1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
|
#include <stdbool.h>
#include <stdint.h>
#include <immintrin.h>
#include <string.h>
typedef uint64_t fe4[4];
typedef uint8_t fiat_uint1;
typedef int8_t fiat_int1;
static __inline__ uint64_t fiat_value_barrier_u64(uint64_t a) {
__asm__("" : "+r"(a) : /* no inputs */);
return a;
}
__attribute__((target("adx,bmi2")))
static inline void fe4_mul(fe4 out, const fe4 x, const fe4 y) { fiat_curve25519_adx_mul(out, x, y); }
__attribute__((target("adx,bmi2")))
static inline void fe4_sq(fe4 out, const fe4 x) { fiat_curve25519_adx_square(out, x); }
/*
* The function fiat_mulx_u64 is a multiplication, returning the full double-width result.
*
* Postconditions:
* out1 = (arg1 * arg2) mod 2^64
* out2 = ⌊arg1 * arg2 / 2^64⌋
*
* Input Bounds:
* arg1: [0x0 ~> 0xffffffffffffffff]
* arg2: [0x0 ~> 0xffffffffffffffff]
* Output Bounds:
* out1: [0x0 ~> 0xffffffffffffffff]
* out2: [0x0 ~> 0xffffffffffffffff]
*/
__attribute__((target("adx,bmi2")))
static inline void fiat_mulx_u64(uint64_t* out1, uint64_t* out2, uint64_t arg1, uint64_t arg2) {
// NOTE: edited after generation
#if defined(_M_X64)
unsigned long long t;
*out1 = _umul128(arg1, arg2, &t);
*out2 = t;
#elif defined(_M_ARM64)
*out1 = arg1 * arg2;
*out2 = __umulh(arg1, arg2);
#else
unsigned __int128 t = (unsigned __int128)arg1 * arg2;
*out1 = t;
*out2 = (t >> 64);
#endif
}
/*
* The function fiat_addcarryx_u64 is an addition with carry.
*
* Postconditions:
* out1 = (arg1 + arg2 + arg3) mod 2^64
* out2 = ⌊(arg1 + arg2 + arg3) / 2^64⌋
*
* Input Bounds:
* arg1: [0x0 ~> 0x1]
* arg2: [0x0 ~> 0xffffffffffffffff]
* arg3: [0x0 ~> 0xffffffffffffffff]
* Output Bounds:
* out1: [0x0 ~> 0xffffffffffffffff]
* out2: [0x0 ~> 0x1]
*/
__attribute__((target("adx,bmi2")))
static inline void fiat_addcarryx_u64(uint64_t* out1, fiat_uint1* out2, fiat_uint1 arg1, uint64_t arg2, uint64_t arg3) {
// NOTE: edited after generation
#if defined(__has_builtin)
# if __has_builtin(__builtin_ia32_addcarryx_u64)
# define addcarry64 __builtin_ia32_addcarryx_u64
# endif
#endif
#if defined(addcarry64)
long long unsigned int t;
*out2 = addcarry64(arg1, arg2, arg3, &t);
*out1 = t;
#elif defined(_M_X64)
long long unsigned int t;
*out2 = _addcarry_u64(arg1, arg2, arg3, out1);
*out1 = t;
#else
arg2 += arg1;
arg1 = arg2 < arg1;
uint64_t ret = arg2 + arg3;
arg1 += ret < arg2;
*out1 = ret;
*out2 = arg1;
#endif
#undef addcarry64
}
/*
* The function fiat_subborrowx_u64 is a subtraction with borrow.
*
* Postconditions:
* out1 = (-arg1 + arg2 + -arg3) mod 2^64
* out2 = -⌊(-arg1 + arg2 + -arg3) / 2^64⌋
*
* Input Bounds:
* arg1: [0x0 ~> 0x1]
* arg2: [0x0 ~> 0xffffffffffffffff]
* arg3: [0x0 ~> 0xffffffffffffffff]
* Output Bounds:
* out1: [0x0 ~> 0xffffffffffffffff]
* out2: [0x0 ~> 0x1]
*/
__attribute__((target("adx,bmi2")))
static inline void fiat_subborrowx_u64(uint64_t* out1, fiat_uint1* out2, fiat_uint1 arg1, uint64_t arg2, uint64_t arg3) {
#if defined(__has_builtin)
# if __has_builtin(__builtin_ia32_subborrow_u64)
# define subborrow64 __builtin_ia32_subborrow_u64
# endif
#endif
#if defined(subborrow64)
long long unsigned int t;
*out2 = subborrow64(arg1, arg2, arg3, &t);
*out1 = t;
#elif defined(_M_X64)
long long unsigned int t;
*out2 = _subborrow_u64(arg1, arg2, arg3, &t); // NOTE: edited after generation
*out1 = t;
#else
*out1 = arg2 - arg3 - arg1;
*out2 = (arg2 < arg3) | ((arg2 == arg3) & arg1);
#endif
#undef subborrow64
}
/*
* The function fiat_cmovznz_u64 is a single-word conditional move.
*
* Postconditions:
* out1 = (if arg1 = 0 then arg2 else arg3)
*
* Input Bounds:
* arg1: [0x0 ~> 0x1]
* arg2: [0x0 ~> 0xffffffffffffffff]
* arg3: [0x0 ~> 0xffffffffffffffff]
* Output Bounds:
* out1: [0x0 ~> 0xffffffffffffffff]
*/
__attribute__((target("adx,bmi2")))
static inline void fiat_cmovznz_u64(uint64_t* out1, fiat_uint1 arg1, uint64_t arg2, uint64_t arg3) {
fiat_uint1 x1;
uint64_t x2;
uint64_t x3;
x1 = (!(!arg1));
x2 = ((fiat_int1)(0x0 - x1) & UINT64_C(0xffffffffffffffff));
x3 = ((fiat_value_barrier_u64(x2) & arg3) | (fiat_value_barrier_u64((~x2)) & arg2));
*out1 = x3;
}
/*
* Input Bounds:
* arg1: [[0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff]]
* arg2: [[0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff]]
* Output Bounds:
* out1: [[0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff]]
*/
__attribute__((target("adx,bmi2")))
static void fe4_add(uint64_t out1[4], const uint64_t arg1[4], const uint64_t arg2[4]) {
uint64_t x1;
fiat_uint1 x2;
uint64_t x3;
fiat_uint1 x4;
uint64_t x5;
fiat_uint1 x6;
uint64_t x7;
fiat_uint1 x8;
uint64_t x9;
uint64_t x10;
fiat_uint1 x11;
uint64_t x12;
fiat_uint1 x13;
uint64_t x14;
fiat_uint1 x15;
uint64_t x16;
fiat_uint1 x17;
uint64_t x18;
uint64_t x19;
fiat_uint1 x20;
fiat_addcarryx_u64(&x1, &x2, 0x0, (arg1[0]), (arg2[0]));
fiat_addcarryx_u64(&x3, &x4, x2, (arg1[1]), (arg2[1]));
fiat_addcarryx_u64(&x5, &x6, x4, (arg1[2]), (arg2[2]));
fiat_addcarryx_u64(&x7, &x8, x6, (arg1[3]), (arg2[3]));
fiat_cmovznz_u64(&x9, x8, 0x0, UINT8_C(0x26)); // NOTE: clang 14 for Zen 2 uses sbb, and
fiat_addcarryx_u64(&x10, &x11, 0x0, x1, x9);
fiat_addcarryx_u64(&x12, &x13, x11, x3, 0x0);
fiat_addcarryx_u64(&x14, &x15, x13, x5, 0x0);
fiat_addcarryx_u64(&x16, &x17, x15, x7, 0x0);
fiat_cmovznz_u64(&x18, x17, 0x0, UINT8_C(0x26)); // NOTE: clang 14 for Zen 2 uses sbb, and
fiat_addcarryx_u64(&x19, &x20, 0x0, x10, x18);
out1[0] = x19;
out1[1] = x12;
out1[2] = x14;
out1[3] = x16;
}
/*
* Input Bounds:
* arg1: [[0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff]]
* arg2: [[0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff]]
* Output Bounds:
* out1: [[0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff]]
*/
__attribute__((target("adx,bmi2")))
static void fe4_sub(uint64_t out1[4], const uint64_t arg1[4], const uint64_t arg2[4]) {
uint64_t x1;
uint64_t x2;
fiat_uint1 x3;
uint64_t x4;
uint64_t x5;
fiat_uint1 x6;
uint64_t x7;
uint64_t x8;
fiat_uint1 x9;
uint64_t x10;
uint64_t x11;
fiat_uint1 x12;
uint64_t x13;
uint64_t x14;
fiat_uint1 x15;
uint64_t x16;
fiat_uint1 x17;
uint64_t x18;
fiat_uint1 x19;
uint64_t x20;
fiat_uint1 x21;
uint64_t x22;
uint64_t x23;
fiat_uint1 x24;
x1 = (arg2[0]);
fiat_subborrowx_u64(&x2, &x3, 0x0, (arg1[0]), x1);
x4 = (arg2[1]);
fiat_subborrowx_u64(&x5, &x6, x3, (arg1[1]), x4);
x7 = (arg2[2]);
fiat_subborrowx_u64(&x8, &x9, x6, (arg1[2]), x7);
x10 = (arg2[3]);
fiat_subborrowx_u64(&x11, &x12, x9, (arg1[3]), x10);
fiat_cmovznz_u64(&x13, x12, 0x0, UINT8_C(0x26)); // NOTE: clang 14 for Zen 2 uses sbb, and
fiat_subborrowx_u64(&x14, &x15, 0x0, x2, x13);
fiat_subborrowx_u64(&x16, &x17, x15, x5, 0x0);
fiat_subborrowx_u64(&x18, &x19, x17, x8, 0x0);
fiat_subborrowx_u64(&x20, &x21, x19, x11, 0x0);
fiat_cmovznz_u64(&x22, x21, 0x0, UINT8_C(0x26)); // NOTE: clang 14 for Zen 2 uses sbb, and
fiat_subborrowx_u64(&x23, &x24, 0x0, x14, x22);
out1[0] = x23;
out1[1] = x16;
out1[2] = x18;
out1[3] = x20;
}
/*
* Input Bounds:
* arg1: [[0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff]]
* arg2: [0x0 ~> 0x3ffffffffffffff] // NOTE: this is not any uint64!
* Output Bounds:
* out1: [[0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff]]
*/
__attribute__((target("adx,bmi2")))
static void fe4_scmul(uint64_t out1[4], const uint64_t arg1[4], uint64_t arg2) {
uint64_t x1;
uint64_t x2;
uint64_t x3;
uint64_t x4;
uint64_t x5;
fiat_uint1 x6;
uint64_t x7;
uint64_t x8;
uint64_t x9;
fiat_uint1 x10;
uint64_t x11;
uint64_t x12;
uint64_t x13;
fiat_uint1 x14;
uint64_t x15;
uint64_t x16;
uint64_t x17;
fiat_uint1 x18;
uint64_t x19;
fiat_uint1 x20;
uint64_t x21;
fiat_uint1 x22;
uint64_t x23;
fiat_uint1 x24;
uint64_t x25;
uint64_t x26;
fiat_uint1 x27;
fiat_mulx_u64(&x1, &x2, (arg1[0]), arg2);
fiat_mulx_u64(&x3, &x4, (arg1[1]), arg2);
fiat_addcarryx_u64(&x5, &x6, 0x0, x2, x3);
fiat_mulx_u64(&x7, &x8, (arg1[2]), arg2);
fiat_addcarryx_u64(&x9, &x10, x6, x4, x7);
fiat_mulx_u64(&x11, &x12, (arg1[3]), arg2);
fiat_addcarryx_u64(&x13, &x14, x10, x8, x11);
fiat_mulx_u64(&x15, &x16, (x12 + (uint64_t)x14), UINT8_C(0x26));
fiat_addcarryx_u64(&x17, &x18, 0x0, x1, x15);
fiat_addcarryx_u64(&x19, &x20, x18, x5, 0x0);
fiat_addcarryx_u64(&x21, &x22, x20, x9, 0x0);
fiat_addcarryx_u64(&x23, &x24, x22, x13, 0x0);
fiat_cmovznz_u64(&x25, x24, 0x0, UINT8_C(0x26)); // NOTE: clang 14 for Zen 2 uses sbb, and
fiat_addcarryx_u64(&x26, &x27, 0x0, x17, x25);
out1[0] = x26;
out1[1] = x19;
out1[2] = x21;
out1[3] = x23;
}
/*
* Input Bounds:
* arg1: [[0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff]]
* Output Bounds:
* out1: [[0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff]]
*/
__attribute__((target("adx,bmi2")))
static void fe4_canon(uint64_t out1[4], const uint64_t arg1[4]) {
uint64_t x1;
fiat_uint1 x2;
uint64_t x3;
fiat_uint1 x4;
uint64_t x5;
fiat_uint1 x6;
uint64_t x7;
fiat_uint1 x8;
uint64_t x9;
uint64_t x10;
uint64_t x11;
uint64_t x12;
uint64_t x13;
fiat_uint1 x14;
uint64_t x15;
fiat_uint1 x16;
uint64_t x17;
fiat_uint1 x18;
uint64_t x19;
fiat_uint1 x20;
uint64_t x21;
uint64_t x22;
uint64_t x23;
uint64_t x24;
fiat_subborrowx_u64(&x1, &x2, 0x0, (arg1[0]), UINT64_C(0xffffffffffffffed));
fiat_subborrowx_u64(&x3, &x4, x2, (arg1[1]), UINT64_C(0xffffffffffffffff));
fiat_subborrowx_u64(&x5, &x6, x4, (arg1[2]), UINT64_C(0xffffffffffffffff));
fiat_subborrowx_u64(&x7, &x8, x6, (arg1[3]), UINT64_C(0x7fffffffffffffff));
fiat_cmovznz_u64(&x9, x8, x1, (arg1[0]));
fiat_cmovznz_u64(&x10, x8, x3, (arg1[1]));
fiat_cmovznz_u64(&x11, x8, x5, (arg1[2]));
fiat_cmovznz_u64(&x12, x8, x7, (arg1[3]));
fiat_subborrowx_u64(&x13, &x14, 0x0, x9, UINT64_C(0xffffffffffffffed));
fiat_subborrowx_u64(&x15, &x16, x14, x10, UINT64_C(0xffffffffffffffff));
fiat_subborrowx_u64(&x17, &x18, x16, x11, UINT64_C(0xffffffffffffffff));
fiat_subborrowx_u64(&x19, &x20, x18, x12, UINT64_C(0x7fffffffffffffff));
fiat_cmovznz_u64(&x21, x20, x13, x9);
fiat_cmovznz_u64(&x22, x20, x15, x10);
fiat_cmovznz_u64(&x23, x20, x17, x11);
fiat_cmovznz_u64(&x24, x20, x19, x12);
out1[0] = x21;
out1[1] = x22;
out1[2] = x23;
out1[3] = x24;
}
/*
* Input Bounds:
* arg1: [0x0 ~> 0x1]
* arg2: [[0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff]]
* arg3: [[0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff]]
* Output Bounds:
* out1: [[0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff]]
* out2: [[0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff], [0x0 ~> 0xffffffffffffffff]]
*/
__attribute__((target("adx,bmi2")))
static void fe4_cswap(uint64_t out1[4], uint64_t out2[4], fiat_uint1 arg1, const uint64_t arg2[4], const uint64_t arg3[4]) {
uint64_t x1;
uint64_t x2;
uint64_t x3;
uint64_t x4;
uint64_t x5;
uint64_t x6;
uint64_t x7;
uint64_t x8;
// NOTE: clang 14 for Zen 2 uses YMM registers
fiat_cmovznz_u64(&x1, arg1, (arg2[0]), (arg3[0]));
fiat_cmovznz_u64(&x2, arg1, (arg2[1]), (arg3[1]));
fiat_cmovznz_u64(&x3, arg1, (arg2[2]), (arg3[2]));
fiat_cmovznz_u64(&x4, arg1, (arg2[3]), (arg3[3]));
fiat_cmovznz_u64(&x5, arg1, (arg3[0]), (arg2[0]));
fiat_cmovznz_u64(&x6, arg1, (arg3[1]), (arg2[1]));
fiat_cmovznz_u64(&x7, arg1, (arg3[2]), (arg2[2]));
fiat_cmovznz_u64(&x8, arg1, (arg3[3]), (arg2[3]));
out1[0] = x1;
out1[1] = x2;
out1[2] = x3;
out1[3] = x4;
out2[0] = x5;
out2[1] = x6;
out2[2] = x7;
out2[3] = x8;
}
// The following functions are adaped from crypto/curve25519/curve25519.c
// It would be desirable to share the code, but with the current field
// implementations both 4-limb and 5-limb versions of the curve-level code need
// to be included in builds targetting an unknown variant of x86_64.
__attribute__((target("adx,bmi2")))
static void fe4_invert(fe4 out, const fe4 z) {
fe4 t0;
fe4 t1;
fe4 t2;
fe4 t3;
int i;
fe4_sq(t0, z);
fe4_sq(t1, t0);
for (i = 1; i < 2; ++i) {
fe4_sq(t1, t1);
}
fe4_mul(t1, z, t1);
fe4_mul(t0, t0, t1);
fe4_sq(t2, t0);
fe4_mul(t1, t1, t2);
fe4_sq(t2, t1);
for (i = 1; i < 5; ++i) {
fe4_sq(t2, t2);
}
fe4_mul(t1, t2, t1);
fe4_sq(t2, t1);
for (i = 1; i < 10; ++i) {
fe4_sq(t2, t2);
}
fe4_mul(t2, t2, t1);
fe4_sq(t3, t2);
for (i = 1; i < 20; ++i) {
fe4_sq(t3, t3);
}
fe4_mul(t2, t3, t2);
fe4_sq(t2, t2);
for (i = 1; i < 10; ++i) {
fe4_sq(t2, t2);
}
fe4_mul(t1, t2, t1);
fe4_sq(t2, t1);
for (i = 1; i < 50; ++i) {
fe4_sq(t2, t2);
}
fe4_mul(t2, t2, t1);
fe4_sq(t3, t2);
for (i = 1; i < 100; ++i) {
fe4_sq(t3, t3);
}
fe4_mul(t2, t3, t2);
fe4_sq(t2, t2);
for (i = 1; i < 50; ++i) {
fe4_sq(t2, t2);
}
fe4_mul(t1, t2, t1);
fe4_sq(t1, t1);
for (i = 1; i < 5; ++i) {
fe4_sq(t1, t1);
}
fe4_mul(out, t1, t0);
}
__attribute__((target("adx,bmi2")))
void x25519_scalar_mult_adx(uint8_t out[32], const uint8_t scalar[32],
const uint8_t point[32]) {
uint8_t e[32];
memcpy(e, scalar, 32);
e[0] &= 248;
e[31] &= 127;
e[31] |= 64;
// The following implementation was transcribed to Coq and proven to
// correspond to unary scalar multiplication in affine coordinates given that
// x1 != 0 is the x coordinate of some point on the curve. It was also checked
// in Coq that doing a ladderstep with x1 = x3 = 0 gives z2' = z3' = 0, and z2
// = z3 = 0 gives z2' = z3' = 0. The statement was quantified over the
// underlying field, so it applies to Curve25519 itself and the quadratic
// twist of Curve25519. It was not proven in Coq that prime-field arithmetic
// correctly simulates extension-field arithmetic on prime-field values.
// The decoding of the byte array representation of e was not considered.
// Specification of Montgomery curves in affine coordinates:
// <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Spec/MontgomeryCurve.v#L27>
// Proof that these form a group that is isomorphic to a Weierstrass curve:
// <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/AffineProofs.v#L35>
// Coq transcription and correctness proof of the loop (where scalarbits=255):
// <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L118>
// <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L278>
// preconditions: 0 <= e < 2^255 (not necessarily e < order), fe_invert(0) = 0
fe4 x1, x2 = {1}, z2 = {0}, x3, z3 = {1}, tmp0, tmp1;
OPENSSL_memcpy(x1, point, sizeof(fe4));
x1[3] &= (uint64_t)(-1)>>1;
OPENSSL_memcpy(x3, x1, sizeof(fe4));
unsigned swap = 0;
int pos;
for (pos = 254; pos >= 0; --pos) {
// loop invariant as of right before the test, for the case where x1 != 0:
// pos >= -1; if z2 = 0 then x2 is nonzero; if z3 = 0 then x3 is nonzero
// let r := e >> (pos+1) in the following equalities of projective points:
// to_xz (r*P) === if swap then (x3, z3) else (x2, z2)
// to_xz ((r+1)*P) === if swap then (x2, z2) else (x3, z3)
// x1 is the nonzero x coordinate of the nonzero point (r*P-(r+1)*P)
unsigned b = 1 & (e[pos / 8] >> (pos & 7));
swap ^= b;
fe4_cswap(x2, x3, swap, x2, x3);
fe4_cswap(z2, z3, swap, z2, z3);
swap = b;
// Coq transcription of ladderstep formula (called from transcribed loop):
// <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L89>
// <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L131>
// x1 != 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L217>
// x1 = 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L147>
fe4_sub(tmp0, x3, z3);
fe4_sub(tmp1, x2, z2);
fe4_add(x2, x2, z2);
fe4_add(z2, x3, z3);
fe4_mul(z3, tmp0, x2);
fe4_mul(z2, z2, tmp1);
fe4_sq(tmp0, tmp1);
fe4_sq(tmp1, x2);
fe4_add(x3, z3, z2);
fe4_sub(z2, z3, z2);
fe4_mul(x2, tmp1, tmp0);
fe4_sub(tmp1, tmp1, tmp0);
fe4_sq(z2, z2);
fe4_scmul(z3, tmp1, 121666);
fe4_sq(x3, x3);
fe4_add(tmp0, tmp0, z3);
fe4_mul(z3, x1, z2);
fe4_mul(z2, tmp1, tmp0);
}
// here pos=-1, so r=e, so to_xz (e*P) === if swap then (x3, z3) else (x2, z2)
fe4_cswap(x2, x3, swap, x2, x3);
fe4_cswap(z2, z3, swap, z2, z3);
fe4_invert(z2, z2);
fe4_mul(x2, x2, z2);
fe4_canon(x2, x2);
OPENSSL_memcpy(out, x2, sizeof(fe4));
}
typedef struct {
fe4 X;
fe4 Y;
fe4 Z;
fe4 T;
} ge_p3_4;
typedef struct {
fe4 yplusx;
fe4 yminusx;
fe4 xy2d;
} ge_precomp_4;
__attribute__((target("adx,bmi2")))
static void inline_x25519_ge_dbl_4(ge_p3_4 *r, const ge_p3_4 *p, bool skip_t) {
// Transcribed from a Coq function proven against affine coordinates.
// https://github.com/mit-plv/fiat-crypto/blob/9943ba9e7d8f3e1c0054b2c94a5edca46ea73ef8/src/Curves/Edwards/XYZT/Basic.v#L136-L165
fe4 trX, trZ, trT, t0, cX, cY, cZ, cT;
fe4_sq(trX, p->X);
fe4_sq(trZ, p->Y);
fe4_sq(trT, p->Z);
fe4_add(trT, trT, trT);
fe4_add(cY, p->X, p->Y);
fe4_sq(t0, cY);
fe4_add(cY, trZ, trX);
fe4_sub(cZ, trZ, trX);
fe4_sub(cX, t0, cY);
fe4_sub(cT, trT, cZ);
fe4_mul(r->X, cX, cT);
fe4_mul(r->Y, cY, cZ);
fe4_mul(r->Z, cZ, cT);
if (!skip_t) {
fe4_mul(r->T, cX, cY);
}
}
__attribute__((target("adx,bmi2")))
__attribute__((always_inline)) // 4% speedup with clang14 and zen2
static inline void
ge_p3_add_p3_precomp_4(ge_p3_4 *r, const ge_p3_4 *p, const ge_precomp_4 *q) {
fe4 A, B, C, YplusX, YminusX, D, X3, Y3, Z3, T3;
// Transcribed from a Coq function proven against affine coordinates.
// https://github.com/mit-plv/fiat-crypto/blob/a36568d1d73aff5d7accc79fd28be672882f9c17/src/Curves/Edwards/XYZT/Precomputed.v#L38-L56
fe4_add(YplusX, p->Y, p->X);
fe4_sub(YminusX, p->Y, p->X);
fe4_mul(A, YplusX, q->yplusx);
fe4_mul(B, YminusX, q->yminusx);
fe4_mul(C, q->xy2d, p->T);
fe4_add(D, p->Z, p->Z);
fe4_sub(X3, A, B);
fe4_add(Y3, A, B);
fe4_add(Z3, D, C);
fe4_sub(T3, D, C);
fe4_mul(r->X, X3, T3);
fe4_mul(r->Y, Y3, Z3);
fe4_mul(r->Z, Z3, T3);
fe4_mul(r->T, X3, Y3);
}
__attribute__((always_inline)) // 25% speedup with clang14 and zen2
static inline void table_select_4(ge_precomp_4 *t, const int pos,
const signed char b) {
uint8_t bnegative = constant_time_msb_w(b);
uint8_t babs = b - ((bnegative & b) << 1);
uint8_t t_bytes[3][32] = {
{constant_time_is_zero_w(b) & 1}, {constant_time_is_zero_w(b) & 1}, {0}};
#if defined(__clang__)
__asm__("" : "+m" (t_bytes) : /*no inputs*/);
#endif
static_assert(sizeof(t_bytes) == sizeof(k25519Precomp[pos][0]), "");
for (int i = 0; i < 8; i++) {
constant_time_conditional_memxor(t_bytes, k25519Precomp[pos][i],
sizeof(t_bytes),
constant_time_eq_w(babs, 1 + i));
}
static_assert(sizeof(t_bytes) == sizeof(ge_precomp_4), "");
// fe4 uses saturated 64-bit limbs, so converting from bytes is just a copy.
OPENSSL_memcpy(t, t_bytes, sizeof(ge_precomp_4));
fe4 xy2d_neg = {0};
fe4_sub(xy2d_neg, xy2d_neg, t->xy2d);
constant_time_conditional_memcpy(t->yplusx, t_bytes[1], sizeof(fe4),
bnegative);
constant_time_conditional_memcpy(t->yminusx, t_bytes[0], sizeof(fe4),
bnegative);
constant_time_conditional_memcpy(t->xy2d, xy2d_neg, sizeof(fe4), bnegative);
}
// h = a * B
// where a = a[0]+256*a[1]+...+256^31 a[31]
// B is the Ed25519 base point (x,4/5) with x positive.
//
// Preconditions:
// a[31] <= 127
__attribute__((target("adx,bmi2")))
void x25519_ge_scalarmult_base_adx(uint8_t h[4][32], const uint8_t a[32]) {
signed char e[64];
signed char carry;
for (unsigned i = 0; i < 32; ++i) {
e[2 * i + 0] = (a[i] >> 0) & 15;
e[2 * i + 1] = (a[i] >> 4) & 15;
}
// each e[i] is between 0 and 15
// e[63] is between 0 and 7
carry = 0;
for (unsigned i = 0; i < 63; ++i) {
e[i] += carry;
carry = e[i] + 8;
carry >>= 4;
e[i] -= carry << 4;
}
e[63] += carry;
// each e[i] is between -8 and 8
ge_p3_4 r = {{0}, {1}, {1}, {0}};
for (unsigned i = 1; i < 64; i += 2) {
ge_precomp_4 t;
table_select_4(&t, i / 2, e[i]);
ge_p3_add_p3_precomp_4(&r, &r, &t);
}
inline_x25519_ge_dbl_4(&r, &r, /*skip_t=*/true);
inline_x25519_ge_dbl_4(&r, &r, /*skip_t=*/true);
inline_x25519_ge_dbl_4(&r, &r, /*skip_t=*/true);
inline_x25519_ge_dbl_4(&r, &r, /*skip_t=*/false);
for (unsigned i = 0; i < 64; i += 2) {
ge_precomp_4 t;
table_select_4(&t, i / 2, e[i]);
ge_p3_add_p3_precomp_4(&r, &r, &t);
}
// fe4 uses saturated 64-bit limbs, so converting to bytes is just a copy.
// Satisfy stated precondition of fiat_25519_from_bytes; tests pass either way
fe4_canon(r.X, r.X);
fe4_canon(r.Y, r.Y);
fe4_canon(r.Z, r.Z);
fe4_canon(r.T, r.T);
static_assert(sizeof(ge_p3_4) == sizeof(uint8_t[4][32]), "");
OPENSSL_memcpy(h, &r, sizeof(ge_p3_4));
}
|