1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the SwiftCrypto open source project
//
// Copyright (c) 2019 Apple Inc. and the SwiftCrypto project authors
// Licensed under Apache License v2.0
//
// See LICENSE.txt for license information
// See CONTRIBUTORS.md for the list of SwiftCrypto project authors
//
// SPDX-License-Identifier: Apache-2.0
//
//===----------------------------------------------------------------------===//
#if CRYPTO_IN_SWIFTPM && !CRYPTO_IN_SWIFTPM_FORCE_BUILD_API
@_exported import CryptoKit
#else
@_implementationOnly import CCryptoBoringSSL
@_implementationOnly import CCryptoBoringSSLShims
import Foundation
extension Curve25519.KeyAgreement {
@usableFromInline
static let keySizeBytes = 32
@usableFromInline
struct OpenSSLCurve25519PublicKeyImpl {
@usableFromInline
var keyBytes: [UInt8]
@inlinable
init<D: ContiguousBytes>(rawRepresentation: D) throws {
self.keyBytes = try rawRepresentation.withUnsafeBytes { dataPtr in
guard dataPtr.count == Curve25519.KeyAgreement.keySizeBytes else {
throw CryptoKitError.incorrectKeySize
}
return Array(dataPtr)
}
}
@usableFromInline
init(_ keyBytes: [UInt8]) {
self.keyBytes = keyBytes
}
@usableFromInline
var rawRepresentation: Data {
Data(self.keyBytes)
}
}
@usableFromInline
struct OpenSSLCurve25519PrivateKeyImpl {
var key: SecureBytes
@usableFromInline
var publicKey: OpenSSLCurve25519PublicKeyImpl
init() {
var publicKey = Array(repeating: UInt8(0), count: Curve25519.KeyAgreement.keySizeBytes)
self.key = SecureBytes(unsafeUninitializedCapacity: Curve25519.KeyAgreement.keySizeBytes) { privateKeyBytes, privateKeySize in
publicKey.withUnsafeMutableBytes { publicKeyBytes in
precondition(publicKeyBytes.count >= Curve25519.KeyAgreement.keySizeBytes)
precondition(privateKeyBytes.count >= Curve25519.KeyAgreement.keySizeBytes)
CCryptoBoringSSLShims_X25519_keypair(publicKeyBytes.baseAddress, privateKeyBytes.baseAddress)
}
privateKeySize = Curve25519.KeyAgreement.keySizeBytes // We always use the whole thing.
}
self.publicKey = .init(publicKey)
// BoringSSL performs an "anti-mask" of the private key. That's well-motivated, but corecrypto doesn't
// and we'd like to behave the same way. Undo the private key anti-mask.
let firstByteIndex = self.key.startIndex
let lastByteIndex = self.key.index(before: self.key.endIndex)
self.key[firstByteIndex] &= 248
self.key[lastByteIndex] &= 127
self.key[lastByteIndex] |= 64
}
init<D: ContiguousBytes>(rawRepresentation: D) throws {
let publicBytes: [UInt8] = try rawRepresentation.withUnsafeBytes { privatePointer in
try OpenSSLCurve25519PrivateKeyImpl.validateX25519PrivateKeyData(rawRepresentation: privatePointer)
return Array(unsafeUninitializedCapacity: Curve25519.KeyAgreement.keySizeBytes) { publicKeyBytes, publicKeySize in
precondition(publicKeyBytes.count >= Curve25519.KeyAgreement.keySizeBytes)
CCryptoBoringSSLShims_X25519_public_from_private(publicKeyBytes.baseAddress, privatePointer.baseAddress)
publicKeySize = Curve25519.KeyAgreement.keySizeBytes // We always use the whole thing.
}
}
self.key = SecureBytes(bytes: rawRepresentation)
self.publicKey = .init(publicBytes)
}
@usableFromInline
func sharedSecretFromKeyAgreement(with publicKeyShare: OpenSSLCurve25519PublicKeyImpl) throws -> SharedSecret {
let sharedSecret = SecureBytes(unsafeUninitializedCapacity: Curve25519.KeyAgreement.keySizeBytes) { secretPointer, secretSize in
self.key.withUnsafeBytes { privateKeyPointer in
// We precondition on all of these sizes because bounds checking is cool.
// These are fatal instead of guards because we allocated the secret (so it must be right),
// we either allocated the private key or validated it on construction (so it must be right),
// and we validated the public key on construction (so it must be right).
precondition(secretPointer.count == Curve25519.KeyAgreement.keySizeBytes)
precondition(privateKeyPointer.count == Curve25519.KeyAgreement.keySizeBytes)
precondition(publicKeyShare.keyBytes.count == Curve25519.KeyAgreement.keySizeBytes)
// We don't check the return code here. This return code only validates that the generated secret is not the weak all-zero
// secret (it is not possible for BoringSSL's X25519 implementation to fail, which is nice). There is currently what I would
// politely describe as a "lack of consensus" as to whether crypto libraries should reject this secret. CryptoKit on Apple
// platforms currently does not, so for the sake of conformance with our peer implementation I will also refuse to check it.
// We may elect to revisit this decision if the security best-practice thinking changes.
CCryptoBoringSSLShims_X25519(secretPointer.baseAddress, privateKeyPointer.baseAddress, publicKeyShare.keyBytes)
}
secretSize = Curve25519.KeyAgreement.keySizeBytes // We always use all of it.
}
return SharedSecret(ss: sharedSecret)
}
@usableFromInline
var rawRepresentation: Data {
Data(self.key)
}
/// Validates whether the passed x25519 key representation is valid.
/// - Parameter rawRepresentation: The provided key representation. Expected to be a valid 32-bytes private key.
static func validateX25519PrivateKeyData(rawRepresentation: UnsafeRawBufferPointer) throws {
guard rawRepresentation.count == 32 else {
throw CryptoKitError.incorrectKeySize
}
}
}
}
#endif // CRYPTO_IN_SWIFTPM && !CRYPTO_IN_SWIFTPM_FORCE_BUILD_API
|