (to_len < RSA_PKCS1_PADDING_SIZE) {
OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
return 0;
}
if (from_len > to_len - RSA_PKCS1_PADDING_SIZE) {
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
return 0;
}
to[0] = 0;
to[1] = 2;
size_t padding_len = to_len - 3 - from_len;
rand_nonzero(to + 2, padding_len);
to[2 + padding_len] = 0;
OPENSSL_memcpy(to + to_len - from_len, from, from_len);
return 1;
}
static int rsa_padding_check_PKCS1_type_2(uint8_t *out, size_t *out_len,
size_t max_out, const uint8_t *from,
size_t from_len) {
if (from_len == 0) {
OPENSSL_PUT_ERROR(RSA, RSA_R_EMPTY_PUBLIC_KEY);
return 0;
}
// PKCS#1 v1.5 decryption. See "PKCS #1 v2.2: RSA Cryptography
// Standard", section 7.2.2.
if (from_len < RSA_PKCS1_PADDING_SIZE) {
// |from| is zero-padded to the size of the RSA modulus, a public value, so
// this can be rejected in non-constant time.
OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
return 0;
}
crypto_word_t first_byte_is_zero = constant_time_eq_w(from[0], 0);
crypto_word_t second_byte_is_two = constant_time_eq_w(from[1], 2);
crypto_word_t zero_index = 0, looking_for_index = CONSTTIME_TRUE_W;
for (size_t i = 2; i < from_len; i++) {
crypto_word_t equals0 = constant_time_is_zero_w(from[i]);
zero_index =
constant_time_select_w(looking_for_index & equals0, i, zero_index);
looking_for_index = constant_time_select_w(equals0, 0, looking_for_index);
}
// The input must begin with 00 02.
crypto_word_t valid_index = first_byte_is_zero;
valid_index &= second_byte_is_two;
// We must have found the end of PS.
valid_index &= ~looking_for_index;
// PS must be at least 8 bytes long, and it starts two bytes into |from|.
valid_index &= constant_time_ge_w(zero_index, 2 + 8);
// Skip the zero byte.
zero_index++;
// NOTE: Although this logic attempts to be constant time, the API contracts
// of this function and |RSA_decrypt| with |RSA_PKCS1_PADDING| make it
// impossible to completely avoid Bleichenbacher's attack. Consumers should
// use |RSA_PADDING_NONE| and perform the padding check in constant-time
// combined with a swap to a random session key or other mitigation.
CONSTTIME_DECLASSIFY(&valid_index, sizeof(valid_index));
CONSTTIME_DECLASSIFY(&zero_index, sizeof(zero_index));
if (!valid_index) {
OPENSSL_PUT_ERROR(RSA, RSA_R_PKCS_DECODING_ERROR);
return 0;
}
const size_t msg_len = from_len - zero_index;
if (msg_len > max_out) {
// This shouldn't happen because this function is always called with
// |max_out| as the key size and |from_len| is bounded by the key size.
OPENSSL_PUT_ERROR(RSA, RSA_R_PKCS_DECODING_ERROR);
return 0;
}
OPENSSL_memcpy(out, &from[zero_index], msg_len);
*out_len = msg_len;
return 1;
}
int RSA_public_encrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa,
int padding) {
size_t out_len;
if (!RSA_encrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
return -1;
}
if (out_len > INT_MAX) {
OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW);
return -1;
}
return (int)out_len;
}
int RSA_private_encrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa,
int padding) {
size_t out_len;
if (!RSA_sign_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
return -1;
}
if (out_len > INT_MAX) {
OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW);
return -1;
}
return (int)out_len;
}
int RSA_encrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
const uint8_t *in, size_t in_len, int padding) {
if (rsa->n == NULL || rsa->e == NULL) {
OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
return 0;
}
if (!rsa_check_public_key(rsa)) {
return 0;
}
const unsigned rsa_size = RSA_size(rsa);
BIGNUM *f, *result;
uint8_t *buf = NULL;
BN_CTX *ctx = NULL;
int i, ret = 0;
if (max_out < rsa_size) {
OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL);
return 0;
}
ctx = BN_CTX_new();
if (ctx == NULL) {
goto err;
}
BN_CTX_start(ctx);
f = BN_CTX_get(ctx);
result = BN_CTX_get(ctx);
buf = OPENSSL_malloc(rsa_size);
if (!f || !result || !buf) {
goto err;
}
switch (padding) {
case RSA_PKCS1_PADDING:
i = rsa_padding_add_PKCS1_type_2(buf, rsa_size, in, in_len);
break;
case RSA_PKCS1_OAEP_PADDING:
// Use the default parameters: SHA-1 for both hashes and no label.
i = RSA_padding_add_PKCS1_OAEP_mgf1(buf, rsa_size, in, in_len, NULL, 0,
NULL, NULL);
break;
case RSA_NO_PADDING:
i = RSA_padding_add_none(buf, rsa_size, in, in_len);
break;
default:
OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE);
goto err;
}
if (i <= 0) {
goto err;
}
if (BN_bin2bn(buf, rsa_size, f) == NULL) {
goto err;
}
if (BN_ucmp(f, rsa->n) >= 0) {
// usually the padding functions would catch this
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS);
goto err;
}
if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx) ||
!BN_mod_exp_mont(result, f, rsa->e, &rsa->mont_n->N, ctx, rsa->mont_n)) {
goto err;
}
// put in leading 0 bytes if the number is less than the length of the
// modulus
if (!BN_bn2bin_padded(out, rsa_size, result)) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
*out_len = rsa_size;
ret = 1;
err:
if (ctx != NULL) {
BN_CTX_end(ctx);
BN_CTX_free(ctx);
}
OPENSSL_free(buf);
return ret;
}
static int rsa_default_decrypt(RSA *rsa, size_t *out_len, uint8_t *out,
size_t max_out, const uint8_t *in, size_t in_len,
int padding) {
const unsigned rsa_size = RSA_size(rsa);
uint8_t *buf = NULL;
int ret = 0;
if (max_out < rsa_size) {
OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL);
return 0;
}
if (padding == RSA_NO_PADDING) {
buf = out;
} else {
// Allocate a temporary buffer to hold the padded plaintext.
buf = OPENSSL_malloc(rsa_size);
if (buf == NULL) {
goto err;
}
}
if (in_len != rsa_size) {
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_LEN_NOT_EQUAL_TO_MOD_LEN);
goto err;
}
if (!rsa_private_transform(rsa, buf, in, rsa_size)) {
goto err;
}
switch (padding) {
case RSA_PKCS1_PADDING:
ret =
rsa_padding_check_PKCS1_type_2(out, out_len, rsa_size, buf, rsa_size);
break;
case RSA_PKCS1_OAEP_PADDING:
// Use the default parameters: SHA-1 for both hashes and no label.
ret = RSA_padding_check_PKCS1_OAEP_mgf1(out, out_len, rsa_size, buf,
rsa_size, NULL, 0, NULL, NULL);
break;
case RSA_NO_PADDING:
*out_len = rsa_size;
ret = 1;
break;
default:
OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE);
goto err;
}
CONSTTIME_DECLASSIFY(&ret, sizeof(ret));
if (!ret) {
OPENSSL_PUT_ERROR(RSA, RSA_R_PADDING_CHECK_FAILED);
} else {
CONSTTIME_DECLASSIFY(out, *out_len);
}
err:
if (padding != RSA_NO_PADDING) {
OPENSSL_free(buf);
}
return ret;
}
int RSA_decrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
const uint8_t *in, size_t in_len, int padding) {
if (rsa->meth->decrypt) {
return rsa->meth->decrypt(rsa, out_len, out, max_out, in, in_len, padding);
}
return rsa_default_decrypt(rsa, out_len, out, max_out, in, in_len, padding);
}
int RSA_private_decrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa,
int padding) {
size_t out_len;
if (!RSA_decrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
return -1;
}
if (out_len > INT_MAX) {
OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW);
return -1;
}
return (int)out_len;
}
int RSA_public_decrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa,
int padding) {
size_t out_len;
if (!RSA_verify_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
return -1;
}
if (out_len > INT_MAX) {
OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW);
return -1;
}
return (int)out_len;
}
|