1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the SwiftCrypto open source project
//
// Copyright (c) 2019-2020 Apple Inc. and the SwiftCrypto project authors
// Licensed under Apache License v2.0
//
// See LICENSE.txt for license information
// See CONTRIBUTORS.md for the list of SwiftCrypto project authors
//
// SPDX-License-Identifier: Apache-2.0
//
//===----------------------------------------------------------------------===//
#if CRYPTO_IN_SWIFTPM && !CRYPTO_IN_SWIFTPM_FORCE_BUILD_API
@_exported import CryptoKit
#else
import Foundation
extension ASN1 {
// A PKCS#8 private key is one of two formats, depending on the version:
//
// For PKCS#8 we need the following for the private key:
//
// PrivateKeyInfo ::= SEQUENCE {
// version Version,
// privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
// privateKey PrivateKey,
// attributes [0] IMPLICIT Attributes OPTIONAL }
//
// Version ::= INTEGER
//
// PrivateKeyAlgorithmIdentifier ::= AlgorithmIdentifier
//
// PrivateKey ::= OCTET STRING
//
// Attributes ::= SET OF Attribute
//
// We disregard the attributes because we don't support them anyway.
//
// The private key octet string contains (surprise!) a SEC1-encoded private key! So we recursively invoke the
// ASN.1 parser and go again.
struct PKCS8PrivateKey: ASN1ImplicitlyTaggable {
static var defaultIdentifier: ASN1.ASN1Identifier {
return .sequence
}
var algorithm: RFC5480AlgorithmIdentifier
var privateKey: ASN1.SEC1PrivateKey
init(asn1Encoded rootNode: ASN1.ASN1Node, withIdentifier identifier: ASN1.ASN1Identifier) throws {
self = try ASN1.sequence(rootNode, identifier: identifier) { nodes in
let version = try Int(asn1Encoded: &nodes)
guard version == 0 else {
throw CryptoKitASN1Error.invalidASN1Object
}
let algorithm = try ASN1.RFC5480AlgorithmIdentifier(asn1Encoded: &nodes)
let privateKeyBytes = try ASN1.ASN1OctetString(asn1Encoded: &nodes)
// We ignore the attributes
_ = try ASN1.optionalExplicitlyTagged(&nodes, tagNumber: 0, tagClass: .contextSpecific) { _ in }
let sec1PrivateKeyNode = try ASN1.parse(privateKeyBytes.bytes)
let sec1PrivateKey = try ASN1.SEC1PrivateKey(asn1Encoded: sec1PrivateKeyNode)
if let innerAlgorithm = sec1PrivateKey.algorithm, innerAlgorithm != algorithm {
throw CryptoKitASN1Error.invalidASN1Object
}
return try .init(algorithm: algorithm, privateKey: sec1PrivateKey)
}
}
private init(algorithm: ASN1.RFC5480AlgorithmIdentifier, privateKey: ASN1.SEC1PrivateKey) throws {
self.privateKey = privateKey
self.algorithm = algorithm
}
init(algorithm: ASN1.RFC5480AlgorithmIdentifier, privateKey: [UInt8], publicKey: [UInt8]) {
self.algorithm = algorithm
// We nil out the private key here. I don't really know why we do this, but OpenSSL does, and it seems
// safe enough to do: it certainly avoids the possibility of disagreeing on what it is!
self.privateKey = ASN1.SEC1PrivateKey(privateKey: privateKey, algorithm: nil, publicKey: publicKey)
}
func serialize(into coder: inout ASN1.Serializer, withIdentifier identifier: ASN1.ASN1Identifier) throws {
try coder.appendConstructedNode(identifier: identifier) { coder in
try coder.serialize(0) // version
try coder.serialize(self.algorithm)
// Here's a weird one: we recursively serialize the private key, and then turn the bytes into an octet string.
var subCoder = ASN1.Serializer()
try subCoder.serialize(self.privateKey)
let serializedKey = ASN1.ASN1OctetString(contentBytes: subCoder.serializedBytes[...])
try coder.serialize(serializedKey)
}
}
}
}
#endif // Linux or !SwiftPM
|