1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the SwiftCrypto open source project
//
// Copyright (c) 2019-2020 Apple Inc. and the SwiftCrypto project authors
// Licensed under Apache License v2.0
//
// See LICENSE.txt for license information
// See CONTRIBUTORS.md for the list of SwiftCrypto project authors
//
// SPDX-License-Identifier: Apache-2.0
//
//===----------------------------------------------------------------------===//
#if CRYPTO_IN_SWIFTPM && !CRYPTO_IN_SWIFTPM_FORCE_BUILD_API
@_exported import CryptoKit
#else
import Foundation
private let emptyStorage:SecureBytes.Backing = SecureBytes.Backing.createEmpty()
struct SecureBytes {
@usableFromInline
var backing: Backing
@inlinable
init() {
self = .init(count: 0)
}
@usableFromInline
init(count: Int) {
if count == 0 {
self.backing = emptyStorage
} else {
self.backing = SecureBytes.Backing.create(randomBytes: count)
}
}
init<D: ContiguousBytes>(bytes: D) {
self.backing = Backing.create(bytes: bytes)
}
/// Allows initializing a SecureBytes object with a closure that will initialize the memory.
@usableFromInline
init(unsafeUninitializedCapacity: Int, initializingWith callback: (inout UnsafeMutableRawBufferPointer, inout Int) throws -> Void) rethrows {
self.backing = Backing.create(capacity: unsafeUninitializedCapacity)
try self.backing._withVeryUnsafeMutableBytes { veryUnsafePointer in
// As Array does, we want to truncate the initializing pointer to only have the requested size.
var veryUnsafePointer = UnsafeMutableRawBufferPointer(rebasing: veryUnsafePointer.prefix(unsafeUninitializedCapacity))
var initializedCount = 0
try callback(&veryUnsafePointer, &initializedCount)
self.backing.count = initializedCount
}
}
}
extension SecureBytes {
@inlinable
mutating func append<C: Collection>(_ data: C) where C.Element == UInt8 {
let requiredCapacity = self.count + data.count
if !isKnownUniquelyReferenced(&self.backing) || requiredCapacity > self.backing.capacity {
let newBacking = Backing.create(capacity: requiredCapacity)
newBacking._appendBytes(self.backing, inRange: 0..<self.count)
self.backing = newBacking
}
self.backing._appendBytes(data)
}
@usableFromInline
mutating func reserveCapacity(_ n: Int) {
if self.backing.capacity >= n {
return
}
let newBacking = Backing.create(capacity: n)
newBacking._appendBytes(self.backing, inRange: 0..<self.count)
self.backing = newBacking
}
}
// MARK: - Equatable conformance, constant-time
extension SecureBytes: Equatable {
public static func == (lhs: SecureBytes, rhs: SecureBytes) -> Bool {
return safeCompare(lhs, rhs)
}
}
// MARK: - Collection conformance
extension SecureBytes: Collection {
@usableFromInline
struct Index {
/* fileprivate but usableFromInline */ @usableFromInline var offset: Int
/*@inlinable*/ @usableFromInline internal init(offset: Int) {
self.offset = offset
}
}
@inlinable
var startIndex: Index {
return Index(offset: 0)
}
@inlinable
var endIndex: Index {
return Index(offset: self.count)
}
@inlinable
var count: Int {
return self.backing.count
}
@inlinable
subscript(_ index: Index) -> UInt8 {
get {
return self.backing[offset: index.offset]
}
set {
self.backing[offset: index.offset] = newValue
}
}
@inlinable
func index(after index: Index) -> Index {
return index.advanced(by: 1)
}
}
// MARK: - BidirectionalCollection conformance
extension SecureBytes: BidirectionalCollection {
@inlinable
func index(before index: Index) -> Index {
return index.advanced(by: -1)
}
}
// MARK: - RandomAccessCollection conformance
extension SecureBytes: RandomAccessCollection { }
// MARK: - MutableCollection conformance
extension SecureBytes: MutableCollection { }
// MARK: - RangeReplaceableCollection conformance
extension SecureBytes: RangeReplaceableCollection {
@inlinable
mutating func replaceSubrange<C: Collection>(_ subrange: Range<Index>, with newElements: C) where C.Element == UInt8 {
let requiredCapacity = self.backing.count - subrange.count + newElements.count
if !isKnownUniquelyReferenced(&self.backing) || requiredCapacity > self.backing.capacity {
// We have to allocate anyway, so let's use a nice straightforward copy.
let newBacking = Backing.create(capacity: requiredCapacity)
let lowerSlice = 0..<subrange.lowerBound.offset
let upperSlice = subrange.upperBound.offset..<self.count
newBacking._appendBytes(self.backing, inRange: lowerSlice)
newBacking._appendBytes(newElements)
newBacking._appendBytes(self.backing, inRange: upperSlice)
self.backing = newBacking
return
} else {
// We have room, and a unique pointer. Ask the backing storage to shuffle around.
let offsetRange = subrange.lowerBound.offset..<subrange.upperBound.offset
self.backing.replaceSubrangeFittingWithinCapacity(offsetRange, with: newElements)
}
}
// The default implementation of this from RangeReplaceableCollection can't take advantage of `ContiguousBytes`, so we override it here
@inlinable
public mutating func append<Elements: Sequence>(contentsOf newElements: Elements) where Elements.Element == UInt8 {
let done:Void? = newElements.withContiguousStorageIfAvailable {
replaceSubrange(endIndex..<endIndex, with: $0)
}
if done == nil {
for element in newElements {
append(element)
}
}
}
}
// MARK: - ContiguousBytes conformance
extension SecureBytes: ContiguousBytes {
@inlinable
func withUnsafeBytes<T>(_ body: (UnsafeRawBufferPointer) throws -> T) rethrows -> T {
return try self.backing.withUnsafeBytes(body)
}
@inlinable
mutating func withUnsafeMutableBytes<T>(_ body: (UnsafeMutableRawBufferPointer) throws -> T) rethrows -> T {
if !isKnownUniquelyReferenced(&self.backing) {
self.backing = Backing.create(copying: self.backing)
}
return try self.backing.withUnsafeMutableBytes(body)
}
@inlinable
func withContiguousStorageIfAvailable<R>(_ body: (UnsafeBufferPointer<UInt8>) throws -> R) rethrows -> R? {
return try self.backing.withContiguousStorageIfAvailable(body)
}
}
// MARK: - DataProtocol conformance
extension SecureBytes: DataProtocol {
@inlinable
var regions: CollectionOfOne<SecureBytes> {
return CollectionOfOne(self)
}
}
// MARK: - MutableDataProtocol conformance
extension SecureBytes: MutableDataProtocol { }
// MARK: - Index conformances
extension SecureBytes.Index: Hashable { }
extension SecureBytes.Index: Comparable {
static func <(lhs: SecureBytes.Index, rhs: SecureBytes.Index) -> Bool {
return lhs.offset < rhs.offset
}
}
extension SecureBytes.Index: Strideable {
func advanced(by n: Int) -> SecureBytes.Index {
return SecureBytes.Index(offset: self.offset + n)
}
func distance(to other: SecureBytes.Index) -> Int {
return other.offset - self.offset
}
}
// MARK: - Heap allocated backing storage.
extension SecureBytes {
@usableFromInline
internal struct BackingHeader {
@usableFromInline
internal var count: Int
@usableFromInline
internal var capacity: Int
}
@usableFromInline
internal class Backing: ManagedBuffer<BackingHeader, UInt8> {
@usableFromInline
class func createEmpty() -> Backing {
return Backing.create(minimumCapacity: 0, makingHeaderWith: { _ in BackingHeader(count: 0, capacity: 0) }) as! Backing
}
@usableFromInline
class func create(capacity: Int) -> Backing {
let capacity = Int(UInt32(capacity).nextPowerOf2ClampedToMax())
return Backing.create(minimumCapacity: capacity, makingHeaderWith: { _ in BackingHeader(count: 0, capacity: capacity) }) as! Backing
}
@usableFromInline
class func create(copying original: Backing) -> Backing {
return Backing.create(bytes: original)
}
@inlinable
class func create<D: ContiguousBytes>(bytes: D) -> Backing {
return bytes.withUnsafeBytes { bytesPtr in
let backing = Backing.create(capacity: bytesPtr.count)
backing._withVeryUnsafeMutableBytes { targetPtr in
targetPtr.copyMemory(from: bytesPtr)
}
backing.count = bytesPtr.count
precondition(backing.count <= backing.capacity)
return backing
}
}
@usableFromInline
class func create(randomBytes: Int) -> Backing {
let backing = Backing.create(capacity: randomBytes)
backing._withVeryUnsafeMutableBytes { targetPtr in
assert(targetPtr.count >= randomBytes)
targetPtr.initializeWithRandomBytes(count: randomBytes)
}
backing.count = randomBytes
return backing
}
deinit {
// We always clear the whole capacity, even if we don't think we used it all.
let bytesToClear = self.header.capacity
_ = self.withUnsafeMutablePointerToElements { elementsPtr in
memset_s(elementsPtr, bytesToClear, 0, bytesToClear)
}
}
@usableFromInline
var count: Int {
get {
return self.header.count
}
set {
self.header.count = newValue
}
}
@usableFromInline
subscript(offset offset: Int) -> UInt8 {
get {
// precondition(offset >= 0 && offset < self.count)
return self.withUnsafeMutablePointerToElements { return ($0 + offset).pointee }
}
set {
// precondition(offset >= 0 && offset < self.count)
return self.withUnsafeMutablePointerToElements { ($0 + offset).pointee = newValue }
}
}
}
}
extension SecureBytes.Backing {
func replaceSubrangeFittingWithinCapacity<C: Collection>(_ subrange: Range<Int>, with newElements: C) where C.Element == UInt8 {
// This function is called when have a unique reference to the backing storage, and we have enough room to store these bytes without
// any problem. We have one pre-existing buffer made up of 4 regions: a prefix set of bytes that are
// before the range "subrange", a range of bytes to be replaced (R1), a suffix set of bytes that are after
// the range "subrange" but within the valid count, and then a region of uninitialized memory. We also have
// a new set of bytes, R2, that may be larger or smaller than R1, and could indeed be empty!
//
// ┌────────────────────────┬──────────────────┬──────────────────┬───────────────┐
// │ Prefix │ R1 │ Suffix │ Uninitialized │
// └────────────────────────┴──────────────────┴──────────────────┴───────────────┘
//
// ┌─────────────────────────────────────┐
// │ R2 │
// └─────────────────────────────────────┘
//
// The minimal number of steps we can take in the general case is two steps. We can't just copy R2 into the space
// for R1 and then move the suffix, as if R2 is larger than R1 we'll have thrown some suffix bytes away. So we have
// to move suffix first. What we do is take the bytes in suffix, and move them (via memmove). We can then copy
// R2 in, and feel confident that the space in memory is right.
precondition(self.count - subrange.count + newElements.count <= self.capacity, "Insufficient capacity")
let moveDistance = newElements.count - subrange.count
let suffixRange = subrange.upperBound..<self.count
self._moveBytes(range: suffixRange, by: moveDistance)
self._copyBytes(newElements, at: subrange.lowerBound)
self.count += newElements.count - subrange.count
}
/// Appends the bytes of a collection to this storage, crashing if there is not enough room.
/* private but inlinable */ func _appendBytes<C: Collection>(_ bytes: C) where C.Element == UInt8 {
let byteCount = bytes.count
precondition(self.capacity - self.count - byteCount >= 0, "Insufficient space for byte copying, must have reallocated!")
let lowerOffset = self.count
self._withVeryUnsafeMutableBytes { bytesPtr in
let innerPtrSlice = UnsafeMutableRawBufferPointer(rebasing: bytesPtr[lowerOffset...])
innerPtrSlice.copyBytes(from: bytes)
}
self.count += byteCount
}
/// Appends the bytes of a slice of another backing buffer to this storage, crashing if there
/// is not enough room.
/* private but inlinable */ func _appendBytes(_ backing: SecureBytes.Backing, inRange range: Range<Int>) {
precondition(range.lowerBound >= 0)
precondition(range.upperBound <= backing.capacity)
precondition(self.capacity - self.count - range.count >= 0, "Insufficient space for byte copying, must have reallocated!")
backing.withUnsafeBytes { backingPtr in
let ptrSlice = UnsafeRawBufferPointer(rebasing: backingPtr[range])
let lowerOffset = self.count
self._withVeryUnsafeMutableBytes { bytesPtr in
let innerPtrSlice = UnsafeMutableRawBufferPointer(rebasing: bytesPtr[lowerOffset...])
innerPtrSlice.copyMemory(from: ptrSlice)
}
self.count += ptrSlice.count
}
}
/// Moves the range of bytes identified by the slice by the delta, crashing if the move would
/// place the bytes out of the storage. Note that this does not update the count: external code
/// must ensure that that happens.
@usableFromInline
/* private but usableFromInline */ func _moveBytes(range: Range<Int>, by delta: Int) {
// We have to check that the range is within the delta, as is the new location.
precondition(range.lowerBound >= 0)
precondition(range.upperBound <= self.capacity)
let shiftedRange = (range.lowerBound + delta)..<(range.upperBound + delta)
precondition(shiftedRange.lowerBound > 0)
precondition(shiftedRange.upperBound <= self.capacity)
self._withVeryUnsafeMutableBytes { backingPtr in
let source = UnsafeRawBufferPointer(rebasing: backingPtr[range])
let dest = UnsafeMutableRawBufferPointer(rebasing: backingPtr[shiftedRange])
dest.copyMemory(from: source) // copy memory uses memmove under the hood.
}
}
// Copies some bytes into the buffer at the appropriate place. Does not update count: external code must do so.
@inlinable
/* private but inlinable */ func _copyBytes<C: Collection>(_ bytes: C, at offset: Int) where C.Element == UInt8 {
precondition(offset >= 0)
precondition(offset + bytes.count <= self.capacity)
let byteRange = offset..<(offset + bytes.count)
self._withVeryUnsafeMutableBytes { backingPtr in
let dest = UnsafeMutableRawBufferPointer(rebasing: backingPtr[byteRange])
dest.copyBytes(from: bytes)
}
}
}
extension SecureBytes.Backing: ContiguousBytes {
func withUnsafeBytes<T>(_ body: (UnsafeRawBufferPointer) throws -> T) rethrows -> T {
let count = self.count
return try self.withUnsafeMutablePointerToElements { elementsPtr in
return try body(UnsafeRawBufferPointer(start: elementsPtr, count: count))
}
}
func withUnsafeMutableBytes<T>(_ body: (UnsafeMutableRawBufferPointer) throws -> T) rethrows -> T {
let count = self.count
return try self.withUnsafeMutablePointerToElements { elementsPtr in
return try body(UnsafeMutableRawBufferPointer(start: elementsPtr, count: count))
}
}
/// Very unsafe in the sense that this points to uninitialized memory. Used only for implementations within this file.
@inlinable
/* private but inlinable */ func _withVeryUnsafeMutableBytes<T>(_ body: (UnsafeMutableRawBufferPointer) throws -> T) rethrows -> T {
let capacity = self.capacity
return try self.withUnsafeMutablePointerToElements { elementsPtr in
return try body(UnsafeMutableRawBufferPointer(start: elementsPtr, count: capacity))
}
}
func withContiguousStorageIfAvailable<R>(_ body: (UnsafeBufferPointer<UInt8>) throws -> R) rethrows -> R? {
let count = self.count
return try self.withUnsafeMutablePointerToElements { elementsPtr in
return try body(UnsafeBufferPointer(start: elementsPtr, count: count))
}
}
}
extension UInt32 {
/// Returns the next power of two unless that would overflow, in which case UInt32.max (on 64-bit systems) or
/// Int32.max (on 32-bit systems) is returned. The returned value is always safe to be cast to Int and passed
/// to malloc on all platforms.
func nextPowerOf2ClampedToMax() -> UInt32 {
guard self > 0 else {
return 1
}
var n = self
#if arch(arm) || arch(i386)
// on 32-bit platforms we can't make use of a whole UInt32.max (as it doesn't fit in an Int)
let max = UInt32(Int.max)
#else
// on 64-bit platforms we're good
let max = UInt32.max
#endif
n -= 1
n |= n >> 1
n |= n >> 2
n |= n >> 4
n |= n >> 8
n |= n >> 16
if n != max {
n += 1
}
return n
}
}
extension Data {
/// A custom initializer for Data that attempts to share the same storage as the current SecureBytes instance.
/// This is our best-effort attempt to expose the data in an auto-zeroing fashion. Any mutating function called on
/// the constructed `Data` object will cause the bytes to be copied out: we can't avoid that.
init(_ secureBytes: SecureBytes) {
// We need to escape into unmanaged land here in order to keep the backing storage alive.
let unmanagedBacking = Unmanaged.passRetained(secureBytes.backing)
// We can now exfiltrate the storage pointer: this particular layout will be locked forever. Please never do this
// yourself unless you're really sure!
self = secureBytes.withUnsafeBytes {
// We make a mutable copy of this pointer here because we know Data won't write through it.
return Data(bytesNoCopy: UnsafeMutableRawPointer(mutating: $0.baseAddress!), count: $0.count, deallocator: .custom { (_: UnsafeMutableRawPointer, _: Int) in unmanagedBacking.release() })
}
}
/// A custom initializer for Data that attempts to share the same storage as the current SecureBytes instance.
/// This is our best-effort attempt to expose the data in an auto-zeroing fashion. Any mutating function called on the
/// constructed `Data` object will cause the bytes to be copied out: we can't avoid that.
init(_ secureByteSlice: Slice<SecureBytes>) {
// We have a trick here: we use the same function as the one above, but we use the indices of the slice to bind
// the scope of the pointer we pass to Data.
let base = secureByteSlice.base
let baseOffset = secureByteSlice.startIndex.offset
let endOffset = secureByteSlice.endIndex.offset
// We need to escape into unmanaged land here in order to keep the backing storage alive.
let unmanagedBacking = Unmanaged.passRetained(base.backing)
// We can now exfiltrate the storage pointer: this particular layout will be locked forever. Please never do this
// yourself unless you're really sure!
self = base.withUnsafeBytes {
// Slice the base pointer down to just the range we want.
let slicedPointer = UnsafeRawBufferPointer(rebasing: $0[baseOffset..<endOffset])
// We make a mutable copy of this pointer here because we know Data won't write through it.
return Data(bytesNoCopy: UnsafeMutableRawPointer(mutating: slicedPointer.baseAddress!), count: slicedPointer.count, deallocator: .custom { (_: UnsafeMutableRawPointer, _: Int) in unmanagedBacking.release() })
}
}
}
#endif // Linux or !SwiftPM
|