1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the SwiftCrypto open source project
//
// Copyright (c) 2019-2022 Apple Inc. and the SwiftCrypto project authors
// Licensed under Apache License v2.0
//
// See LICENSE.txt for license information
// See CONTRIBUTORS.md for the list of SwiftCrypto project authors
//
// SPDX-License-Identifier: Apache-2.0
//
//===----------------------------------------------------------------------===//
@_implementationOnly import CCryptoBoringSSL
@_implementationOnly import CCryptoBoringSSLShims
import Foundation
/// An abstraction over a BoringSSL AEAD
public enum BoringSSLAEAD {
/// The supported AEAD ciphers for BoringSSL.
case aes128gcm
case aes192gcm
case aes256gcm
case aes128gcmsiv
case aes256gcmsiv
case chacha20
}
extension BoringSSLAEAD {
// Arguably this class is excessive, but it's probably better for this API to be as safe as possible
// rather than rely on defer statements for our cleanup.
public class AEADContext {
private var context: EVP_AEAD_CTX
public init<Key: ContiguousBytes>(cipher: BoringSSLAEAD, key: Key) throws {
self.context = EVP_AEAD_CTX()
let rc: CInt = key.withUnsafeBytes { keyPointer in
withUnsafeMutablePointer(to: &self.context) { contextPointer in
// Create the AEAD context with a default tag length using the given key.
CCryptoBoringSSLShims_EVP_AEAD_CTX_init(contextPointer, cipher.boringSSLCipher, keyPointer.baseAddress, keyPointer.count, 0, nil)
}
}
guard rc == 1 else {
throw CryptoBoringWrapperError.internalBoringSSLError()
}
}
deinit {
withUnsafeMutablePointer(to: &self.context) { contextPointer in
CCryptoBoringSSL_EVP_AEAD_CTX_cleanup(contextPointer)
}
}
}
}
// MARK: - Sealing
extension BoringSSLAEAD.AEADContext {
/// The main entry point for sealing data. Covers the full gamut of types, including discontiguous data types. This must be inlinable.
public func seal<Plaintext: DataProtocol, Nonce: ContiguousBytes, AuthenticatedData: DataProtocol>(message: Plaintext, nonce: Nonce, authenticatedData: AuthenticatedData) throws -> (ciphertext: Data, tag: Data) {
// Seal is a somewhat awkward function. As it returns a Data, we are going to need to initialize a Data large enough to write into. Data does not provide us an
// initializer that gives us access to its uninitialized memory, so the cost of creating this Data is the cost of allocating the data + the cost of initializing
// it. For smaller plaintexts this isn't too big a deal, but for larger ones the initialization cost can really get hairy.
//
// We can avoid this by using Data(bytesNoCopy:deallocator:), so that's what we do. In principle we can do slightly better in the case where we have a discontiguous Plaintext
// type, but it's honestly not worth it enough to justify the code complexity.
switch (message.regions.count, authenticatedData.regions.count) {
case (1, 1):
// We can use a nice fast-path here.
return try self._sealContiguous(message: message.regions.first!, nonce: nonce, authenticatedData: authenticatedData.regions.first!)
case (1, _):
let contiguousAD = Array(authenticatedData)
return try self._sealContiguous(message: message.regions.first!, nonce: nonce, authenticatedData: contiguousAD)
case (_, 1):
let contiguousMessage = Array(message)
return try self._sealContiguous(message: contiguousMessage, nonce: nonce, authenticatedData: authenticatedData.regions.first!)
case (_, _):
let contiguousMessage = Array(message)
let contiguousAD = Array(authenticatedData)
return try self._sealContiguous(message: contiguousMessage, nonce: nonce, authenticatedData: contiguousAD)
}
}
/// A fast-path for sealing contiguous data. Also inlinable to gain specialization information.
@inlinable
func _sealContiguous<Plaintext: ContiguousBytes, Nonce: ContiguousBytes, AuthenticatedData: ContiguousBytes>(message: Plaintext, nonce: Nonce, authenticatedData: AuthenticatedData) throws -> (ciphertext: Data, tag: Data) {
return try message.withUnsafeBytes { messagePointer in
try nonce.withUnsafeBytes { noncePointer in
try authenticatedData.withUnsafeBytes { authenticatedDataPointer in
try self._sealContiguous(plaintext: messagePointer, noncePointer: noncePointer, authenticatedData: authenticatedDataPointer)
}
}
}
}
/// The unsafe base call: not inlinable so that it can touch private variables.
@usableFromInline
func _sealContiguous(plaintext: UnsafeRawBufferPointer, noncePointer: UnsafeRawBufferPointer, authenticatedData: UnsafeRawBufferPointer) throws -> (ciphertext: Data, tag: Data) {
let tagByteCount = CCryptoBoringSSL_EVP_AEAD_max_overhead(self.context.aead)
// We use malloc here because we are going to call free later. We force unwrap to trigger crashes if the allocation
// fails.
let outputBuffer = UnsafeMutableRawBufferPointer(start: malloc(plaintext.count)!, count: plaintext.count)
let tagBuffer = UnsafeMutableRawBufferPointer(start: malloc(tagByteCount)!, count: tagByteCount)
var actualTagSize = tagBuffer.count
let rc = withUnsafeMutablePointer(to: &self.context) { contextPointer in
CCryptoBoringSSLShims_EVP_AEAD_CTX_seal_scatter(contextPointer,
outputBuffer.baseAddress,
tagBuffer.baseAddress, &actualTagSize, tagBuffer.count,
noncePointer.baseAddress, noncePointer.count,
plaintext.baseAddress, plaintext.count,
nil, 0,
authenticatedData.baseAddress, authenticatedData.count)
}
guard rc == 1 else {
// Ooops, error. Free the memory we allocated before we throw.
free(outputBuffer.baseAddress)
free(tagBuffer.baseAddress)
throw CryptoBoringWrapperError.internalBoringSSLError()
}
let output = Data(bytesNoCopy: outputBuffer.baseAddress!, count: outputBuffer.count, deallocator: .free)
let tag = Data(bytesNoCopy: tagBuffer.baseAddress!, count: actualTagSize, deallocator: .free)
return (ciphertext: output, tag: tag)
}
}
// MARK: - Opening
extension BoringSSLAEAD.AEADContext {
/// The main entry point for opening data. Covers the full gamut of types, including discontiguous data types. This must be inlinable.
@inlinable
public func open<Nonce: ContiguousBytes, AuthenticatedData: DataProtocol>(ciphertext: Data, nonce: Nonce, tag: Data, authenticatedData: AuthenticatedData) throws -> Data {
// Open is a somewhat awkward function. As it returns a Data, we are going to need to initialize a Data large enough to write into. Data does not provide us an
// initializer that gives us access to its uninitialized memory, so the cost of creating this Data is the cost of allocating the data + the cost of initializing
// it. For smaller plaintexts this isn't too big a deal, but for larger ones the initialization cost can really get hairy.
//
// We can avoid this by using Data(bytesNoCopy:deallocator:), so that's what we do. In principle we can do slightly better in the case where we have a discontiguous Plaintext
// type, but it's honestly not worth it enough to justify the code complexity.
if authenticatedData.regions.count == 1 {
// We can use a nice fast-path here.
return try self._openContiguous(ciphertext: ciphertext, nonce: nonce, tag: tag, authenticatedData: authenticatedData.regions.first!)
} else {
let contiguousAD = Array(authenticatedData)
return try self._openContiguous(ciphertext: ciphertext, nonce: nonce, tag: tag, authenticatedData: contiguousAD)
}
}
/// A fast-path for opening contiguous data. Also inlinable to gain specialization information.
@inlinable
func _openContiguous<Nonce: ContiguousBytes, AuthenticatedData: ContiguousBytes>(ciphertext: Data, nonce: Nonce, tag: Data, authenticatedData: AuthenticatedData) throws -> Data {
try ciphertext.withUnsafeBytes { ciphertextPointer in
try nonce.withUnsafeBytes { nonceBytes in
try tag.withUnsafeBytes { tagBytes in
try authenticatedData.withUnsafeBytes { authenticatedDataBytes in
try self._openContiguous(ciphertext: ciphertextPointer, nonceBytes: nonceBytes, tagBytes: tagBytes, authenticatedData: authenticatedDataBytes)
}
}
}
}
}
/// The unsafe base call: not inlinable so that it can touch private variables.
@usableFromInline
func _openContiguous(ciphertext: UnsafeRawBufferPointer, nonceBytes: UnsafeRawBufferPointer, tagBytes: UnsafeRawBufferPointer, authenticatedData: UnsafeRawBufferPointer) throws -> Data {
// We use malloc here because we are going to call free later. We force unwrap to trigger crashes if the allocation
// fails.
let outputBuffer = UnsafeMutableRawBufferPointer(start: malloc(ciphertext.count)!, count: ciphertext.count)
let rc = withUnsafePointer(to: &self.context) { contextPointer in
return CCryptoBoringSSLShims_EVP_AEAD_CTX_open_gather(contextPointer,
outputBuffer.baseAddress,
nonceBytes.baseAddress, nonceBytes.count,
ciphertext.baseAddress, ciphertext.count,
tagBytes.baseAddress, tagBytes.count,
authenticatedData.baseAddress, authenticatedData.count)
}
guard rc == 1 else {
// Ooops, error. Free the memory we allocated before we throw.
free(outputBuffer.baseAddress)
throw CryptoBoringWrapperError.internalBoringSSLError()
}
let output = Data(bytesNoCopy: outputBuffer.baseAddress!, count: outputBuffer.count, deallocator: .free)
return output
}
/// An additional entry point for opening data where the ciphertext and the tag can be provided as one combined data . Covers the full gamut of types, including discontiguous data types. This must be inlinable.
@inlinable
public func open<Nonce: ContiguousBytes, AuthenticatedData: DataProtocol>(combinedCiphertextAndTag: Data, nonce: Nonce, authenticatedData: AuthenticatedData) throws -> Data {
// Open is a somewhat awkward function. As it returns a Data, we are going to need to initialize a Data large enough to write into. Data does not provide us an
// initializer that gives us access to its uninitialized memory, so the cost of creating this Data is the cost of allocating the data + the cost of initializing
// it. For smaller plaintexts this isn't too big a deal, but for larger ones the initialization cost can really get hairy.
//
// We can avoid this by using Data(bytesNoCopy:deallocator:), so that's what we do. In principle we can do slightly better in the case where we have a discontiguous Plaintext
// type, but it's honestly not worth it enough to justify the code complexity.
if authenticatedData.regions.count == 1 {
// We can use a nice fast-path here.
return try self._openContiguous(combinedCiphertextAndTag: combinedCiphertextAndTag, nonce: nonce, authenticatedData: authenticatedData.regions.first!)
} else {
let contiguousAD = Array(authenticatedData)
return try self._openContiguous(combinedCiphertextAndTag: combinedCiphertextAndTag, nonce: nonce, authenticatedData: contiguousAD)
}
}
/// A fast-path for opening contiguous data. Also inlinable to gain specialization information.
@inlinable
func _openContiguous<Nonce: ContiguousBytes, AuthenticatedData: ContiguousBytes>(combinedCiphertextAndTag: Data, nonce: Nonce, authenticatedData: AuthenticatedData) throws -> Data {
try combinedCiphertextAndTag.withUnsafeBytes { combinedCiphertextAndTagPointer in
try nonce.withUnsafeBytes { nonceBytes in
try authenticatedData.withUnsafeBytes { authenticatedDataBytes in
try self._openContiguous(combinedCiphertextAndTag: combinedCiphertextAndTagPointer, nonceBytes: nonceBytes, authenticatedData: authenticatedDataBytes)
}
}
}
}
/// The unsafe base call: not inlinable so that it can touch private variables.
@usableFromInline
func _openContiguous(combinedCiphertextAndTag: UnsafeRawBufferPointer, nonceBytes: UnsafeRawBufferPointer, authenticatedData: UnsafeRawBufferPointer) throws -> Data {
// We use malloc here because we are going to call free later. We force unwrap to trigger crashes if the allocation
// fails.
let outputBuffer = UnsafeMutableRawBufferPointer(start: malloc(combinedCiphertextAndTag.count)!, count: combinedCiphertextAndTag.count)
var writtenBytes = 0
let rc = withUnsafePointer(to: &self.context) { contextPointer in
return CCryptoBoringSSLShims_EVP_AEAD_CTX_open(contextPointer,
outputBuffer.baseAddress, &writtenBytes, outputBuffer.count,
nonceBytes.baseAddress, nonceBytes.count,
combinedCiphertextAndTag.baseAddress, combinedCiphertextAndTag.count,
authenticatedData.baseAddress, authenticatedData.count)
}
guard rc == 1 else {
// Ooops, error. Free the memory we allocated before we throw.
free(outputBuffer.baseAddress)
throw CryptoBoringWrapperError.internalBoringSSLError()
}
let output = Data(bytesNoCopy: outputBuffer.baseAddress!, count: outputBuffer.count, deallocator: .free).prefix(writtenBytes)
return output
}
}
// MARK: - Supported ciphers
extension BoringSSLAEAD {
var boringSSLCipher: OpaquePointer {
switch self {
case .aes128gcm:
return CCryptoBoringSSL_EVP_aead_aes_128_gcm()
case .aes192gcm:
return CCryptoBoringSSL_EVP_aead_aes_192_gcm()
case .aes256gcm:
return CCryptoBoringSSL_EVP_aead_aes_256_gcm()
case .aes128gcmsiv:
return CCryptoBoringSSL_EVP_aead_aes_128_gcm_siv()
case .aes256gcmsiv:
return CCryptoBoringSSL_EVP_aead_aes_256_gcm_siv()
case .chacha20:
return CCryptoBoringSSL_EVP_aead_chacha20_poly1305()
}
}
}
|