1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the SwiftCrypto open source project
//
// Copyright (c) 2019 Apple Inc. and the SwiftCrypto project authors
// Licensed under Apache License v2.0
//
// See LICENSE.txt for license information
// See CONTRIBUTORS.md for the list of SwiftCrypto project authors
//
// SPDX-License-Identifier: Apache-2.0
//
//===----------------------------------------------------------------------===//
#if CRYPTO_IN_SWIFTPM && !CRYPTO_IN_SWIFTPM_FORCE_BUILD_API
@_exported import CryptoKit
#else
@_implementationOnly import CCryptoBoringSSL
@_implementationOnly import CCryptoBoringSSLShims
import Foundation
@usableFromInline
protocol OpenSSLSupportedNISTCurve {
@inlinable
static var group: BoringSSLEllipticCurveGroup { get }
}
extension OpenSSLSupportedNISTCurve {
@inlinable
static var coordinateByteCount: Int {
self.group.coordinateByteCount
}
}
extension P256: OpenSSLSupportedNISTCurve {
@inlinable
static var group: BoringSSLEllipticCurveGroup {
try! BoringSSLEllipticCurveGroup(.p256)
}
}
extension P384: OpenSSLSupportedNISTCurve {
@inlinable
static var group: BoringSSLEllipticCurveGroup {
try! BoringSSLEllipticCurveGroup(.p384)
}
}
extension P521: OpenSSLSupportedNISTCurve {
@inlinable
static var group: BoringSSLEllipticCurveGroup {
try! BoringSSLEllipticCurveGroup(.p521)
}
}
@usableFromInline
struct OpenSSLNISTCurvePrivateKeyImpl<Curve: OpenSSLSupportedNISTCurve> {
@usableFromInline
var key: BoringSSLECPrivateKeyWrapper<Curve>
init(compactRepresentable: Bool = true) {
self.key = try! BoringSSLECPrivateKeyWrapper(compactRepresentable: compactRepresentable)
}
init<Bytes: ContiguousBytes>(x963: Bytes) throws {
self.key = try BoringSSLECPrivateKeyWrapper(x963Representation: x963)
}
init<Bytes: ContiguousBytes>(data: Bytes) throws {
self.key = try BoringSSLECPrivateKeyWrapper(rawRepresentation: data)
}
func publicKey() -> OpenSSLNISTCurvePublicKeyImpl<Curve> {
OpenSSLNISTCurvePublicKeyImpl(wrapping: self.key.publicKey)
}
var rawRepresentation: Data {
self.key.rawRepresentation
}
var x963Representation: Data {
self.key.x963Representation
}
}
@usableFromInline
struct OpenSSLNISTCurvePublicKeyImpl<Curve: OpenSSLSupportedNISTCurve> {
@usableFromInline
var key: BoringSSLECPublicKeyWrapper<Curve>
init<Bytes: ContiguousBytes>(compactRepresentation: Bytes) throws {
self.key = try BoringSSLECPublicKeyWrapper(compactRepresentation: compactRepresentation)
}
init<Bytes: ContiguousBytes>(x963Representation: Bytes) throws {
self.key = try BoringSSLECPublicKeyWrapper(x963Representation: x963Representation)
}
init<Bytes: ContiguousBytes>(rawRepresentation: Bytes) throws {
self.key = try BoringSSLECPublicKeyWrapper(rawRepresentation: rawRepresentation)
}
init<Bytes: ContiguousBytes>(compressedRepresentation: Bytes) throws {
self.key = try BoringSSLECPublicKeyWrapper(compressedRepresentation: compressedRepresentation)
}
@inlinable
init(wrapping key: BoringSSLECPublicKeyWrapper<Curve>) {
self.key = key
}
@inlinable
var compactRepresentation: Data? {
self.key.compactRepresentation
}
@inlinable
var rawRepresentation: Data {
self.key.rawRepresentation
}
@inlinable
var x963Representation: Data {
self.key.x963Representation
}
@inlinable
var compressedRepresentation: Data {
self.key.compressedRepresentation
}
}
/// A simple wrapper for an EC_KEY pointer for a private key. This manages the lifetime of that pointer and
/// allows some helper operations.
@usableFromInline
class BoringSSLECPrivateKeyWrapper<Curve: OpenSSLSupportedNISTCurve> {
@usableFromInline
var key: OpaquePointer
init(compactRepresentable: Bool) throws {
// We cannot handle allocation failure.
let group = Curve.group
self.key = try! group.makeUnsafeOwnedECKey()
// If we've been asked to generate a compact representable key, we need to try a few times. This loop shouldn't
// execute more than 100 times: if it does, we'll crash because something bad is happening.
for _ in 0 ..< 100 {
// We generate FIPS compliant keys to match the behaviour of CryptoKit on Apple platforms.
guard CCryptoBoringSSL_EC_KEY_generate_key(self.key) != 0 else {
throw CryptoKitError.internalBoringSSLError()
}
// We want to generate FIPS compliant keys. If this isn't, loop around again.
if CCryptoBoringSSL_EC_KEY_check_fips(self.key) == 0 {
continue
}
if !compactRepresentable || _isCompactRepresentable(group: group, publicKeyPoint: self.publicKeyPoint) {
return
}
}
fatalError("Looped more than 100 times trying to generate a key")
}
init<Bytes: ContiguousBytes>(x963Representation bytes: Bytes) throws {
// Before we do anything, we validate that the x963 representation has the right number of bytes.
// This is because BoringSSL will quietly accept shorter byte counts, though it will reject longer ones.
// This brings our behaviour into line with CryptoKit
let group = Curve.group
let length = bytes.withUnsafeBytes { $0.count }
guard length == (group.coordinateByteCount * 3) + 1 else {
throw CryptoKitError.incorrectParameterSize
}
self.key = try group.makeUnsafeOwnedECKey()
// First, try to grab the numbers.
var (x, y, k) = try bytes.readx963PrivateNumbers()
// Then we set the private key first, then the public key. In this order, BoringSSL will check the key
// validity for us.
try self.setPrivateKey(k)
try self.setPublicKey(x: &x, y: &y)
}
init<Bytes: ContiguousBytes>(rawRepresentation bytes: Bytes) throws {
let group = Curve.group
// Before we do anything, we validate that the raw representation has the right number of bytes.
// This is because BoringSSL will quietly accept shorter byte counts, though it will reject longer ones.
// This brings our behaviour into line with CryptoKit
let length = bytes.withUnsafeBytes { $0.count }
guard length == group.coordinateByteCount else {
throw CryptoKitError.incorrectParameterSize
}
self.key = try group.makeUnsafeOwnedECKey()
// The raw representation is just the bytes that make up k.
let k = try ArbitraryPrecisionInteger(bytes: bytes)
// Begin by setting the private key.
try self.setPrivateKey(k)
// Now calculate the public one and set it.
let point = try EllipticCurvePoint(multiplying: k, on: group)
try self.setPublicKey(point: point)
}
func setPrivateKey(_ keyScalar: ArbitraryPrecisionInteger) throws {
try keyScalar.withUnsafeBignumPointer { bigNum in
guard CCryptoBoringSSL_EC_KEY_set_private_key(self.key, bigNum) != 0 else {
throw CryptoKitError.internalBoringSSLError()
}
}
}
func setPublicKey(x: inout ArbitraryPrecisionInteger, y: inout ArbitraryPrecisionInteger) throws {
try x.withUnsafeMutableBignumPointer { xPointer in
try y.withUnsafeMutableBignumPointer { yPointer in
// This function is missing some const declarations here, which is why we need the bignums inout.
// If that gets fixed, we can clean this function up.
guard CCryptoBoringSSL_EC_KEY_set_public_key_affine_coordinates(self.key, xPointer, yPointer) != 0 else {
throw CryptoKitError.internalBoringSSLError()
}
}
}
}
func setPublicKey(point: EllipticCurvePoint) throws {
try point.withPointPointer { ecPointer in
guard CCryptoBoringSSL_EC_KEY_set_public_key(self.key, ecPointer) != 0 else {
throw CryptoKitError.internalBoringSSLError()
}
}
}
var publicKey: BoringSSLECPublicKeyWrapper<Curve> {
// This is a weird little trick we can do here: because EC_KEY is both private and public depending on
// its internal state, we can just vend a pointer to ourself and this will work.
try! BoringSSLECPublicKeyWrapper(unsafeTakingOwnership: CCryptoBoringSSL_EC_KEY_dup(self.key))
}
@usableFromInline
var publicKeyPoint: EllipticCurvePoint {
try! EllipticCurvePoint(copying: CCryptoBoringSSL_EC_KEY_get0_public_key(self.key)!, on: Curve.group)
}
@usableFromInline
var privateKeyScalar: ArbitraryPrecisionInteger {
try! ArbitraryPrecisionInteger(copying: CCryptoBoringSSL_EC_KEY_get0_private_key(self.key)!)
}
@inlinable
var rawRepresentation: Data {
// The raw representation is just the bytes that make up k. This try! should only fire if we have internal
// consistency errors.
var bytes = Data()
bytes.reserveCapacity(Curve.group.coordinateByteCount)
try! bytes.append(bytesOf: self.privateKeyScalar, paddedToSize: Curve.group.coordinateByteCount)
return bytes
}
@inlinable
var x963Representation: Data {
// The x9.63 private key format is a discriminator byte (0x4) concatenated with the X and Y points
// of the public key, and the K value of the secret scalar. Let's load that in.
let group = Curve.group
let pointByteCount = group.coordinateByteCount
let privateKey = self.privateKeyScalar
let (x, y) = try! self.publicKeyPoint.affineCoordinates(group: group)
var bytes = Data()
bytes.reserveCapacity(1 + (group.coordinateByteCount * 3))
// These try!s should only trigger in the case of internal consistency errors.
bytes.append(0x4)
try! bytes.append(bytesOf: x, paddedToSize: pointByteCount)
try! bytes.append(bytesOf: y, paddedToSize: pointByteCount)
try! bytes.append(bytesOf: privateKey, paddedToSize: pointByteCount)
return bytes
}
func keyExchange(publicKey: BoringSSLECPublicKeyWrapper<Curve>) throws -> SecureBytes {
let pubKeyPoint = publicKey.publicKeyPoint
let outputSize = Curve.group.coordinateByteCount
return try SecureBytes(unsafeUninitializedCapacity: outputSize) { secretPtr, secretSize in
let rc = pubKeyPoint.withPointPointer { pointPtr in
CCryptoBoringSSL_ECDH_compute_key(secretPtr.baseAddress, secretPtr.count, pointPtr, self.key, nil)
}
if rc == -1 {
throw CryptoKitError.internalBoringSSLError()
}
precondition(rc == outputSize, "Unexpectedly short secret.")
secretSize = Int(rc)
}
}
func sign<D: Digest>(digest: D) throws -> ECDSASignature {
let optionalRawSignature: UnsafeMutablePointer<ECDSA_SIG>? = digest.withUnsafeBytes { digestPtr in
CCryptoBoringSSLShims_ECDSA_do_sign(digestPtr.baseAddress, digestPtr.count, self.key)
}
guard let rawSignature = optionalRawSignature else {
throw CryptoKitError.internalBoringSSLError()
}
return ECDSASignature(takingOwnershipOf: rawSignature)
}
deinit {
CCryptoBoringSSL_EC_KEY_free(self.key)
}
}
/// A simple wrapper for an EC_KEY pointer for a public key. This manages the lifetime of that pointer and
/// allows some helper operations.
@usableFromInline
class BoringSSLECPublicKeyWrapper<Curve: OpenSSLSupportedNISTCurve> {
@usableFromInline
var key: OpaquePointer
init<Bytes: ContiguousBytes>(compactRepresentation bytes: Bytes) throws {
let group = Curve.group
// Before we do anything, we validate that the compact representation has the right number of bytes.
// This is because BoringSSL will quietly accept shorter byte counts, though it will reject longer ones.
// This brings our behaviour into line with CryptoKit
let length = bytes.withUnsafeBytes { $0.count }
guard length == group.coordinateByteCount else {
throw CryptoKitError.incorrectParameterSize
}
self.key = try group.makeUnsafeOwnedECKey()
// The compact representation is simply the X coordinate: deserializing then requires us to do a little math,
// as discussed in https://datatracker.ietf.org/doc/html/draft-jivsov-ecc-compact-05#section-4.1
var x = try ArbitraryPrecisionInteger(bytes: bytes)
// We now need to solve the curve equation in Weierstrass form. This form is y² = x³ + ax + b. We need a and b.
// We also need a finite field context, which means we need the order of the underlying prime field. We call that
// p, for later.
let (p, a, b) = group.weierstrassCoefficients
let context = try FiniteFieldArithmeticContext(fieldSize: p)
let xCubed = try (context.multiply(context.square(x), x))
let ax = try context.multiply(a, x)
let ySquared = try context.add(context.add(xCubed, ax), b)
// We want the positive square root value of y, which conveniently is what we can get. We will call this yPrime.
// We then need to calculate y = min(yPrime, p-yPrime) where p is the order of the underlying finite field.
let yPrime = try context.positiveSquareRoot(ySquared)
var y = min(yPrime, try context.subtract(yPrime, from: p))
// This is the full set of coordinates. We're done.
try self.setPublicKey(x: &x, y: &y)
}
init<Bytes: ContiguousBytes>(x963Representation bytes: Bytes) throws {
// Before we do anything, we validate that the x963 representation has the right number of bytes.
// This is because BoringSSL will quietly accept shorter byte counts, though it will reject longer ones.
// This brings our behaviour into line with CryptoKit
let group = Curve.group
let length = bytes.withUnsafeBytes { $0.count }
switch length {
case (group.coordinateByteCount * 2) + 1:
var (x, y) = try bytes.readx963PublicNumbers()
self.key = try group.makeUnsafeOwnedECKey()
try self.setPublicKey(x: &x, y: &y)
default:
throw CryptoKitError.incorrectParameterSize
}
}
init<Bytes: ContiguousBytes>(compressedRepresentation bytes: Bytes) throws {
let group = Curve.group
let length = bytes.withUnsafeBytes { $0.count }
switch length {
case group.coordinateByteCount + 1:
var (x, yBit) = try bytes.readx963CompressedPublicNumbers()
self.key = try group.makeUnsafeOwnedECKey()
try self.setPublicKey(x: &x, yBit: yBit)
default:
throw CryptoKitError.incorrectParameterSize
}
}
init<Bytes: ContiguousBytes>(rawRepresentation bytes: Bytes) throws {
let group = Curve.group
// Before we do anything, we validate that the raw representation has the right number of bytes.
// This is because BoringSSL will quietly accept shorter byte counts, though it will reject longer ones.
// This brings our behaviour into line with CryptoKit
let length = bytes.withUnsafeBytes { $0.count }
guard length == group.coordinateByteCount * 2 else {
throw CryptoKitError.incorrectParameterSize
}
self.key = try group.makeUnsafeOwnedECKey()
// The raw representation is identical to the x963 representation, without the leading 0x4.
var (x, y): (ArbitraryPrecisionInteger, ArbitraryPrecisionInteger) = try bytes.withUnsafeBytes { bytesPtr in
try readRawPublicNumbers(copyingBytes: bytesPtr)
}
// Then we set the public key and we're done.
try self.setPublicKey(x: &x, y: &y)
}
/// Takes ownership of the pointer. If this throws, ownership of the pointer has not been taken.
@usableFromInline
init(unsafeTakingOwnership ownedPointer: OpaquePointer) throws {
guard let newKeyGroup = CCryptoBoringSSL_EC_KEY_get0_group(ownedPointer) else {
throw CryptoKitError.internalBoringSSLError()
}
let groupEqual = Curve.group.withUnsafeGroupPointer { ourCurvePointer in
CCryptoBoringSSL_EC_GROUP_cmp(newKeyGroup, ourCurvePointer, nil)
}
guard groupEqual == 0 else {
throw CryptoKitError.incorrectParameterSize
}
self.key = ownedPointer
}
@inlinable
var compactRepresentation: Data? {
let group = Curve.group
guard _isCompactRepresentable(group: group, publicKeyPoint: self.publicKeyPoint) else {
return nil
}
// The compact representation is simply the X coordinate. This try! should only fire on internal consistency
// errors.
var bytes = Data()
bytes.reserveCapacity(group.coordinateByteCount)
let (x, _) = try! self.publicKeyPoint.affineCoordinates(group: group)
try! bytes.append(bytesOf: x, paddedToSize: group.coordinateByteCount)
return bytes
}
@inlinable
var rawRepresentation: Data {
// The raw representation is the X coordinate concatenated with the Y coordinate: essentially, it's
// the x963 representation without the leading byte.
self.x963Representation.dropFirst()
}
@inlinable
var x963Representation: Data {
// The x963 representation is the X coordinate concatenated with the Y coordinate, prefixed by the byte 0x04.
let group = Curve.group
let (x, y) = try! self.publicKeyPoint.affineCoordinates(group: group)
let pointByteCount = group.coordinateByteCount
var bytes = Data()
bytes.reserveCapacity(1 + (group.coordinateByteCount * 2))
// These try!s should only trigger on internal consistency errors.
bytes.append(0x4)
try! bytes.append(bytesOf: x, paddedToSize: pointByteCount)
try! bytes.append(bytesOf: y, paddedToSize: pointByteCount)
return bytes
}
@inlinable
var compressedRepresentation: Data {
// The x963 representation is the X coordinate, prefixed by the byte 0x02 or 0x03 depending on whether the Y coordinate is odd or even.
// We calculate this by playing games with the x963Representation. We can safely assume that this Data is zero-indexed, because
// we just created it above.
var bytes = self.x963Representation
let yMask = bytes.last! & 0x1
bytes[0] = 0x2 | yMask
return bytes.dropLast(Curve.group.coordinateByteCount)
}
deinit {
CCryptoBoringSSL_EC_KEY_free(self.key)
}
@usableFromInline
var publicKeyPoint: EllipticCurvePoint {
try! EllipticCurvePoint(copying: CCryptoBoringSSL_EC_KEY_get0_public_key(self.key)!, on: Curve.group)
}
func setPublicKey(x: inout ArbitraryPrecisionInteger, y: inout ArbitraryPrecisionInteger) throws {
try x.withUnsafeMutableBignumPointer { xPointer in
try y.withUnsafeMutableBignumPointer { yPointer in
// This function is missing some const declarations here, which is why we need the bignums inout.
// If that gets fixed, we can clean this function up.
guard CCryptoBoringSSL_EC_KEY_set_public_key_affine_coordinates(self.key, xPointer, yPointer) != 0 else {
throw CryptoKitError.internalBoringSSLError()
}
}
}
}
func setPublicKey(x: inout ArbitraryPrecisionInteger, yBit: Bool) throws {
try x.withUnsafeMutableBignumPointer { xPointer in
// We cannot handle allocation errors.
let point = try Curve.group.makeUnsafeOwnedECPoint()
defer {
// We either error, or EC_KEY_set_public_key dups the key,
// so we must always free.
CCryptoBoringSSL_EC_POINT_free(point)
}
let rc = Curve.group.withUnsafeGroupPointer { groupPtr in
CCryptoBoringSSL_EC_POINT_set_compressed_coordinates_GFp(groupPtr, point, xPointer, yBit ? 1 : 0, nil)
}
guard rc == 1 else {
throw CryptoKitError.internalBoringSSLError()
}
guard CCryptoBoringSSL_EC_KEY_set_public_key(self.key, point) == 1 else {
throw CryptoKitError.internalBoringSSLError()
}
}
}
func isValidSignature<D: Digest>(_ signature: ECDSASignature, for digest: D) -> Bool {
let rc: CInt = signature.withUnsafeSignaturePointer { signaturePointer in
digest.withUnsafeBytes { digestPointer in
CCryptoBoringSSLShims_ECDSA_do_verify(digestPointer.baseAddress, digestPointer.count, signaturePointer, self.key)
}
}
return rc == 1
}
}
extension ContiguousBytes {
func readx963PrivateNumbers() throws -> (x: ArbitraryPrecisionInteger, y: ArbitraryPrecisionInteger, k: ArbitraryPrecisionInteger) {
// The x9.63 private key format is a discriminator byte (0x4) concatenated with the X and Y points
// of the public key, and the K value of the secret scalar. Let's load that in.
return try self.withUnsafeBytes { bytesPtr in
guard bytesPtr.first == 0x04 else {
throw CryptoKitError.incorrectKeySize // This is the same error CryptoKit throws on Apple platforms.
}
let stride = (bytesPtr.count - 1) / 3
var offset = 1
let xPointer = UnsafeRawBufferPointer(rebasing: bytesPtr[offset ..< (offset + stride)])
offset += stride
let yPointer = UnsafeRawBufferPointer(rebasing: bytesPtr[offset ..< (offset + stride)])
offset += stride
let kPointer = UnsafeRawBufferPointer(rebasing: bytesPtr[offset ..< (offset + stride)])
let x = try ArbitraryPrecisionInteger(bytes: xPointer)
let y = try ArbitraryPrecisionInteger(bytes: yPointer)
let k = try ArbitraryPrecisionInteger(bytes: kPointer)
return (x: x, y: y, k: k)
}
}
@inlinable
func readx963PublicNumbers() throws -> (x: ArbitraryPrecisionInteger, y: ArbitraryPrecisionInteger) {
// The x9.63 public key format is a discriminator byte (0x4) concatenated with the X and Y points
// of the public key. Let's load that in.
return try self.withUnsafeBytes { bytesPtr in
guard bytesPtr.first == 0x04 else {
throw CryptoKitError.incorrectKeySize // This is the same error CryptoKit throws on Apple platforms.
}
return try readRawPublicNumbers(copyingBytes: UnsafeRawBufferPointer(rebasing: bytesPtr[1...]))
}
}
@inlinable
func readx963CompressedPublicNumbers() throws -> (x: ArbitraryPrecisionInteger, yBit: Bool) {
// The x9.63 compressed public key format is a discriminator byte (0x2 or 0x3) that signals which
// of the possible two Y values is being used, concatenated with the X point of the key.
return try self.withUnsafeBytes { bytesPtr in
let yBit: Bool
switch bytesPtr.first {
case 0x03:
yBit = true
case 0x02:
yBit = false
default:
throw CryptoKitError.incorrectKeySize // This is the same error CryptoKit throws on Apple platforms.
}
let xBytes = UnsafeRawBufferPointer(rebasing: bytesPtr.dropFirst())
let x = try ArbitraryPrecisionInteger(bytes: xBytes)
return (x: x, yBit: yBit)
}
}
}
@usableFromInline
func readRawPublicNumbers(copyingBytes bytesPtr: UnsafeRawBufferPointer) throws -> (x: ArbitraryPrecisionInteger, y: ArbitraryPrecisionInteger) {
let stride = bytesPtr.count / 2
var offset = 0
let xPointer = UnsafeRawBufferPointer(rebasing: bytesPtr[offset ..< (offset + stride)])
offset += stride
let yPointer = UnsafeRawBufferPointer(rebasing: bytesPtr[offset ..< (offset + stride)])
// We cannot handle allocation errors, so we check for fatal error.
let x = try ArbitraryPrecisionInteger(bytes: xPointer)
let y = try ArbitraryPrecisionInteger(bytes: yPointer)
return (x: x, y: y)
}
/// In a number of places we need to know if an EC key is compact representable. This function implements that check.
///
/// The check is defined in https://tools.ietf.org/id/draft-jivsov-ecc-compact-05.html#rfc.section.4.2.1. Specifically, a
/// point is compact representable if its y coordinate is the smaller of min(y, p-y) where p is the order of the prime field.
@usableFromInline
func _isCompactRepresentable(group: BoringSSLEllipticCurveGroup, publicKeyPoint: EllipticCurvePoint) -> Bool {
// We have three try!s here: any of those failing is the result of an allocation error, and we cannot recover from
// those.
let (_, y) = try! publicKeyPoint.affineCoordinates(group: group)
let p = group.weierstrassCoefficients.field
let context = try! FiniteFieldArithmeticContext(fieldSize: p)
let newY = try! context.subtract(y, from: group.order)
// The point is compact representable if y is less than or equal to newY.
return y <= newY
}
#endif // CRYPTO_IN_SWIFTPM && !CRYPTO_IN_SWIFTPM_FORCE_BUILD_API
|