1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the SwiftCrypto open source project
//
// Copyright (c) 2019-2020 Apple Inc. and the SwiftCrypto project authors
// Licensed under Apache License v2.0
//
// See LICENSE.txt for license information
// See CONTRIBUTORS.md for the list of SwiftCrypto project authors
//
// SPDX-License-Identifier: Apache-2.0
//
//===----------------------------------------------------------------------===//
#if CRYPTO_IN_SWIFTPM && !CRYPTO_IN_SWIFTPM_FORCE_BUILD_API
@_exported import CryptoKit
#else
import Foundation
// This module implements "just enough" ASN.1. Specifically, we implement exactly enough ASN.1 DER parsing to handle
// the following use-cases:
//
// 1. Being able to parse the SPKI format for EC public keys
// 2. Being able to parse the PKCS#8 format for EC private keys
// 3. Being able to parse the SEC 1 format for EC private keys (produced by `openssl ec`)
//
// Let's talk about the DER encoding of ASN.1. DER is fundamentally a TLV (type length value) encoding. Each element is
// made of up some bytes that identify its type, some bytes that identify the length, and then the contents. In the full
// scheme of ASN.1 we care about a lot of things about its structure, but for our case we only care about a few kinds of
// tag. To work out the tag we need, we can look at the X.509 representation of an EC key public key, from RFC 5480 (for case 1), as
// well as the SEC 1 format for private keys and the PKCS#8 format for private keys.
//
// ### RFC 5480 SPKI:
//
// SubjectPublicKeyInfo ::= SEQUENCE {
// algorithm AlgorithmIdentifier,
// subjectPublicKey BIT STRING
// }
//
// ### SEC 1
//
// For private keys, SEC 1 uses:
//
// ECPrivateKey ::= SEQUENCE {
// version INTEGER { ecPrivkeyVer1(1) } (ecPrivkeyVer1),
// privateKey OCTET STRING,
// parameters [0] EXPLICIT ECDomainParameters OPTIONAL,
// publicKey [1] EXPLICIT BIT STRING OPTIONAL
// }
//
// ### PKCS#8
//
// For PKCS#8 we need the following for the private key:
//
// PrivateKeyInfo ::= SEQUENCE {
// version Version,
// privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
// privateKey PrivateKey,
// attributes [0] IMPLICIT Attributes OPTIONAL }
//
// Version ::= INTEGER
//
// PrivateKeyAlgorithmIdentifier ::= AlgorithmIdentifier
//
// PrivateKey ::= OCTET STRING
//
// Attributes ::= SET OF Attribute
//
// ### Common
//
// Several of the above use formats defined here:
//
// AlgorithmIdentifier ::= SEQUENCE {
// algorithm OBJECT IDENTIFIER,
// parameters ANY DEFINED BY algorithm OPTIONAL
// }
//
// ECParameters ::= CHOICE {
// namedCurve OBJECT IDENTIFIER
// -- implicitCurve NULL
// -- specifiedCurve SpecifiedECDomain
// }
//
// For us, we expect the ECParameters structure to be using the namedCurve representation only: as we support only the NIST curves with ASN.1
// there is no reason for the curve to ever not be named.
//
// Conveniently, this requires only a few data types from us: SEQUENCE, BIT STRING, OCTET STRING, and OBJECT IDENTIFIER. All three are
// universal objects for ASN.1. Their relevant characteristics are:
//
// ┌───────────────────┬────────────┬────────────────────────────────────────────────┬────────────────┬───────────┐
// │ Name │ Tag Number │ Primitive │ Encoding Class │ Tag Bytes │
// ├───────────────────┼────────────┼────────────────────────────────────────────────┼────────────────┼───────────┤
// │ SEQUENCE │ 0x10 │ N │ Universal │ 0x30 │
// │ BIT STRING │ 0x03 │ Y (we don't support constructed bit strings) │ Universal │ 0x03 │
// │ OBJECT IDENTIFIER │ 0x06 │ Y │ Universal │ 0x06 │
// | OCTET STRING | 0x04 | Y (we don't support constructed octet strings) | Universal | 0x04 |
// | INTEGER | 0x02 | Y | Universal | 0x02 |
// └───────────────────┴────────────┴────────────────────────────────────────────────┴────────────────┴───────────┘
//
// The subjectPublicKey is required to be in x9.62 format, either compressed or uncompressed, so we can pass it directly to the
// initializers for CryptoKit once we've done the extraction.
//
// This is the complete set of things we need to be able to parse. To make our lives easier we try to parse this set of things somewhat
// generally: that is, we don't hard-code special knowledge of these formats as part of the parsing process. Instead we have written a
// parser that can divide the world of ASN.1 into parseable chunks, and then we try to decode specific formats from those chunks. This
// allows us to extend things in the future without too much pain.
internal enum ASN1 { }
// MARK: - Parser Node
extension ASN1 {
/// An `ASN1ParserNode` is a representation of a parsed ASN.1 TLV section. An `ASN1ParserNode` may be primitive, or may be composed of other `ASN1ParserNode`s.
/// In our representation, we keep track of this by storing a node "depth", which allows rapid forward and backward scans to hop over sections
/// we're uninterested in.
///
/// This type is not exposed to users of the API: it is only used internally for implementation of the user-level API.
fileprivate struct ASN1ParserNode {
/// The identifier.
var identifier: ASN1Identifier
/// The depth of this node.
var depth: Int
/// The data bytes for this node, if it is primitive.
var dataBytes: ArraySlice<UInt8>?
}
}
extension ASN1.ASN1ParserNode: Hashable { }
extension ASN1.ASN1ParserNode: CustomStringConvertible {
var description: String {
return "ASN1.ASN1ParserNode(identifier: \(self.identifier), depth: \(self.depth), dataBytes: \(self.dataBytes?.count ?? 0))"
}
}
// MARK: - Sequence, SequenceOf, and Set
extension ASN1 {
/// Parse the node as an ASN.1 sequence.
internal static func sequence<T>(_ node: ASN1Node, identifier: ASN1.ASN1Identifier, _ builder: (inout ASN1.ASN1NodeCollection.Iterator) throws -> T) throws -> T {
guard node.identifier == identifier, case .constructed(let nodes) = node.content else {
throw CryptoKitASN1Error.unexpectedFieldType
}
var iterator = nodes.makeIterator()
let result = try builder(&iterator)
guard iterator.next() == nil else {
throw CryptoKitASN1Error.invalidASN1Object
}
return result
}
internal static func sequence<T: ASN1Parseable>(of: T.Type = T.self, identifier: ASN1.ASN1Identifier, rootNode: ASN1Node) throws -> [T] {
guard rootNode.identifier == identifier, case .constructed(let nodes) = rootNode.content else {
throw CryptoKitASN1Error.unexpectedFieldType
}
return try nodes.map { try T(asn1Encoded: $0) }
}
internal static func sequence<T: ASN1Parseable>(of: T.Type = T.self, identifier: ASN1.ASN1Identifier, nodes: inout ASN1.ASN1NodeCollection.Iterator) throws -> [T] {
guard let node = nodes.next() else {
// Not present, throw.
throw CryptoKitASN1Error.invalidASN1Object
}
return try sequence(of: T.self, identifier: identifier, rootNode: node)
}
/// Parse the node as an ASN.1 set.
internal static func set<T>(_ node: ASN1Node, identifier: ASN1.ASN1Identifier, _ builder: (inout ASN1.ASN1NodeCollection.Iterator) throws -> T) throws -> T {
// Shhhh these two are secretly the same with identifier.
return try sequence(node, identifier: identifier, builder)
}
}
// MARK: - Optional explicitly tagged
extension ASN1 {
/// Parses an optional explicitly tagged element. Throws on a tag mismatch, returns nil if the element simply isn't there.
///
/// Expects to be used with the `ASN1.sequence` helper function.
internal static func optionalExplicitlyTagged<T>(_ nodes: inout ASN1.ASN1NodeCollection.Iterator, tagNumber: Int, tagClass: ASN1.ASN1Identifier.TagClass, _ builder: (ASN1Node) throws -> T) throws -> T? {
var localNodesCopy = nodes
guard let node = localNodesCopy.next() else {
// Node not present, return nil.
return nil
}
let expectedNodeID = ASN1.ASN1Identifier(explicitTagWithNumber: tagNumber, tagClass: tagClass)
assert(expectedNodeID.constructed)
guard node.identifier == expectedNodeID else {
// Node is a mismatch, with the wrong tag. Our optional isn't present.
return nil
}
// We have the right optional, so let's consume it.
nodes = localNodesCopy
// We expect a single child.
guard case .constructed(let nodes) = node.content else {
// This error is an internal parser error: the tag above is always constructed.
preconditionFailure("Explicit tags are always constructed")
}
var nodeIterator = nodes.makeIterator()
guard let child = nodeIterator.next(), nodeIterator.next() == nil else {
throw CryptoKitASN1Error.invalidASN1Object
}
return try builder(child)
}
}
// MARK: - DEFAULT
extension ASN1 {
/// Parses a value that is encoded with a DEFAULT. Such a value is optional, and if absent will
/// be replaced with its default.
///
/// Expects to be used with the `ASN1.sequence` helper function.
internal static func decodeDefault<T: ASN1Parseable & Equatable>(_ nodes: inout ASN1.ASN1NodeCollection.Iterator, identifier: ASN1.ASN1Identifier, defaultValue: T, _ builder: (ASN1Node) throws -> T) throws -> T {
// A weird trick here: we only want to consume the next node _if_ it has the right tag. To achieve that,
// we work on a copy.
var localNodesCopy = nodes
guard let node = localNodesCopy.next() else {
// Whoops, nothing here.
return defaultValue
}
guard node.identifier == identifier else {
// Node is a mismatch, with the wrong identifier. Our optional isn't present.
return defaultValue
}
// We have the right optional, so let's consume it.
nodes = localNodesCopy
let parsed = try builder(node)
// DER forbids encoding DEFAULT values at their default state.
// We can lift this in BER.
guard parsed != defaultValue else {
throw CryptoKitASN1Error.invalidASN1Object
}
return parsed
}
internal static func decodeDefaultExplicitlyTagged<T: ASN1Parseable & Equatable>(_ nodes: inout ASN1.ASN1NodeCollection.Iterator, tagNumber: Int, tagClass: ASN1.ASN1Identifier.TagClass, defaultValue: T, _ builder: (ASN1Node) throws -> T) throws -> T {
if let result = try optionalExplicitlyTagged(&nodes, tagNumber: tagNumber, tagClass: tagClass, builder) {
guard result != defaultValue else {
// DER forbids encoding DEFAULT values at their default state.
// We can lift this in BER.
throw CryptoKitASN1Error.invalidASN1Object
}
return result
} else {
return defaultValue
}
}
}
// MARK: - Parsing
extension ASN1 {
/// A parsed representation of ASN.1.
fileprivate struct ASN1ParseResult {
private static let maximumNodeDepth = 10
var nodes: ArraySlice<ASN1ParserNode>
private init(_ nodes: ArraySlice<ASN1ParserNode>) {
self.nodes = nodes
}
fileprivate static func parse(_ data: ArraySlice<UInt8>) throws -> ASN1ParseResult {
var data = data
var nodes = [ASN1ParserNode]()
nodes.reserveCapacity(16)
try parseNode(from: &data, depth: 1, into: &nodes)
guard data.count == 0 else {
throw CryptoKitASN1Error.invalidASN1Object
}
return ASN1ParseResult(nodes[...])
}
/// Parses a single ASN.1 node from the data and appends it to the buffer. This may recursively
/// call itself when there are child nodes for constructed nodes.
private static func parseNode(from data: inout ArraySlice<UInt8>, depth: Int, into nodes: inout [ASN1ParserNode]) throws {
guard depth <= ASN1.ASN1ParseResult.maximumNodeDepth else {
// We defend ourselves against stack overflow by refusing to allocate more than 10 stack frames to
// the parsing.
throw CryptoKitASN1Error.invalidASN1Object
}
guard let rawIdentifier = data.popFirst() else {
throw CryptoKitASN1Error.truncatedASN1Field
}
let identifier = try ASN1Identifier(rawIdentifier: rawIdentifier)
guard let wideLength = try data.readASN1Length() else {
throw CryptoKitASN1Error.truncatedASN1Field
}
// UInt is sometimes too large for us!
guard let length = Int(exactly: wideLength) else {
throw CryptoKitASN1Error.invalidASN1Object
}
var subData = data.prefix(length)
data = data.dropFirst(length)
guard subData.count == length else {
throw CryptoKitASN1Error.truncatedASN1Field
}
if identifier.constructed {
nodes.append(ASN1ParserNode(identifier: identifier, depth: depth, dataBytes: nil))
while subData.count > 0 {
try parseNode(from: &subData, depth: depth + 1, into: &nodes)
}
} else {
nodes.append(ASN1ParserNode(identifier: identifier, depth: depth, dataBytes: subData))
}
}
}
}
extension ASN1.ASN1ParseResult: Hashable { }
extension ASN1 {
static func parse(_ data: [UInt8]) throws -> ASN1Node {
return try parse(data[...])
}
static func parse(_ data: ArraySlice<UInt8>) throws -> ASN1Node {
var result = try ASN1ParseResult.parse(data)
// There will always be at least one node if the above didn't throw, so we can safely just removeFirst here.
let firstNode = result.nodes.removeFirst()
let rootNode: ASN1Node
if firstNode.identifier.constructed {
// We need to feed it the next set of nodes.
let nodeCollection = result.nodes.prefix { $0.depth > firstNode.depth }
result.nodes = result.nodes.dropFirst(nodeCollection.count)
rootNode = ASN1.ASN1Node(identifier: firstNode.identifier, content: .constructed(.init(nodes: nodeCollection, depth: firstNode.depth)))
} else {
rootNode = ASN1.ASN1Node(identifier: firstNode.identifier, content: .primitive(firstNode.dataBytes!))
}
precondition(result.nodes.count == 0, "ASN1ParseResult unexpectedly allowed multiple root nodes")
return rootNode
}
}
// MARK: - ASN1NodeCollection
extension ASN1 {
/// Represents a collection of ASN.1 nodes contained in a constructed ASN.1 node.
///
/// Constructed ASN.1 nodes are made up of multiple child nodes. This object represents the collection of those child nodes.
/// It allows us to lazily construct the child nodes, potentially skipping over them when we don't care about them.
internal struct ASN1NodeCollection {
private var nodes: ArraySlice<ASN1ParserNode>
private var depth: Int
fileprivate init(nodes: ArraySlice<ASN1ParserNode>, depth: Int) {
self.nodes = nodes
self.depth = depth
precondition(self.nodes.allSatisfy({ $0.depth > depth }))
if let firstDepth = self.nodes.first?.depth {
precondition(firstDepth == depth + 1)
}
}
}
}
extension ASN1.ASN1NodeCollection: Sequence {
struct Iterator: IteratorProtocol {
private var nodes: ArraySlice<ASN1.ASN1ParserNode>
private var depth: Int
fileprivate init(nodes: ArraySlice<ASN1.ASN1ParserNode>, depth: Int) {
self.nodes = nodes
self.depth = depth
}
mutating func next() -> ASN1.ASN1Node? {
guard let nextNode = self.nodes.popFirst() else {
return nil
}
assert(nextNode.depth == self.depth + 1)
if nextNode.identifier.constructed {
// We need to feed it the next set of nodes.
let nodeCollection = self.nodes.prefix { $0.depth > nextNode.depth }
self.nodes = self.nodes.dropFirst(nodeCollection.count)
return ASN1.ASN1Node(identifier: nextNode.identifier, content: .constructed(.init(nodes: nodeCollection, depth: nextNode.depth)))
} else {
// There must be data bytes here, even if they're empty.
return ASN1.ASN1Node(identifier: nextNode.identifier, content: .primitive(nextNode.dataBytes!))
}
}
}
func makeIterator() -> Iterator {
return Iterator(nodes: self.nodes, depth: self.depth)
}
}
// MARK: - ASN1Node
extension ASN1 {
/// An `ASN1Node` is a single entry in the ASN.1 representation of a data structure.
///
/// Conceptually, an ASN.1 data structure is rooted in a single node, which may itself contain zero or more
/// other nodes. ASN.1 nodes are either "constructed", meaning they contain other nodes, or "primitive", meaning they
/// store a base data type of some kind.
///
/// In this way, ASN.1 objects tend to form a "tree", where each object is represented by a single top-level constructed
/// node that contains other objects and primitives, eventually reaching the bottom which is made up of primitive objects.
internal struct ASN1Node {
internal var identifier: ASN1Identifier
internal var content: Content
}
}
// MARK: - ASN1Node.Content
extension ASN1.ASN1Node {
/// The content of a single ASN1Node.
enum Content {
case constructed(ASN1.ASN1NodeCollection)
case primitive(ArraySlice<UInt8>)
}
}
// MARK: - Serializing
extension ASN1 {
struct Serializer {
var serializedBytes: [UInt8]
init() {
// We allocate a 1kB array because that should cover us most of the time.
self.serializedBytes = []
self.serializedBytes.reserveCapacity(1024)
}
/// Appends a single, non-constructed node to the content.
mutating func appendPrimitiveNode(identifier: ASN1.ASN1Identifier, _ contentWriter: (inout [UInt8]) throws -> Void) rethrows {
assert(identifier.primitive)
try self._appendNode(identifier: identifier) { try contentWriter(&$0.serializedBytes) }
}
mutating func appendConstructedNode(identifier: ASN1.ASN1Identifier, _ contentWriter: (inout Serializer) throws -> Void) rethrows {
assert(identifier.constructed)
try self._appendNode(identifier: identifier, contentWriter)
}
mutating func serialize<T: ASN1Serializable>(_ node: T) throws {
try node.serialize(into: &self)
}
mutating func serialize<T: ASN1Serializable>(_ node: T, explicitlyTaggedWithTagNumber tagNumber: Int, tagClass: ASN1.ASN1Identifier.TagClass) throws {
return try self.serialize(explicitlyTaggedWithTagNumber: tagNumber, tagClass: tagClass) { coder in
try coder.serialize(node)
}
}
mutating func serialize(explicitlyTaggedWithTagNumber tagNumber: Int, tagClass: ASN1.ASN1Identifier.TagClass, _ block: (inout Serializer) throws -> Void) rethrows {
let identifier = ASN1Identifier(explicitTagWithNumber: tagNumber, tagClass: tagClass)
try self.appendConstructedNode(identifier: identifier) { coder in
try block(&coder)
}
}
mutating func serializeSequenceOf<Elements: Sequence>(_ elements: Elements, identifier: ASN1.ASN1Identifier = .sequence) throws where Elements.Element: ASN1Serializable {
try self.appendConstructedNode(identifier: identifier) { coder in
for element in elements {
try coder.serialize(element)
}
}
}
mutating func serialize(_ node: ASN1.ASN1Node) {
let identifier = node.identifier
self._appendNode(identifier: identifier) { coder in
switch node.content {
case .constructed(let nodes):
for node in nodes {
coder.serialize(node)
}
case .primitive(let baseData):
coder.serializedBytes.append(contentsOf: baseData)
}
}
}
// This is the base logical function that all other append methods are built on. This one has most of the logic, and doesn't
// police what we expect to happen in the content writer.
private mutating func _appendNode(identifier: ASN1.ASN1Identifier, _ contentWriter: (inout Serializer) throws -> Void) rethrows {
// This is a tricky game to play. We want to write the identifier and the length, but we don't know what the
// length is here. To get around that, we _assume_ the length will be one byte, and let the writer write their content.
// If it turns out to have been longer, we recalculate how many bytes we need and shuffle them in the buffer,
// before updating the length. Most of the time we'll be right: occasionally we'll be wrong and have to shuffle.
self.serializedBytes.writeIdentifier(identifier)
// Write a zero for the length.
self.serializedBytes.append(0)
// Save the indices and write.
let originalEndIndex = self.serializedBytes.endIndex
let lengthIndex = self.serializedBytes.index(before: originalEndIndex)
try contentWriter(&self)
let contentLength = self.serializedBytes.distance(from: originalEndIndex, to: self.serializedBytes.endIndex)
let lengthBytesNeeded = contentLength.bytesNeededToEncode
if lengthBytesNeeded == 1 {
// We can just set this at the top, and we're done!
assert(contentLength <= 0x7F)
self.serializedBytes[lengthIndex] = UInt8(contentLength)
return
}
// Whoops, we need more than one byte to represent the length. That's annoying!
// To sort this out we want to "move" the memory to the right.
self.serializedBytes.moveRange(offset: lengthBytesNeeded - 1, range: originalEndIndex..<self.serializedBytes.endIndex)
// Now we can write the length bytes back. We first write the number of length bytes
// we needed, setting the high bit. Then we write the bytes of the length.
self.serializedBytes[lengthIndex] = 0x80 | UInt8(lengthBytesNeeded - 1)
var writeIndex = lengthIndex
for shift in (0..<(lengthBytesNeeded - 1)).reversed() {
// Shift and mask the integer.
self.serializedBytes.formIndex(after: &writeIndex)
self.serializedBytes[writeIndex] = UInt8(truncatingIfNeeded: (contentLength >> (shift * 8)))
}
assert(writeIndex == self.serializedBytes.index(lengthIndex, offsetBy: lengthBytesNeeded - 1))
}
}
}
// MARK: - Helpers
internal protocol ASN1Parseable {
init(asn1Encoded: ASN1.ASN1Node) throws
}
extension ASN1Parseable {
internal init(asn1Encoded sequenceNodeIterator: inout ASN1.ASN1NodeCollection.Iterator) throws {
guard let node = sequenceNodeIterator.next() else {
throw CryptoKitASN1Error.invalidASN1Object
}
self = try .init(asn1Encoded: node)
}
internal init(asn1Encoded: [UInt8]) throws {
self = try .init(asn1Encoded: ASN1.parse(asn1Encoded))
}
internal init(asn1Encoded: ArraySlice<UInt8>) throws {
self = try .init(asn1Encoded: ASN1.parse(asn1Encoded))
}
}
internal protocol ASN1Serializable {
func serialize(into coder: inout ASN1.Serializer) throws
}
/// Covers ASN.1 types that may be implicitly tagged. Not all nodes can be!
internal protocol ASN1ImplicitlyTaggable: ASN1Parseable, ASN1Serializable {
/// The tag that the first node will use "by default" if the grammar omits
/// any more specific tag definition.
static var defaultIdentifier: ASN1.ASN1Identifier { get }
init(asn1Encoded: ASN1.ASN1Node, withIdentifier identifier: ASN1.ASN1Identifier) throws
func serialize(into coder: inout ASN1.Serializer, withIdentifier identifier: ASN1.ASN1Identifier) throws
}
extension ASN1ImplicitlyTaggable {
internal init(asn1Encoded sequenceNodeIterator: inout ASN1.ASN1NodeCollection.Iterator,
withIdentifier identifier: ASN1.ASN1Identifier = Self.defaultIdentifier) throws {
guard let node = sequenceNodeIterator.next() else {
throw CryptoKitASN1Error.invalidASN1Object
}
self = try .init(asn1Encoded: node, withIdentifier: identifier)
}
internal init(asn1Encoded: [UInt8], withIdentifier identifier: ASN1.ASN1Identifier = Self.defaultIdentifier) throws {
self = try .init(asn1Encoded: ASN1.parse(asn1Encoded), withIdentifier: identifier)
}
internal init(asn1Encoded: ArraySlice<UInt8>, withIdentifier identifier: ASN1.ASN1Identifier = Self.defaultIdentifier) throws {
self = try .init(asn1Encoded: ASN1.parse(asn1Encoded), withIdentifier: identifier)
}
init(asn1Encoded: ASN1.ASN1Node) throws {
try self.init(asn1Encoded: asn1Encoded, withIdentifier: Self.defaultIdentifier)
}
func serialize(into coder: inout ASN1.Serializer) throws {
try self.serialize(into: &coder, withIdentifier: Self.defaultIdentifier)
}
}
extension ArraySlice where Element == UInt8 {
fileprivate mutating func readASN1Length() throws -> UInt? {
guard let firstByte = self.popFirst() else {
return nil
}
switch firstByte {
case 0x80:
// Indefinite form. Unsupported.
throw CryptoKitASN1Error.unsupportedFieldLength
case let val where val & 0x80 == 0x80:
// Top bit is set, this is the long form. The remaining 7 bits of this octet
// determine how long the length field is.
let fieldLength = Int(val & 0x7F)
guard self.count >= fieldLength else {
return nil
}
// We need to read the length bytes
let lengthBytes = self.prefix(fieldLength)
self = self.dropFirst(fieldLength)
let length = try UInt(bigEndianBytes: lengthBytes)
// DER requires that we enforce that the length field was encoded in the minimum number of octets necessary.
let requiredBits = UInt.bitWidth - length.leadingZeroBitCount
switch requiredBits {
case 0...7:
// For 0 to 7 bits, the long form is unacceptable and we require the short.
throw CryptoKitASN1Error.unsupportedFieldLength
case 8...:
// For 8 or more bits, fieldLength should be the minimum required.
let requiredBytes = (requiredBits + 7) / 8
if fieldLength > requiredBytes {
throw CryptoKitASN1Error.unsupportedFieldLength
}
default:
// This is not reachable, but we'll error anyway.
throw CryptoKitASN1Error.unsupportedFieldLength
}
return length
case let val:
// Short form, the length is only one 7-bit integer.
return UInt(val)
}
}
}
extension FixedWidthInteger {
internal init<Bytes: Collection>(bigEndianBytes bytes: Bytes) throws where Bytes.Element == UInt8 {
guard bytes.count <= (Self.bitWidth / 8) else {
throw CryptoKitASN1Error.invalidASN1Object
}
self = 0
let shiftSizes = stride(from: 0, to: bytes.count * 8, by: 8).reversed()
var index = bytes.startIndex
for shift in shiftSizes {
self |= Self(truncatingIfNeeded: bytes[index]) << shift
bytes.formIndex(after: &index)
}
}
}
extension Array where Element == UInt8 {
fileprivate mutating func writeIdentifier(_ identifier: ASN1.ASN1Identifier) {
self.append(identifier.baseTag)
}
fileprivate mutating func moveRange(offset: Int, range: Range<Index>) {
// We only bothered to implement this for positive offsets for now, the algorithm
// generalises.
precondition(offset > 0)
let distanceFromEndOfRangeToEndOfSelf = self.distance(from: range.endIndex, to: self.endIndex)
if distanceFromEndOfRangeToEndOfSelf < offset {
// We begin by writing some zeroes out to the size we need.
for _ in 0..<(offset - distanceFromEndOfRangeToEndOfSelf) {
self.append(0)
}
}
// Now we walk the range backwards, moving the elements.
for index in range.reversed() {
self[index + offset] = self[index]
}
}
}
extension Int {
fileprivate var bytesNeededToEncode: Int {
// ASN.1 lengths are in two forms. If we can store the length in 7 bits, we should:
// that requires only one byte. Otherwise, we need multiple bytes: work out how many,
// plus one for the length of the length bytes.
if self <= 0x7F {
return 1
} else {
// We need to work out how many bytes we need. There are many fancy bit-twiddling
// ways of doing this, but honestly we don't do this enough to need them, so we'll
// do it the easy way. This math is done on UInt because it makes the shift semantics clean.
// We save a branch here because we can never overflow this addition.
return UInt(self).neededBytes &+ 1
}
}
}
extension FixedWidthInteger {
// Bytes needed to store a given integer.
internal var neededBytes: Int {
let neededBits = self.bitWidth - self.leadingZeroBitCount
return (neededBits + 7) / 8
}
}
#endif // Linux or !SwiftPM
|