1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the SwiftCrypto open source project
//
// Copyright (c) 2019-2020 Apple Inc. and the SwiftCrypto project authors
// Licensed under Apache License v2.0
//
// See LICENSE.txt for license information
// See CONTRIBUTORS.md for the list of SwiftCrypto project authors
//
// SPDX-License-Identifier: Apache-2.0
//
//===----------------------------------------------------------------------===//
#if CRYPTO_IN_SWIFTPM && !CRYPTO_IN_SWIFTPM_FORCE_BUILD_API
@_exported import CryptoKit
#else
import Foundation
// MARK: - Generated file, do NOT edit
// any edits of this file WILL be overwritten and thus discarded
// see section `gyb` in `README` for details.
%{
NIST_CURVES_AND_HF = [{"curve": "P256", "hf": "SHA256"},{"curve": "P384", "hf": "SHA384"},{"curve": "P521", "hf": "SHA512"}]
}%
protocol NISTECDSASignature {
init<D: DataProtocol>(rawRepresentation: D) throws
init<D: DataProtocol>(derRepresentation: D) throws
var derRepresentation: Data { get }
var rawRepresentation: Data { get }
}
protocol NISTSigning {
associatedtype PublicKey: NISTECPublicKey & DataValidator & DigestValidator
associatedtype PrivateKey: NISTECPrivateKey & Signer
associatedtype ECDSASignature: NISTECDSASignature
}
% for CURVE_AND_HF in NIST_CURVES_AND_HF:
%{
CURVE = CURVE_AND_HF["curve"]
HF = CURVE_AND_HF["hf"]
DISPLAY_CURVE = CURVE[:1] + "-" + CURVE[1:]
DISPLAY_HF = HF[:3] + "-" + HF[3:]
}%
// MARK: - ${CURVE} + Signing
extension ${CURVE}.Signing {
/// A ${DISPLAY_CURVE} elliptic curve digital signature algorithm (ECDSA) signature.
public struct ECDSASignature: ContiguousBytes, NISTECDSASignature {
/// A raw data representation of a ${DISPLAY_CURVE} digital signature.
public var rawRepresentation: Data
/// Creates a ${DISPLAY_CURVE} digital signature from a raw representation.
///
/// - Parameters:
/// - rawRepresentation: A raw representation of the signature as a
/// collection of contiguous bytes.
public init<D: DataProtocol>(rawRepresentation: D) throws {
guard rawRepresentation.count == 2 * ${CURVE}.coordinateByteCount else {
throw CryptoKitError.incorrectParameterSize
}
self.rawRepresentation = Data(rawRepresentation)
}
internal init(_ dataRepresentation: Data) throws {
guard dataRepresentation.count == 2 * ${CURVE}.coordinateByteCount else {
throw CryptoKitError.incorrectParameterSize
}
self.rawRepresentation = dataRepresentation
}
var composite: (r: Data, s: Data) {
let combined = rawRepresentation
assert(combined.count % 2 == 0)
let half = combined.count / 2
return (combined.prefix(upTo: half), combined.suffix(from: half))
}
/// Creates a ${DISPLAY_CURVE} digital signature from a Distinguished Encoding
/// Rules (DER) encoded representation.
///
/// - Parameters:
/// - derRepresentation: The DER-encoded representation of the
/// signature.
public init<D: DataProtocol>(derRepresentation: D) throws {
#if os(iOS) && (arch(arm) || arch(i386))
fatalError("Unsupported architecture")
#else
let parsed = try ASN1.parse(Array(derRepresentation))
let signature = try ASN1.ECDSASignature<ArraySlice<UInt8>>(asn1Encoded: parsed)
let coordinateByteCount = ${CURVE}.coordinateByteCount
guard signature.r.count <= coordinateByteCount && signature.s.count <= coordinateByteCount else {
throw CryptoKitError.incorrectParameterSize
}
// r and s must be padded out to the coordinate byte count.
var raw = Data()
raw.reserveCapacity(2 * ${CURVE}.coordinateByteCount)
raw.append(contentsOf: repeatElement(0, count: ${CURVE}.coordinateByteCount - signature.r.count))
raw.append(contentsOf: signature.r)
raw.append(contentsOf: repeatElement(0, count: ${CURVE}.coordinateByteCount - signature.s.count))
raw.append(contentsOf: signature.s)
self.rawRepresentation = raw
#endif
}
/// Invokes the given closure with a buffer pointer covering the raw
/// bytes of the signature.
public func withUnsafeBytes<R>(_ body: (UnsafeRawBufferPointer) throws -> R) rethrows -> R {
try self.rawRepresentation.withUnsafeBytes(body)
}
/// A Distinguished Encoding Rules (DER) encoded representation of a
/// ${DISPLAY_CURVE} digital signature.
public var derRepresentation: Data {
#if os(iOS) && (arch(arm) || arch(i386))
fatalError("Unsupported architecture")
#else
let raw = rawRepresentation
let half = raw.count / 2
let r = Array(raw.prefix(upTo: half))[...]
let s = Array(raw.suffix(from: half))[...]
let sig = ASN1.ECDSASignature(r: r, s: s)
var serializer = ASN1.Serializer()
try! serializer.serialize(sig)
return Data(serializer.serializedBytes)
#endif
}
}
}
extension ${CURVE}.Signing: NISTSigning {}
// MARK: - ${CURVE} + PrivateKey
extension ${CURVE}.Signing.PrivateKey: DigestSigner {
/// Generates an Elliptic Curve Digital Signature Algorithm (ECDSA)
/// signature of the digest you provide over the ${DISPLAY_CURVE} elliptic curve.
///
/// - Parameters:
/// - digest: The digest of the data to sign.
/// - Returns: The signature corresponding to the digest. The signing
/// algorithm employs randomization to generate a different signature on
/// every call, even for the same data and key.
public func signature<D: Digest>(for digest: D) throws -> ${CURVE}.Signing.ECDSASignature {
#if !CRYPTO_IN_SWIFTPM_FORCE_BUILD_API
return try self.coreCryptoSignature(for: digest)
#else
return try self.openSSLSignature(for: digest)
#endif
}
}
extension ${CURVE}.Signing.PrivateKey: Signer {
/// Generates an Elliptic Curve Digital Signature Algorithm (ECDSA)
/// signature of the data you provide over the ${DISPLAY_CURVE} elliptic curve,
/// using ${DISPLAY_HF} as the hash function.
///
/// - Parameters:
/// - data: The data to sign.
/// - Returns: The signature corresponding to the data. The signing
/// algorithm employs randomization to generate a different signature on
/// every call, even for the same data and key.
public func signature<D: DataProtocol>(for data: D) throws -> ${CURVE}.Signing.ECDSASignature {
return try self.signature(for: ${HF}.hash(data: data))
}
}
extension ${CURVE}.Signing.PublicKey: DigestValidator {
/// Verifies an elliptic curve digital signature algorithm (ECDSA)
/// signature on a digest over the ${DISPLAY_CURVE} elliptic curve.
///
/// - Parameters:
/// - signature: The signature to verify.
/// - digest: The signed digest.
/// - Returns: A Boolean value that’s `true` if the signature is valid for
/// the given digest; otherwise, `false`.
public func isValidSignature<D: Digest>(_ signature: ${CURVE}.Signing.ECDSASignature, for digest: D) -> Bool {
#if !CRYPTO_IN_SWIFTPM_FORCE_BUILD_API
return self.coreCryptoIsValidSignature(signature, for: digest)
#else
return self.openSSLIsValidSignature(signature, for: digest)
#endif
}
}
extension ${CURVE}.Signing.PublicKey: DataValidator {
/// Verifies an elliptic curve digital signature algorithm (ECDSA)
/// signature on a block of data over the ${DISPLAY_CURVE} elliptic curve.
///
/// - Parameters:
/// - signature: The signature to verify.
/// - data: The signed data.
/// - Returns: A Boolean value that’s `true` if the signature is valid for
/// the given data; otherwise, `false`.
public func isValidSignature<D: DataProtocol>(_ signature: ${CURVE}.Signing.ECDSASignature, for data: D) -> Bool {
return self.isValidSignature(signature, for: ${HF}.hash(data: data))
}
}
% end
#endif // Linux or !SwiftPM
|