1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
/* ====================================================================
* Copyright (c) 2002-2006 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==================================================================== */
#ifndef OPENSSL_HEADER_AES_H
#define OPENSSL_HEADER_AES_H
#include "CCryptoBoringSSL_base.h"
#if defined(__cplusplus)
extern "C" {
#endif
// Raw AES functions.
#define AES_ENCRYPT 1
#define AES_DECRYPT 0
// AES_MAXNR is the maximum number of AES rounds.
#define AES_MAXNR 14
#define AES_BLOCK_SIZE 16
// aes_key_st should be an opaque type, but EVP requires that the size be
// known.
struct aes_key_st {
uint32_t rd_key[4 * (AES_MAXNR + 1)];
unsigned rounds;
};
typedef struct aes_key_st AES_KEY;
// AES_set_encrypt_key configures |aeskey| to encrypt with the |bits|-bit key,
// |key|. |key| must point to |bits|/8 bytes. It returns zero on success and a
// negative number if |bits| is an invalid AES key size.
//
// WARNING: this function breaks the usual return value convention.
OPENSSL_EXPORT int AES_set_encrypt_key(const uint8_t *key, unsigned bits,
AES_KEY *aeskey);
// AES_set_decrypt_key configures |aeskey| to decrypt with the |bits|-bit key,
// |key|. |key| must point to |bits|/8 bytes. It returns zero on success and a
// negative number if |bits| is an invalid AES key size.
//
// WARNING: this function breaks the usual return value convention.
OPENSSL_EXPORT int AES_set_decrypt_key(const uint8_t *key, unsigned bits,
AES_KEY *aeskey);
// AES_encrypt encrypts a single block from |in| to |out| with |key|. The |in|
// and |out| pointers may overlap.
OPENSSL_EXPORT void AES_encrypt(const uint8_t *in, uint8_t *out,
const AES_KEY *key);
// AES_decrypt decrypts a single block from |in| to |out| with |key|. The |in|
// and |out| pointers may overlap.
OPENSSL_EXPORT void AES_decrypt(const uint8_t *in, uint8_t *out,
const AES_KEY *key);
// Block cipher modes.
// AES_ctr128_encrypt encrypts (or decrypts, it's the same in CTR mode) |len|
// bytes from |in| to |out|. The |num| parameter must be set to zero on the
// first call and |ivec| will be incremented. This function may be called
// in-place with |in| equal to |out|, but otherwise the buffers may not
// partially overlap. A partial overlap may overwrite input data before it is
// read.
OPENSSL_EXPORT void AES_ctr128_encrypt(const uint8_t *in, uint8_t *out,
size_t len, const AES_KEY *key,
uint8_t ivec[AES_BLOCK_SIZE],
uint8_t ecount_buf[AES_BLOCK_SIZE],
unsigned int *num);
// AES_ecb_encrypt encrypts (or decrypts, if |enc| == |AES_DECRYPT|) a single,
// 16 byte block from |in| to |out|. This function may be called in-place with
// |in| equal to |out|, but otherwise the buffers may not partially overlap. A
// partial overlap may overwrite input data before it is read.
OPENSSL_EXPORT void AES_ecb_encrypt(const uint8_t *in, uint8_t *out,
const AES_KEY *key, const int enc);
// AES_cbc_encrypt encrypts (or decrypts, if |enc| == |AES_DECRYPT|) |len|
// bytes from |in| to |out|. The length must be a multiple of the block size.
// This function may be called in-place with |in| equal to |out|, but otherwise
// the buffers may not partially overlap. A partial overlap may overwrite input
// data before it is read.
OPENSSL_EXPORT void AES_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, uint8_t *ivec,
const int enc);
// AES_ofb128_encrypt encrypts (or decrypts, it's the same in OFB mode) |len|
// bytes from |in| to |out|. The |num| parameter must be set to zero on the
// first call. This function may be called in-place with |in| equal to |out|,
// but otherwise the buffers may not partially overlap. A partial overlap may
// overwrite input data before it is read.
OPENSSL_EXPORT void AES_ofb128_encrypt(const uint8_t *in, uint8_t *out,
size_t len, const AES_KEY *key,
uint8_t *ivec, int *num);
// AES_cfb128_encrypt encrypts (or decrypts, if |enc| == |AES_DECRYPT|) |len|
// bytes from |in| to |out|. The |num| parameter must be set to zero on the
// first call. This function may be called in-place with |in| equal to |out|,
// but otherwise the buffers may not partially overlap. A partial overlap may
// overwrite input data before it is read.
OPENSSL_EXPORT void AES_cfb128_encrypt(const uint8_t *in, uint8_t *out,
size_t len, const AES_KEY *key,
uint8_t *ivec, int *num, int enc);
// AES key wrap.
//
// These functions implement AES Key Wrap mode, as defined in RFC 3394. They
// should never be used except to interoperate with existing systems that use
// this mode.
// AES_wrap_key performs AES key wrap on |in| which must be a multiple of 8
// bytes. |iv| must point to an 8 byte value or be NULL to use the default IV.
// |key| must have been configured for encryption. On success, it writes
// |in_len| + 8 bytes to |out| and returns |in_len| + 8. Otherwise, it returns
// -1.
OPENSSL_EXPORT int AES_wrap_key(const AES_KEY *key, const uint8_t *iv,
uint8_t *out, const uint8_t *in, size_t in_len);
// AES_unwrap_key performs AES key unwrap on |in| which must be a multiple of 8
// bytes. |iv| must point to an 8 byte value or be NULL to use the default IV.
// |key| must have been configured for decryption. On success, it writes
// |in_len| - 8 bytes to |out| and returns |in_len| - 8. Otherwise, it returns
// -1.
OPENSSL_EXPORT int AES_unwrap_key(const AES_KEY *key, const uint8_t *iv,
uint8_t *out, const uint8_t *in,
size_t in_len);
// AES key wrap with padding.
//
// These functions implement AES Key Wrap with Padding mode, as defined in RFC
// 5649. They should never be used except to interoperate with existing systems
// that use this mode.
// AES_wrap_key_padded performs a padded AES key wrap on |in| which must be
// between 1 and 2^32-1 bytes. |key| must have been configured for encryption.
// On success it writes at most |max_out| bytes of ciphertext to |out|, sets
// |*out_len| to the number of bytes written, and returns one. On failure it
// returns zero. To ensure success, set |max_out| to at least |in_len| + 15.
OPENSSL_EXPORT int AES_wrap_key_padded(const AES_KEY *key, uint8_t *out,
size_t *out_len, size_t max_out,
const uint8_t *in, size_t in_len);
// AES_unwrap_key_padded performs a padded AES key unwrap on |in| which must be
// a multiple of 8 bytes. |key| must have been configured for decryption. On
// success it writes at most |max_out| bytes to |out|, sets |*out_len| to the
// number of bytes written, and returns one. On failure it returns zero. Setting
// |max_out| to |in_len| is a sensible estimate.
OPENSSL_EXPORT int AES_unwrap_key_padded(const AES_KEY *key, uint8_t *out,
size_t *out_len, size_t max_out,
const uint8_t *in, size_t in_len);
#if defined(__cplusplus)
} // extern C
#endif
#endif // OPENSSL_HEADER_AES_H
|