1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the SwiftCrypto open source project
//
// Copyright (c) 2019-2020 Apple Inc. and the SwiftCrypto project authors
// Licensed under Apache License v2.0
//
// See LICENSE.txt for license information
// See CONTRIBUTORS.md for the list of SwiftCrypto project authors
//
// SPDX-License-Identifier: Apache-2.0
//
//===----------------------------------------------------------------------===//
import XCTest
#if CRYPTO_IN_SWIFTPM && !CRYPTO_IN_SWIFTPM_FORCE_BUILD_API
// Skip tests that require @testable imports of CryptoKit.
#else
#if !CRYPTO_IN_SWIFTPM_FORCE_BUILD_API
@testable import CryptoKit
#else
@testable import Crypto
#endif
class ASN1Tests: XCTestCase {
func testSimpleASN1P256SPKI() throws {
// Given a static SPKI structure, verifies the parse.
let encodedSPKI = "MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE2adMrdG7aUfZH57aeKFFM01dPnkxC18ScRb4Z6poMBgJtYlVtd9ly63URv57ZW0Ncs1LiZB7WATb3svu+1c7HQ=="
let decodedSPKI = Array(Data(base64Encoded: encodedSPKI)!)
let encodedExpectedKeyBytes = "BNmnTK3Ru2lH2R+e2nihRTNNXT55MQtfEnEW+GeqaDAYCbWJVbXfZcut1Eb+e2VtDXLNS4mQe1gE297L7vtXOx0="
let expectedKeyBytes = Array(Data(base64Encoded: encodedExpectedKeyBytes)!)
let result = try ASN1.parse(decodedSPKI)
let spki = try ASN1.SubjectPublicKeyInfo(asn1Encoded: result)
XCTAssertEqual(spki.algorithmIdentifier, .ecdsaP256)
spki.key.withUnsafeBytes { XCTAssertEqual(Array($0), expectedKeyBytes) }
// For SPKI we should be able to round-trip the serialization.
var serializer = ASN1.Serializer()
XCTAssertNoThrow(try serializer.serialize(spki))
XCTAssertEqual(serializer.serializedBytes, decodedSPKI)
}
func testSimpleASN1P384SPKI() throws {
let encodedSPKI = "MHYwEAYHKoZIzj0CAQYFK4EEACIDYgAEcBr0TNmgagf1ysckEA/3XLGx2amgzeHjDBZREqhCIVBrLhIiIR4zrJ8dqad/Y+zI2Hu8TIUbrzS/diFpFoE0YYKBTfYMCAUtaWuMb1oaBdFzWsLfYSSzF+ON1yeJCtro"
let decodedSPKI = Array(Data(base64Encoded: encodedSPKI)!)
let encodedExpectedKeyBytes = "BHAa9EzZoGoH9crHJBAP91yxsdmpoM3h4wwWURKoQiFQay4SIiEeM6yfHamnf2PsyNh7vEyFG680v3YhaRaBNGGCgU32DAgFLWlrjG9aGgXRc1rC32EksxfjjdcniQra6A=="
let expectedKeyBytes = Array(Data(base64Encoded: encodedExpectedKeyBytes)!)
let result = try ASN1.parse(decodedSPKI)
let spki = try ASN1.SubjectPublicKeyInfo(asn1Encoded: result)
XCTAssertEqual(spki.algorithmIdentifier, .ecdsaP384)
spki.key.withUnsafeBytes { XCTAssertEqual(Array($0), expectedKeyBytes) }
// For SPKI we should be able to round-trip the serialization.
var serializer = ASN1.Serializer()
XCTAssertNoThrow(try serializer.serialize(spki))
XCTAssertEqual(serializer.serializedBytes, decodedSPKI)
}
func testSimpleASN1P521SPKI() throws {
let encodedSPKI = "MIGbMBAGByqGSM49AgEGBSuBBAAjA4GGAAQBTxMJZTRr9NcKmD7iTeX7ofcgz77JPTIDXOHFfS1tZHd9P0uAeK/ARwwDdsQpIKCvmtaO4O52oHqmczdrRwGtrHIBUTqaOw2Fqdiqt0fRQju9wH1Xi4h8u0h80MymUM0sbAQ70jHCeV0S0mGcJS8t3nfP+qLes30h297dPfV3SLsLg8M="
let decodedSPKI = Array(Data(base64Encoded: encodedSPKI)!)
let encodedExpectedKeyBytes = "BAFPEwllNGv01wqYPuJN5fuh9yDPvsk9MgNc4cV9LW1kd30/S4B4r8BHDAN2xCkgoK+a1o7g7nageqZzN2tHAa2scgFROpo7DYWp2Kq3R9FCO73AfVeLiHy7SHzQzKZQzSxsBDvSMcJ5XRLSYZwlLy3ed8/6ot6zfSHb3t099XdIuwuDww=="
let expectedKeyBytes = Array(Data(base64Encoded: encodedExpectedKeyBytes)!)
let result = try ASN1.parse(decodedSPKI)
let spki = try ASN1.SubjectPublicKeyInfo(asn1Encoded: result)
XCTAssertEqual(spki.algorithmIdentifier, .ecdsaP521)
spki.key.withUnsafeBytes { XCTAssertEqual(Array($0), expectedKeyBytes) }
// For SPKI we should be able to round-trip the serialization.
var serializer = ASN1.Serializer()
XCTAssertNoThrow(try serializer.serialize(spki))
XCTAssertEqual(serializer.serializedBytes, decodedSPKI)
}
func testASN1SEC1PrivateKeyP256() throws {
let encodedPrivateKey = "MHcCAQEEIFAV2+taX2/ht9HEcLQPtfyuRktTkn4S3RaCQwDmDnrloAoGCCqGSM49AwEHoUQDQgAE3Oed98X0hHmzHmmmgtf5rAVEv0jIeH61K61P5UyiCozn+fz+mlmBywvluiVvERiT9WZCd3tkPPWwbIr+a0dnwA=="
let decodedPrivateKey = Array(Data(base64Encoded: encodedPrivateKey)!)
let encodedPrivateKeyBytes = "UBXb61pfb+G30cRwtA+1/K5GS1OSfhLdFoJDAOYOeuU="
let privateKeyBytes = Array(Data(base64Encoded: encodedPrivateKeyBytes)!)
let encodedPublicKeyBytes = "BNznnffF9IR5sx5ppoLX+awFRL9IyHh+tSutT+VMogqM5/n8/ppZgcsL5bolbxEYk/VmQnd7ZDz1sGyK/mtHZ8A="
let publicKeyBytes = Array(Data(base64Encoded: encodedPublicKeyBytes)!)
let result = try ASN1.parse(decodedPrivateKey)
let pkey = try ASN1.SEC1PrivateKey(asn1Encoded: result)
XCTAssertEqual(pkey.algorithm, .ecdsaP256)
pkey.privateKey.withUnsafeBytes { XCTAssertEqual(Array($0), privateKeyBytes) }
pkey.publicKey!.withUnsafeBytes { XCTAssertEqual(Array($0), publicKeyBytes) }
// For SEC1 we should be able to round-trip the serialization.
var serializer = ASN1.Serializer()
XCTAssertNoThrow(try serializer.serialize(pkey))
XCTAssertEqual(serializer.serializedBytes, decodedPrivateKey)
}
func testASN1SEC1PrivateKeyP384() throws {
let encodedPrivateKey = "MIGkAgEBBDAWv9iH6ZivZKtk5ihjvjlZCYc9JHyykqvmJ7JVQ50ZZWTkCPtIe7RSKzm+l7NJltqgBwYFK4EEACKhZANiAAQz0BBmMxeOj5XwTL1G4fqTYO2UAiYrUMixiRFlFKVY5I6jAgiEWdNbmte8o6dByo0No5YoyDHdG637xvuzGaWd+IT5LoBAVVv3AgL3ao3dA4aVhm6Yz6G6/2o3X7AH99c="
let decodedPrivateKey = Array(Data(base64Encoded: encodedPrivateKey)!)
let encodedPrivateKeyBytes = "Fr/Yh+mYr2SrZOYoY745WQmHPSR8spKr5ieyVUOdGWVk5Aj7SHu0Uis5vpezSZba"
let privateKeyBytes = Array(Data(base64Encoded: encodedPrivateKeyBytes)!)
let encodedPublicKeyBytes = "BDPQEGYzF46PlfBMvUbh+pNg7ZQCJitQyLGJEWUUpVjkjqMCCIRZ01ua17yjp0HKjQ2jlijIMd0brfvG+7MZpZ34hPkugEBVW/cCAvdqjd0DhpWGbpjPobr/ajdfsAf31w=="
let publicKeyBytes = Array(Data(base64Encoded: encodedPublicKeyBytes)!)
let result = try ASN1.parse(decodedPrivateKey)
let pkey = try ASN1.SEC1PrivateKey(asn1Encoded: result)
XCTAssertEqual(pkey.algorithm, .ecdsaP384)
pkey.privateKey.withUnsafeBytes { XCTAssertEqual(Array($0), privateKeyBytes) }
pkey.publicKey!.withUnsafeBytes { XCTAssertEqual(Array($0), publicKeyBytes) }
// For SEC1 we should be able to round-trip the serialization.
var serializer = ASN1.Serializer()
XCTAssertNoThrow(try serializer.serialize(pkey))
XCTAssertEqual(serializer.serializedBytes, decodedPrivateKey)
}
func testASN1SEC1PrivateKeyP521() throws {
let encodedPrivateKey = "MIHcAgEBBEIBONszidL11f7D8LEbVGKG4A7768X16w35/m6OSPO7MGQcYhWHpgSV4NZ6AFKcksavZSCa59lYdAN+MA3sUjO7R/mgBwYFK4EEACOhgYkDgYYABAAzsbWlHXjMkaSQTBnBKcyPDy/x0nk+VlkYQJXkh+lPJSVEYLbrUZ1LdbfM9mGE7HpgyyELNRHy/BD1JdNnAVPemAC5VQjeGKbezrxz7D5iZNiZiQFVYtMBU3XSsuJrPWVSjBF7xIkOr06k2xg1qlOoXQ66EPHQlwEYJ3xATNKk8K2jlQ=="
let decodedPrivateKey = Array(Data(base64Encoded: encodedPrivateKey)!)
let encodedPrivateKeyBytes = "ATjbM4nS9dX+w/CxG1RihuAO++vF9esN+f5ujkjzuzBkHGIVh6YEleDWegBSnJLGr2UgmufZWHQDfjAN7FIzu0f5"
let privateKeyBytes = Array(Data(base64Encoded: encodedPrivateKeyBytes)!)
let encodedPublicKeyBytes = "BAAzsbWlHXjMkaSQTBnBKcyPDy/x0nk+VlkYQJXkh+lPJSVEYLbrUZ1LdbfM9mGE7HpgyyELNRHy/BD1JdNnAVPemAC5VQjeGKbezrxz7D5iZNiZiQFVYtMBU3XSsuJrPWVSjBF7xIkOr06k2xg1qlOoXQ66EPHQlwEYJ3xATNKk8K2jlQ=="
let publicKeyBytes = Array(Data(base64Encoded: encodedPublicKeyBytes)!)
let result = try ASN1.parse(decodedPrivateKey)
let pkey = try ASN1.SEC1PrivateKey(asn1Encoded: result)
XCTAssertEqual(pkey.algorithm, .ecdsaP521)
pkey.privateKey.withUnsafeBytes { XCTAssertEqual(Array($0), privateKeyBytes) }
pkey.publicKey!.withUnsafeBytes { XCTAssertEqual(Array($0), publicKeyBytes) }
// For SEC1 we should be able to round-trip the serialization.
var serializer = ASN1.Serializer()
XCTAssertNoThrow(try serializer.serialize(pkey))
XCTAssertEqual(serializer.serializedBytes, decodedPrivateKey)
}
func testASN1PKCS8PrivateKeyP256() throws {
let encodedPrivateKey = "MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgCRQo0CoBKfTOhdgQHcQIVv21vIUsxmE3t9L1LqV00bahRANCAATDXEj3jviAtzgx4bnMa/081v+FXbp7O5D1KtKVdje+ckejGVLYuYKE4Lpf5jonefi6wtoCc/sWHlbLiNV5PEB9"
let decodedPrivateKey = Array(Data(base64Encoded: encodedPrivateKey)!)
let encodedPrivateKeyBytes = "CRQo0CoBKfTOhdgQHcQIVv21vIUsxmE3t9L1LqV00bY="
let privateKeyBytes = Array(Data(base64Encoded: encodedPrivateKeyBytes)!)
let encodedPublicKeyBytes = "BMNcSPeO+IC3ODHhucxr/TzW/4Vduns7kPUq0pV2N75yR6MZUti5goTgul/mOid5+LrC2gJz+xYeVsuI1Xk8QH0="
let publicKeyBytes = Array(Data(base64Encoded: encodedPublicKeyBytes)!)
let result = try ASN1.parse(decodedPrivateKey)
let pkey = try ASN1.PKCS8PrivateKey(asn1Encoded: result)
XCTAssertEqual(pkey.algorithm, .ecdsaP256)
XCTAssertNil(pkey.privateKey.algorithm) // OpenSSL nils this out for some reason
pkey.privateKey.privateKey.withUnsafeBytes { XCTAssertEqual(Array($0), privateKeyBytes) }
pkey.privateKey.publicKey!.withUnsafeBytes { XCTAssertEqual(Array($0), publicKeyBytes) }
// For PKCS8 we should be able to round-trip the serialization.
var serializer = ASN1.Serializer()
XCTAssertNoThrow(try serializer.serialize(pkey))
XCTAssertEqual(serializer.serializedBytes, decodedPrivateKey)
}
func testASN1PKCS8PrivateKeyP384() throws {
let encodedPrivateKey = "MIG2AgEAMBAGByqGSM49AgEGBSuBBAAiBIGeMIGbAgEBBDCKfeRAkTtGQG7bGao6Ca5MDDcmxttyr6HNmNoaSkmuYvBtLGLLBWm1+VHT602xOIihZANiAAS56RzXiLO5YvFI0qh/+T9DhOXfkm3K/jJSUAqV/hP0FUlIUR824cFVdMMQA1S100mETsxdT0QDqUGAinMTUBSyk9y+jR33Fw/A068ZQRlqTCa0ThS0vwxKhM/M4vhYeDE="
let decodedPrivateKey = Array(Data(base64Encoded: encodedPrivateKey)!)
let encodedPrivateKeyBytes = "in3kQJE7RkBu2xmqOgmuTAw3Jsbbcq+hzZjaGkpJrmLwbSxiywVptflR0+tNsTiI"
let privateKeyBytes = Array(Data(base64Encoded: encodedPrivateKeyBytes)!)
let encodedPublicKeyBytes = "BLnpHNeIs7li8UjSqH/5P0OE5d+Sbcr+MlJQCpX+E/QVSUhRHzbhwVV0wxADVLXTSYROzF1PRAOpQYCKcxNQFLKT3L6NHfcXD8DTrxlBGWpMJrROFLS/DEqEz8zi+Fh4MQ=="
let publicKeyBytes = Array(Data(base64Encoded: encodedPublicKeyBytes)!)
let result = try ASN1.parse(decodedPrivateKey)
let pkey = try ASN1.PKCS8PrivateKey(asn1Encoded: result)
XCTAssertEqual(pkey.algorithm, .ecdsaP384)
XCTAssertNil(pkey.privateKey.algorithm) // OpenSSL nils this out for some reason
pkey.privateKey.privateKey.withUnsafeBytes { XCTAssertEqual(Array($0), privateKeyBytes) }
pkey.privateKey.publicKey!.withUnsafeBytes { XCTAssertEqual(Array($0), publicKeyBytes) }
// For PKCS8 we should be able to round-trip the serialization.
var serializer = ASN1.Serializer()
XCTAssertNoThrow(try serializer.serialize(pkey))
XCTAssertEqual(serializer.serializedBytes, decodedPrivateKey)
}
func testASN1PKCS8PrivateKeyP521() throws {
let encodedPrivateKey = "MIHuAgEAMBAGByqGSM49AgEGBSuBBAAjBIHWMIHTAgEBBEIB/rwbfr3a+rdHQvKToS6Fw1WxsVFy3Wq2ylWC+EyQv//nGiT5TQYIAV2WDmmud3WnczITapXAAe6eS66jHa+OxyGhgYkDgYYABADrY6IBU4t8BjSIvDWA4VrLILdUOFemM2G8phpJWlGpEO8Qmk28w5pdLD2j3chBvg0xBBi2k9Ked9L43R4E3+gPCAA3CY8v01xlA6npJvdAK0/Md4mY+p65Ehua95jXnSwrpF66+Q/se2ODvZPhXGKBvttxrKyBr9htmkAUv9Sdah+dWQ=="
let decodedPrivateKey = Array(Data(base64Encoded: encodedPrivateKey)!)
let encodedPrivateKeyBytes = "Af68G3692vq3R0Lyk6EuhcNVsbFRct1qtspVgvhMkL//5xok+U0GCAFdlg5prnd1p3MyE2qVwAHunkuuox2vjsch"
let privateKeyBytes = Array(Data(base64Encoded: encodedPrivateKeyBytes)!)
let encodedPublicKeyBytes = "BADrY6IBU4t8BjSIvDWA4VrLILdUOFemM2G8phpJWlGpEO8Qmk28w5pdLD2j3chBvg0xBBi2k9Ked9L43R4E3+gPCAA3CY8v01xlA6npJvdAK0/Md4mY+p65Ehua95jXnSwrpF66+Q/se2ODvZPhXGKBvttxrKyBr9htmkAUv9Sdah+dWQ=="
let publicKeyBytes = Array(Data(base64Encoded: encodedPublicKeyBytes)!)
let result = try ASN1.parse(decodedPrivateKey)
let pkey = try ASN1.PKCS8PrivateKey(asn1Encoded: result)
XCTAssertEqual(pkey.algorithm, .ecdsaP521)
XCTAssertNil(pkey.privateKey.algorithm) // OpenSSL nils this out for some reason
pkey.privateKey.privateKey.withUnsafeBytes { XCTAssertEqual(Array($0), privateKeyBytes) }
pkey.privateKey.publicKey!.withUnsafeBytes { XCTAssertEqual(Array($0), publicKeyBytes) }
// For PKCS8 we should be able to round-trip the serialization.
var serializer = ASN1.Serializer()
XCTAssertNoThrow(try serializer.serialize(pkey))
XCTAssertEqual(serializer.serializedBytes, decodedPrivateKey)
}
func testRejectDripFedASN1SPKIP256() throws {
// This test drip-feeds an ASN.1 P256 SPKI block. It should never parse correctly until we feed the entire block.
let encodedSPKI = "MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE2adMrdG7aUfZH57aeKFFM01dPnkxC18ScRb4Z6poMBgJtYlVtd9ly63URv57ZW0Ncs1LiZB7WATb3svu+1c7HQ=="
let decodedSPKI = Array(Data(base64Encoded: encodedSPKI)!)
for index in decodedSPKI.indices {
let expectSuccessfulParse = index == decodedSPKI.endIndex
do {
_ = try ASN1.parse(decodedSPKI[..<index])
if !expectSuccessfulParse {
XCTFail("Unexpected successful parse with: \(decodedSPKI[...])")
}
} catch let error as CryptoKitASN1Error {
if expectSuccessfulParse {
XCTFail("Unexpected failure (error: \(error)) with \(decodedSPKI[...])")
}
}
}
}
func testASN1TypesRequireAppropriateTypeIdentifierToDecode() throws {
// This is an ASN.1 REAL, a type we don't support
let base64Node = "CQUDMUUtMQ=="
let decodedReal = Array(Data(base64Encoded: base64Node)!)
let parsed = try ASN1.parse(decodedReal)
XCTAssertThrowsError(try ASN1.ASN1ObjectIdentifier(asn1Encoded: parsed)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try ASN1.sequence(parsed, identifier: .sequence, { _ in })) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try ASN1.ASN1OctetString(asn1Encoded: parsed)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try ASN1.ASN1BitString(asn1Encoded: parsed)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try Int(asn1Encoded: parsed)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
}
func testMultipleRootNodesAreForbidden() throws {
// This is an ASN.1 REAL, a type we don't support, repeated
let base64Node = "CQUDMUUtMQkFAzFFLTE="
let decodedReal = Array(Data(base64Encoded: base64Node)!)
XCTAssertThrowsError(try ASN1.parse(decodedReal)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidASN1Object)
}
}
func testTrailingBytesAreForbidden() throws {
// This is an ASN.1 INTEGER with trailing junk bytes
let base64Node = "AgEBAA=="
let decodedInteger = Array(Data(base64Encoded: base64Node)!)
XCTAssertThrowsError(try ASN1.parse(decodedInteger)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidASN1Object)
}
}
func testEmptyStringsDontDecode() throws {
XCTAssertThrowsError(try ASN1.parse([])) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .truncatedASN1Field)
}
}
func testRejectMultibyteTag() throws {
// This is an ASN.1 INTEGER with a multibyte explicit tag, with the raw numerical value being 55.
let base64Node = "vzcDAgEB"
let decodedInteger = Array(Data(base64Encoded: base64Node)!)
XCTAssertThrowsError(try ASN1.parse(decodedInteger)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidFieldIdentifier)
}
}
func testSequenceMustConsumeAllNodes() throws {
// This is an ASN.1 SEQUENCE with two child nodes, both octet strings. We're going to consume only one.
let base64Sequence = "MAwEBEFCQ0QEBEVGR0g="
let decodedSequence = Array(Data(base64Encoded: base64Sequence)!)
let parsed = try ASN1.parse(decodedSequence)
do {
try ASN1.sequence(parsed, identifier: .sequence) { nodes in
// This is fine.
XCTAssertNoThrow(try ASN1.ASN1OctetString(asn1Encoded: &nodes))
}
} catch let error as CryptoKitASN1Error {
XCTAssertEqual(error, .invalidASN1Object)
}
}
func testNodesErrorIfThereIsInsufficientData() throws {
struct Stub: ASN1Parseable {
init(asn1Encoded node: ASN1.ASN1Node) throws {
XCTFail("Must not be called")
}
}
// This is an ASN.1 SEQUENCE with two child nodes, both octet strings. We're going to consume both and then try
// to eat the (nonexistent) next node.
let base64Sequence = "MAwEBEFCQ0QEBEVGR0g="
let decodedSequence = Array(Data(base64Encoded: base64Sequence)!)
let parsed = try ASN1.parse(decodedSequence)
do {
try ASN1.sequence(parsed, identifier: .sequence) { nodes in
XCTAssertNoThrow(try ASN1.ASN1OctetString(asn1Encoded: &nodes))
XCTAssertNoThrow(try ASN1.ASN1OctetString(asn1Encoded: &nodes))
_ = try Stub(asn1Encoded: &nodes)
}
} catch let error as CryptoKitASN1Error {
XCTAssertEqual(error, .invalidASN1Object)
}
}
func testRejectsIndefiniteLengthForm() throws {
// This the first octets of a constructed object of unknown tag type (private, number 7) whose length
// is indefinite. We reject this immediately, not even noticing that the rest of the data isn't here.
XCTAssertThrowsError(try ASN1.parse([0xe7, 0x80])) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unsupportedFieldLength)
}
}
func testRejectsUnterminatedASN1OIDSubidentifiers() throws {
// This data contains the ASN.1 OID 2.6.7, with the last subidentifier having been mangled to set the top bit.
// This makes it look like we're expecting more data in the OID, and we should flag it as truncated.
let badBase64 = "BgJWhw=="
let badNode = Array(Data(base64Encoded: badBase64)!)
let parsed = try ASN1.parse(badNode)
XCTAssertThrowsError(try ASN1.ASN1ObjectIdentifier(asn1Encoded: parsed)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidASN1Object)
}
}
func testRejectsMassiveIntegers() throws {
// This is an ASN.1 integer containing UInt64.max * 2. This is too big for us to store, and we reject it.
// This test may need to be rewritten if we either support arbitrary integers or move to platforms where
// UInt is larger than 64 bits (seems unlikely).
let badBase64 = "AgkB//////////4="
let badNode = Array(Data(base64Encoded: badBase64)!)
let parsed = try ASN1.parse(badNode)
XCTAssertThrowsError(try Int(asn1Encoded: parsed)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidASN1Object)
}
}
func testStraightforwardPEMParsing() throws {
let simplePEM = """
-----BEGIN EC PRIVATE KEY-----
MHcCAQEEIBHli4jaj+JwWQlU0yhZUu+TdMPVhZ3wR2PS416Sz/K/oAoGCCqGSM49
AwEHoUQDQgAEOhvJhbc3zM4SJooCaWdyheY2E6wWkISg7TtxJYgb/S0Zz7WruJzG
O9zxi7HTvuXyQr7QKSBtdCGmHym+WoPsbA==
-----END EC PRIVATE KEY-----
"""
let document = try ASN1.PEMDocument(pemString: simplePEM)
XCTAssertEqual(document.type, "EC PRIVATE KEY")
XCTAssertEqual(document.derBytes.count, 121)
let parsed = try ASN1.parse(Array(document.derBytes))
let pkey = try ASN1.SEC1PrivateKey(asn1Encoded: parsed)
let reserialized = document.pemString
XCTAssertEqual(reserialized, simplePEM)
var serializer = ASN1.Serializer()
XCTAssertNoThrow(try serializer.serialize(pkey))
let reserialized2 = ASN1.PEMDocument(type: "EC PRIVATE KEY", derBytes: Data(serializer.serializedBytes))
XCTAssertEqual(reserialized2.pemString, simplePEM)
}
func testTruncatedPEMDocumentsAreRejected() throws {
// We drip feed the PEM one extra character at a time. It never parses successfully.
let simplePEM = """
-----BEGIN EC PRIVATE KEY-----
MHcCAQEEIBHli4jaj+JwWQlU0yhZUu+TdMPVhZ3wR2PS416Sz/K/oAoGCCqGSM49
AwEHoUQDQgAEOhvJhbc3zM4SJooCaWdyheY2E6wWkISg7TtxJYgb/S0Zz7WruJzG
O9zxi7HTvuXyQr7QKSBtdCGmHym+WoPsbA==
-----END EC PRIVATE KEY-----
"""
for index in simplePEM.indices.dropLast() {
XCTAssertThrowsError(try ASN1.PEMDocument(pemString: String(simplePEM[..<index]))) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
}
XCTAssertNoThrow(try ASN1.PEMDocument(pemString: simplePEM))
}
func testMismatchedDiscriminatorsAreRejected() throws {
// Different discriminators is not allowed.
let simplePEM = """
-----BEGIN EC PRIVATE KEY-----
MHcCAQEEIBHli4jaj+JwWQlU0yhZUu+TdMPVhZ3wR2PS416Sz/K/oAoGCCqGSM49
AwEHoUQDQgAEOhvJhbc3zM4SJooCaWdyheY2E6wWkISg7TtxJYgb/S0Zz7WruJzG
O9zxi7HTvuXyQr7QKSBtdCGmHym+WoPsbA==
-----END EC PUBLIC KEY-----
"""
XCTAssertThrowsError(try ASN1.PEMDocument(pemString: simplePEM)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
}
func testOverlongLinesAreForbidden() throws {
// This is arguably an excessive restriction, but we should try to be fairly strict here.
let simplePEM = """
-----BEGIN EC PRIVATE KEY-----
MHcCAQEEIBHli4jaj+JwWQlU0yhZUu+TdMPVhZ3wR2PS416Sz/K/oAoGCCqGSM49
AwEHoUQDQgAEOhvJhbc3zM4SJooCaWdyheY2E6wWkISg7TtxJYgb/S0Zz7WruJzGO
9zxi7HTvuXyQr7QKSBtdCGmHym+WoPsbA==
-----END EC PRIVATE KEY-----
"""
XCTAssertThrowsError(try ASN1.PEMDocument(pemString: simplePEM)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
}
func testEarlyShortLinesAreForbidden() throws {
// This is arguably an excessive restriction, but we should try to be fairly strict here.
let simplePEM = """
-----BEGIN EC PRIVATE KEY-----
MHcCAQEEIBHli4jaj+JwWQlU0yhZUu+TdMPVhZ3wR2PS416Sz/K/oAoGCCqGSM49
AwEHoUQDQgAEOhvJhbc3zM4SJooCaWdyheY2E6wWkISg7TtxJYgb/S0Zz7WruJz
GO9zxi7HTvuXyQr7QKSBtdCGmHym+WoPsbA==
-----END EC PRIVATE KEY-----
"""
XCTAssertThrowsError(try ASN1.PEMDocument(pemString: simplePEM)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
}
func testEmptyPEMDocument() throws {
let simplePEM = """
-----BEGIN EC PRIVATE KEY-----
-----END EC PRIVATE KEY-----
"""
XCTAssertThrowsError(try ASN1.PEMDocument(pemString: simplePEM)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
}
func testInvalidBase64IsForbidden() throws {
let simplePEM = """
-----BEGIN EC PRIVATE KEY-----
MHcCAQEEIBHli4jaj+JwWQlU0yhZUu+TdMPVhZ3wR2PS416Sz/K/oAoGCCqGSM49
AwEHoUQDQgAEOhvJhbc3zM4SJooCaWdyheY2E6wWkISg7TtxJYgb/S0Zz7WruJzG
O9zxi7HTvuXyQr7QKSBtdC%mHym+WoPsbA==
-----END EC PRIVATE KEY-----
"""
XCTAssertThrowsError(try ASN1.PEMDocument(pemString: simplePEM)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
}
func testRejectSingleComponentOIDs() throws {
// This is an encoded OID that has only one subcomponent, 0.
let singleComponentOID: [UInt8] = [0x06, 0x01, 0x00]
let parsed = try ASN1.parse(singleComponentOID)
XCTAssertThrowsError(try ASN1.ASN1ObjectIdentifier(asn1Encoded: parsed)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidObjectIdentifier)
}
}
func testRejectZeroComponentOIDs() throws {
// This is an encoded OID that has no subcomponents..
let zeroComponentOID: [UInt8] = [0x06, 0x00]
let parsed = try ASN1.parse(zeroComponentOID)
XCTAssertThrowsError(try ASN1.ASN1ObjectIdentifier(asn1Encoded: parsed)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidObjectIdentifier)
}
}
func testRejectNonOctetNumberOfBitsInBitstring() throws {
// We don't allow bitstrings that have any number of bits in the bitstring that isn't a multiple of 8.
for i in 1..<8 {
let weirdBitString = [0x03, 0x02, UInt8(i), 0xFF]
let parsed = try ASN1.parse(weirdBitString)
XCTAssertThrowsError(try ASN1.ASN1BitString(asn1Encoded: parsed)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidASN1Object)
}
}
}
func testBitstringWithNoContent() throws {
// We don't allow bitstrings with no content.
let weirdBitString: [UInt8] = [0x03, 0x00]
let parsed = try ASN1.parse(weirdBitString)
XCTAssertThrowsError(try ASN1.ASN1BitString(asn1Encoded: parsed)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidASN1Object)
}
}
func testEmptyBitstring() throws {
// Empty bitstrings must have their leading byte set to 0.
var bitString: [UInt8] = [0x03, 0x01, 0x00]
let parsed = try ASN1.parse(bitString)
let bs = try ASN1.ASN1BitString(asn1Encoded: parsed)
XCTAssertEqual(bs.bytes, [])
for i in 1..<8 {
bitString[2] = UInt8(i)
let parsed = try ASN1.parse(bitString)
XCTAssertThrowsError(try ASN1.ASN1BitString(asn1Encoded: parsed)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidASN1Object)
}
}
}
func testIntegerZeroRequiresAZeroByte() throws {
// Integer zero requires a leading zero byte.
let weirdZero: [UInt8] = [0x02, 0x00]
let parsed = try ASN1.parse(weirdZero)
XCTAssertThrowsError(try Int(asn1Encoded: parsed)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidASN1IntegerEncoding)
}
}
func testLeadingZero() throws {
// We should reject integers that have unnecessary leading zero bytes.
let overlongOne: [UInt8] = [0x02, 0x02, 0x00, 0x01]
let parsed = try ASN1.parse(overlongOne)
XCTAssertThrowsError(try Int(asn1Encoded: parsed)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidASN1IntegerEncoding)
}
}
func testLeadingOnes() throws {
// We should reject integers that have unnecessary leading one bytes. This is supposed to be a -127, but we encode it as though it
// were an Int16.
let overlongOneTwoSeven: [UInt8] = [0x02, 0x02, 0xFF, 0x81]
let parsed = try ASN1.parse(overlongOneTwoSeven)
XCTAssertThrowsError(try Int(asn1Encoded: parsed)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidASN1IntegerEncoding)
}
}
func testNotConsumingTaggedObject() throws {
// We should error if there are two nodes inside an explicitly tagged object.
let weirdASN1: [UInt8] = [
0x30, 0x08, // Sequence, containing...
0xA2, 0x06, // Context specific tag 2, 3 byte body, containing...
0x02, 0x01, 0x00, // Integer 0 and
0x02, 0x01, 0x01 // Integer 1
]
let parsed = try ASN1.parse(weirdASN1)
try ASN1.sequence(parsed, identifier: .sequence) { nodes in
XCTAssertThrowsError(try ASN1.optionalExplicitlyTagged(&nodes, tagNumber: 2, tagClass: .contextSpecific, { _ in })) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidASN1Object)
}
}
}
func testSPKIWithUnexpectedKeyTypeOID() throws {
// This is an SPKI object for RSA instead of EC. This is a 1024-bit RSA key, so hopefully no-one will think to use it.
let rsaSPKI = "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDQEcP8qgwq5JhGgl1mKMeOWbb0WFKkJKj4Tvm4RFWGKDYg/p+Fm8vHwPSICqU9HJ+dHF2Ty0M6WVwVlf6RJdJGsrp1s9cbxfc/74PdQUssIhUjhlBO2RFlQECbgNpw5UleRB9FLnEDp33qMgdr7nwXiYCTjd04QSkdU3mXJYrFfwIDAQAB"
let decodedSPKI = Array(Data(base64Encoded: rsaSPKI)!)
var serializer = ASN1.Serializer()
serializer.appendPrimitiveNode(identifier: .null) { _ in }
let null = serializer.serializedBytes
let parsed = try ASN1.parse(decodedSPKI)
let spki = try ASN1.SubjectPublicKeyInfo(asn1Encoded: parsed)
XCTAssertEqual(spki.algorithmIdentifier.algorithm, [1, 2, 840, 113_549, 1, 1, 1]) // RSA encryption
serializer = ASN1.Serializer()
try serializer.serialize(spki.algorithmIdentifier.parameters!)
XCTAssertEqual(serializer.serializedBytes, null)
let expectedKey: ArraySlice<UInt8> = [
48, 129, 137, 2, 129, 129, 0, 208, 17, 195, 252, 170, 12, 42, 228, 152,
70, 130, 93, 102, 40, 199, 142, 89, 182, 244, 88, 82, 164, 36, 168, 248,
78, 249, 184, 68, 85, 134, 40, 54, 32, 254, 159, 133, 155, 203, 199, 192,
244, 136, 10, 165, 61, 28, 159, 157, 28, 93, 147, 203, 67, 58, 89, 92,
21, 149, 254, 145, 37, 210, 70, 178, 186, 117, 179, 215, 27, 197, 247,
63, 239, 131, 221, 65, 75, 44, 34, 21, 35, 134, 80, 78, 217, 17, 101, 64, 64, 155, 128, 218, 112, 229, 73, 94, 68, 31, 69, 46, 113, 3, 167, 125,
234, 50, 7, 107, 238, 124, 23, 137, 128, 147, 141, 221, 56, 65, 41, 29,
83, 121, 151, 37, 138, 197, 127, 2, 3, 1, 0, 1
]
XCTAssertEqual(spki.key.bytes, expectedKey)
}
func testSPKIWithUnsupportedCurve() throws {
// This is an EC SPKI object with an unsupported named curve.
let b64SPKI = "MFYwEAYHKoZIzj0CAQYFK4EEAAoDQgAEzN09Sbb+mhMIlUbOdoIoND8lNcoQPd/yZDjQi1IDyDQEvVvz1yhi5J0FPLAlM3hE2o/a+rASUz2UP4fX5Cpnxw=="
let decodedSPKI = Array(Data(base64Encoded: b64SPKI)!)
let parsed = try ASN1.parse(decodedSPKI)
let spki = try ASN1.SubjectPublicKeyInfo(asn1Encoded: parsed)
XCTAssertEqual(spki.algorithmIdentifier.algorithm, .AlgorithmIdentifier.idEcPublicKey)
XCTAssertEqual(try ASN1.ASN1ObjectIdentifier(asn1Any: spki.algorithmIdentifier.parameters!), [1, 3, 132, 0, 10])
let expectedKey: ArraySlice<UInt8> = [
4, 204, 221, 61, 73, 182, 254, 154, 19, 8, 149, 70, 206, 118, 130, 40,
52, 63, 37, 53, 202, 16, 61, 223, 242, 100, 56, 208, 139, 82, 3, 200,
52, 4, 189, 91, 243, 215, 40, 98, 228, 157, 5, 60, 176, 37, 51, 120, 68,
218, 143, 218, 250, 176, 18, 83, 61, 148, 63, 135, 215, 228, 42, 103,
199
]
XCTAssertEqual(spki.key.bytes, expectedKey)
}
func testSEC1PrivateKeyWithUnknownVersion() throws {
// This is the beginning of a SEC1 private key with hypothetical version number 5. We should reject it
let weirdSEC1: [UInt8] = [0x30, 0x03, 0x02, 0x01, 0x05]
let parsed = try ASN1.parse(weirdSEC1)
XCTAssertThrowsError(try ASN1.SEC1PrivateKey(asn1Encoded: parsed)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidASN1Object)
}
}
func testSEC1PrivateKeyUnsupportedKeyType() throws {
// This is an EC SPKI object with an unsupported named curve.
let b64SEC1 = "MHQCAQEEINIuVmNF7g1wNCJWXDpgL+09jATtaS1n0SxqqQneHi+woAcGBSuBBAAKoUQDQgAEB7v/p7gvuV0aDx02EF6a+pr563p+FzRJXI+COWHdr+XRcjg6vEi4n3Jj7ksmEg4t1x6E1xFyTvF3eV/B/XVXbw=="
let decodedSEC1 = Array(Data(base64Encoded: b64SEC1)!)
let parsed = try ASN1.parse(decodedSEC1)
XCTAssertThrowsError(try ASN1.SEC1PrivateKey(asn1Encoded: parsed)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidASN1Object)
}
}
func testPKCS8KeyWithNonMatchingKeyOIDS() throws {
// This is a stubbed PKCS8 key with mismatched OIDs in the inner and outer payload. We have to serialize it out, sadly.
var serializer = ASN1.Serializer()
try serializer.appendConstructedNode(identifier: .sequence) { coder in
try coder.serialize(0)
try coder.serialize(ASN1.RFC5480AlgorithmIdentifier.ecdsaP256)
var subCoder = ASN1.Serializer()
try subCoder.serialize(ASN1.SEC1PrivateKey(privateKey: [], algorithm: .ecdsaP384, publicKey: [])) // We won't notice these are empty either, but we will notice the algo mismatch.
let serializedKey = ASN1.ASN1OctetString(contentBytes: subCoder.serializedBytes[...])
try coder.serialize(serializedKey)
}
let parsed = try ASN1.parse(serializer.serializedBytes)
XCTAssertThrowsError(try ASN1.PKCS8PrivateKey(asn1Encoded: parsed)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidASN1Object)
}
}
func testSimplePEMP256SPKI() throws {
let pemPublicKey = """
-----BEGIN PUBLIC KEY-----
MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEb4nB0k8CBVnKCHVHkxuXAkSlZuO5
Nsev1rzcRv5QHiJuWUKomFGadQlMSGwoDOHEDdW3ujcA6t0ADteHw6KrZg==
-----END PUBLIC KEY-----
"""
// Test the working public keys.
let signingKey = try orFail { try P256.Signing.PublicKey(pemRepresentation: pemPublicKey) }
let keyAgreementKey = try orFail { try P256.KeyAgreement.PublicKey(pemRepresentation: pemPublicKey) }
XCTAssertEqual(signingKey.rawRepresentation, keyAgreementKey.rawRepresentation)
// Now the non-matching public keys.
XCTAssertThrowsError(try P384.Signing.PublicKey(pemRepresentation: pemPublicKey)) { error in
guard case .incorrectParameterSize = error as? CryptoKitError else {
XCTFail("Unexpected error: \(error)")
return
}
}
XCTAssertThrowsError(try P384.KeyAgreement.PublicKey(pemRepresentation: pemPublicKey)) { error in
guard case .incorrectParameterSize = error as? CryptoKitError else {
XCTFail("Unexpected error: \(error)")
return
}
}
XCTAssertThrowsError(try P521.Signing.PublicKey(pemRepresentation: pemPublicKey)) { error in
guard case .incorrectParameterSize = error as? CryptoKitError else {
XCTFail("Unexpected error: \(error)")
return
}
}
XCTAssertThrowsError(try P521.KeyAgreement.PublicKey(pemRepresentation: pemPublicKey)) { error in
guard case .incorrectParameterSize = error as? CryptoKitError else {
XCTFail("Unexpected error: \(error)")
return
}
}
// Now the private keys, which all fail.
XCTAssertThrowsError(try P256.Signing.PrivateKey(pemRepresentation: pemPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P256.KeyAgreement.PrivateKey(pemRepresentation: pemPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P384.Signing.PrivateKey(pemRepresentation: pemPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P384.KeyAgreement.PrivateKey(pemRepresentation: pemPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P521.Signing.PrivateKey(pemRepresentation: pemPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P521.KeyAgreement.PrivateKey(pemRepresentation: pemPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
// Validate we can reserialize.
let firstReserialization = signingKey.pemRepresentation
let secondReserialization = keyAgreementKey.pemRepresentation
XCTAssertEqual(firstReserialization, pemPublicKey)
XCTAssertEqual(secondReserialization, pemPublicKey)
}
func testSimplePEMP384SPKI() throws {
let pemPublicKey = """
-----BEGIN PUBLIC KEY-----
MHYwEAYHKoZIzj0CAQYFK4EEACIDYgAEBwY0l7mq7hSBEZRld5ISWfSoFsYN3wwM
hdD3cMU95DmYXzbqVHB4dCfsy7bexm4h9c0zs4CyTPzy3DV3vfmv1akQJIQv7l08
lx/YXNeGXTN4Gr9r4rwA5GvRl1p6plPL
-----END PUBLIC KEY-----
"""
// Test the working public keys.
let signingKey = try orFail { try P384.Signing.PublicKey(pemRepresentation: pemPublicKey) }
let keyAgreementKey = try orFail { try P384.KeyAgreement.PublicKey(pemRepresentation: pemPublicKey) }
XCTAssertEqual(signingKey.rawRepresentation, keyAgreementKey.rawRepresentation)
// Now the non-matching public keys.
XCTAssertThrowsError(try P256.Signing.PublicKey(pemRepresentation: pemPublicKey)) { error in
guard case .incorrectParameterSize = error as? CryptoKitError else {
XCTFail("Unexpected error: \(error)")
return
}
}
XCTAssertThrowsError(try P256.KeyAgreement.PublicKey(pemRepresentation: pemPublicKey)) { error in
guard case .incorrectParameterSize = error as? CryptoKitError else {
XCTFail("Unexpected error: \(error)")
return
}
}
XCTAssertThrowsError(try P521.Signing.PublicKey(pemRepresentation: pemPublicKey)) { error in
guard case .incorrectParameterSize = error as? CryptoKitError else {
XCTFail("Unexpected error: \(error)")
return
}
}
XCTAssertThrowsError(try P521.KeyAgreement.PublicKey(pemRepresentation: pemPublicKey)) { error in
guard case .incorrectParameterSize = error as? CryptoKitError else {
XCTFail("Unexpected error: \(error)")
return
}
}
// Now the private keys, which all fail.
XCTAssertThrowsError(try P256.Signing.PrivateKey(pemRepresentation: pemPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P256.KeyAgreement.PrivateKey(pemRepresentation: pemPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P384.Signing.PrivateKey(pemRepresentation: pemPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P384.KeyAgreement.PrivateKey(pemRepresentation: pemPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P521.Signing.PrivateKey(pemRepresentation: pemPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P521.KeyAgreement.PrivateKey(pemRepresentation: pemPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
// Validate we can reserialize.
let firstReserialization = signingKey.pemRepresentation
let secondReserialization = keyAgreementKey.pemRepresentation
XCTAssertEqual(firstReserialization, pemPublicKey)
XCTAssertEqual(secondReserialization, pemPublicKey)
}
func testSimplePEMP521SPKI() throws {
let pemPublicKey = """
-----BEGIN PUBLIC KEY-----
MIGbMBAGByqGSM49AgEGBSuBBAAjA4GGAAQAp3v1UQWvSyQnkAUEBu+x/7ZrPtNJ
SCUk9kMvuZMyGP1idwvspALuJjzrSFFlXObjlOjxucSbWhTYF/o3nc0XzpAA3dxA
BYiMqH9vrVePoJMpv+DMdkUiUJ/WqHSOu9bJEi1h4fdqh5HHx4QZJY/iX/59VAi1
uSbAhALvbdGFbVpkcOs=
-----END PUBLIC KEY-----
"""
// Test the working public keys.
let signingKey = try orFail { try P521.Signing.PublicKey(pemRepresentation: pemPublicKey) }
let keyAgreementKey = try orFail { try P521.KeyAgreement.PublicKey(pemRepresentation: pemPublicKey) }
XCTAssertEqual(signingKey.rawRepresentation, keyAgreementKey.rawRepresentation)
// Now the non-matching public keys.
XCTAssertThrowsError(try P256.Signing.PublicKey(pemRepresentation: pemPublicKey)) { error in
guard case .incorrectParameterSize = error as? CryptoKitError else {
XCTFail("Unexpected error: \(error)")
return
}
}
XCTAssertThrowsError(try P256.KeyAgreement.PublicKey(pemRepresentation: pemPublicKey)) { error in
guard case .incorrectParameterSize = error as? CryptoKitError else {
XCTFail("Unexpected error: \(error)")
return
}
}
XCTAssertThrowsError(try P384.Signing.PublicKey(pemRepresentation: pemPublicKey)) { error in
guard case .incorrectParameterSize = error as? CryptoKitError else {
XCTFail("Unexpected error: \(error)")
return
}
}
XCTAssertThrowsError(try P384.KeyAgreement.PublicKey(pemRepresentation: pemPublicKey)) { error in
guard case .incorrectParameterSize = error as? CryptoKitError else {
XCTFail("Unexpected error: \(error)")
return
}
}
// Now the private keys, which all fail.
XCTAssertThrowsError(try P256.Signing.PrivateKey(pemRepresentation: pemPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P256.KeyAgreement.PrivateKey(pemRepresentation: pemPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P384.Signing.PrivateKey(pemRepresentation: pemPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P384.KeyAgreement.PrivateKey(pemRepresentation: pemPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P521.Signing.PrivateKey(pemRepresentation: pemPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P521.KeyAgreement.PrivateKey(pemRepresentation: pemPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
// Validate we can reserialize.
let firstReserialization = signingKey.pemRepresentation
let secondReserialization = keyAgreementKey.pemRepresentation
XCTAssertEqual(firstReserialization, pemPublicKey)
XCTAssertEqual(secondReserialization, pemPublicKey)
}
func testSimplePEMP256PKCS8() throws {
let pemPrivateKey = """
-----BEGIN PRIVATE KEY-----
MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgZjQLlzempZx7YF1F
+MK1HWZTNgLcC1MAufb/2/YZYk6hRANCAAQwgn0PfkIHiZ/K+3zA//CoDqU2PqDc
aA3U5R68jmlZQITvMyBlMJl9Mjh0biIe88dAfRKeUm9FVMD2ErJ/006V
-----END PRIVATE KEY-----
"""
// Test the working private keys.
let signingKey = try orFail { try P256.Signing.PrivateKey(pemRepresentation: pemPrivateKey) }
let keyAgreementKey = try orFail { try P256.KeyAgreement.PrivateKey(pemRepresentation: pemPrivateKey) }
XCTAssertEqual(signingKey.rawRepresentation, keyAgreementKey.rawRepresentation)
// Now the non-matching private keys.
XCTAssertThrowsError(try P384.Signing.PrivateKey(pemRepresentation: pemPrivateKey))
XCTAssertThrowsError(try P384.KeyAgreement.PrivateKey(pemRepresentation: pemPrivateKey))
XCTAssertThrowsError(try P521.Signing.PrivateKey(pemRepresentation: pemPrivateKey))
XCTAssertThrowsError(try P521.KeyAgreement.PrivateKey(pemRepresentation: pemPrivateKey))
// Now the public keys, which all fail.
XCTAssertThrowsError(try P256.Signing.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P256.KeyAgreement.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P384.Signing.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P384.KeyAgreement.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P521.Signing.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P521.KeyAgreement.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
// Validate we can reserialize.
let firstReserialization = signingKey.pemRepresentation
let secondReserialization = keyAgreementKey.pemRepresentation
XCTAssertEqual(firstReserialization, pemPrivateKey)
XCTAssertEqual(secondReserialization, pemPrivateKey)
}
func testSimplePEMP384PKCS8() throws {
let pemPrivateKey = """
-----BEGIN PRIVATE KEY-----
MIG2AgEAMBAGByqGSM49AgEGBSuBBAAiBIGeMIGbAgEBBDB7ERKhMR+mvz1NQ+oL
i6ZJMACOcwbUetWcNnB4Mnx3j4XuhpkkHEW8E1+rXyjZ3UmhZANiAASYH+emlyXM
kBSFJl0BiopDVuIIR47M4pLl00YNnuu/Rp5VHeVAHrP67i2Q92u5fk34eOSwQvkO
VvktWsgtzAomIam4SHqE9bhvrHy6kW6QzxlERHTL+YkXEX8c6t8VOxk=
-----END PRIVATE KEY-----
"""
// Test the working private keys.
let signingKey = try orFail { try P384.Signing.PrivateKey(pemRepresentation: pemPrivateKey) }
let keyAgreementKey = try orFail { try P384.KeyAgreement.PrivateKey(pemRepresentation: pemPrivateKey) }
XCTAssertEqual(signingKey.rawRepresentation, keyAgreementKey.rawRepresentation)
// Now the non-matching private keys.
XCTAssertThrowsError(try P256.Signing.PrivateKey(pemRepresentation: pemPrivateKey))
XCTAssertThrowsError(try P256.KeyAgreement.PrivateKey(pemRepresentation: pemPrivateKey))
XCTAssertThrowsError(try P521.Signing.PrivateKey(pemRepresentation: pemPrivateKey))
XCTAssertThrowsError(try P521.KeyAgreement.PrivateKey(pemRepresentation: pemPrivateKey))
// Now the public keys, which all fail.
XCTAssertThrowsError(try P256.Signing.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P256.KeyAgreement.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P384.Signing.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P384.KeyAgreement.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P521.Signing.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P521.KeyAgreement.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
// Validate we can reserialize.
let firstReserialization = signingKey.pemRepresentation
let secondReserialization = keyAgreementKey.pemRepresentation
XCTAssertEqual(firstReserialization, pemPrivateKey)
XCTAssertEqual(secondReserialization, pemPrivateKey)
}
func testSimplePEMP521PKCS8() throws {
let pemPrivateKey = """
-----BEGIN PRIVATE KEY-----
MIHuAgEAMBAGByqGSM49AgEGBSuBBAAjBIHWMIHTAgEBBEIAmMp6YYRfT6uA+DFi
VB/V7FGAgjjuin1GcF8eujBZTcNB8jyzyXfG7Ak80jd3yhrHhAg7rOOZYV72Ekz5
o05NKM2hgYkDgYYABAEIOePr9DPc9lGHqSYrGHX0ICvZxy3DLTjPcl7jgAcUU9NT
1DBvJ7aAAmzTImz9mKOJk14f1fxc1BsWjsf1hU4QOwFu1l+dIDcNYFUxjzsGMc5e
LsSxRn35ts4qogmz3kmerOc0smI8NIFiK/EuinK5Bs8PfPMW3ZOCIpvXbqyksLk0
rg==
-----END PRIVATE KEY-----
"""
// Test the working private keys.
let signingKey = try orFail { try P521.Signing.PrivateKey(pemRepresentation: pemPrivateKey) }
let keyAgreementKey = try orFail { try P521.KeyAgreement.PrivateKey(pemRepresentation: pemPrivateKey) }
XCTAssertEqual(signingKey.rawRepresentation, keyAgreementKey.rawRepresentation)
// Now the non-matching private keys.
XCTAssertThrowsError(try P256.Signing.PrivateKey(pemRepresentation: pemPrivateKey))
XCTAssertThrowsError(try P256.KeyAgreement.PrivateKey(pemRepresentation: pemPrivateKey))
XCTAssertThrowsError(try P384.Signing.PrivateKey(pemRepresentation: pemPrivateKey))
XCTAssertThrowsError(try P384.KeyAgreement.PrivateKey(pemRepresentation: pemPrivateKey))
// Now the public keys, which all fail.
XCTAssertThrowsError(try P256.Signing.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P256.KeyAgreement.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P384.Signing.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P384.KeyAgreement.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P521.Signing.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P521.KeyAgreement.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
// Validate we can reserialize.
let firstReserialization = signingKey.pemRepresentation
let secondReserialization = keyAgreementKey.pemRepresentation
XCTAssertEqual(firstReserialization, pemPrivateKey)
XCTAssertEqual(secondReserialization, pemPrivateKey)
}
func testSimplePEMP256SEC1PrivateKey() throws {
let pemPrivateKey = """
-----BEGIN EC PRIVATE KEY-----
MHcCAQEEIHwS3r7tdBfDPSOaT/x6A2qvXFFXlGmnaYkxzrj1CQUHoAoGCCqGSM49
AwEHoUQDQgAE79HvsMQC9IyhZ7yCCYKmgz9zewM4KziWoVMXKN+7Cd5Ds+jK8V5q
hD6YVbbo/v1udmM5DfhHJiUW3Ww5++suRg==
-----END EC PRIVATE KEY-----
"""
// Test the working private keys.
let signingKey = try orFail { try P256.Signing.PrivateKey(pemRepresentation: pemPrivateKey) }
let keyAgreementKey = try orFail { try P256.KeyAgreement.PrivateKey(pemRepresentation: pemPrivateKey) }
XCTAssertEqual(signingKey.rawRepresentation, keyAgreementKey.rawRepresentation)
// Now the non-matching private keys.
XCTAssertThrowsError(try P384.Signing.PrivateKey(pemRepresentation: pemPrivateKey))
XCTAssertThrowsError(try P384.KeyAgreement.PrivateKey(pemRepresentation: pemPrivateKey))
XCTAssertThrowsError(try P521.Signing.PrivateKey(pemRepresentation: pemPrivateKey))
XCTAssertThrowsError(try P521.KeyAgreement.PrivateKey(pemRepresentation: pemPrivateKey))
// Now the public keys, which all fail.
XCTAssertThrowsError(try P256.Signing.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P256.KeyAgreement.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P384.Signing.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P384.KeyAgreement.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P521.Signing.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P521.KeyAgreement.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
// We can't reserialize the SEC1 keys, we don't emit them.
}
func testSimplePEMP384SEC1PrivateKey() throws {
let pemPrivateKey = """
-----BEGIN EC PRIVATE KEY-----
MIGkAgEBBDDrN+qjvW7TqcXrKlTFbSP8AdbsIdqvRAgWHlaBicP7dkx+HKQidSiS
B2RLWyjSrs6gBwYFK4EEACKhZANiAAQrRiaztGpInYo1XqMnNokWY6g1TcgMuzgq
Ug6LzFQbCAqCrcnM9+c9Z4/63dC06ulL/KbLQgThjSiqRzgbzvmOvB0OzlpX1weK
usFrF4Pi0B9pKPmVCAlSzaxVEmRsbmw=
-----END EC PRIVATE KEY-----
"""
// Test the working private keys.
let signingKey = try orFail { try P384.Signing.PrivateKey(pemRepresentation: pemPrivateKey) }
let keyAgreementKey = try orFail { try P384.KeyAgreement.PrivateKey(pemRepresentation: pemPrivateKey) }
XCTAssertEqual(signingKey.rawRepresentation, keyAgreementKey.rawRepresentation)
// Now the non-matching private keys.
XCTAssertThrowsError(try P256.Signing.PrivateKey(pemRepresentation: pemPrivateKey))
XCTAssertThrowsError(try P256.KeyAgreement.PrivateKey(pemRepresentation: pemPrivateKey))
XCTAssertThrowsError(try P521.Signing.PrivateKey(pemRepresentation: pemPrivateKey))
XCTAssertThrowsError(try P521.KeyAgreement.PrivateKey(pemRepresentation: pemPrivateKey))
// Now the public keys, which all fail.
XCTAssertThrowsError(try P256.Signing.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P256.KeyAgreement.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P384.Signing.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P384.KeyAgreement.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P521.Signing.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P521.KeyAgreement.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
// We can't reserialize the SEC1 keys, we don't emit them.
}
func testSimplePEMP521SEC1PrivateKey() throws {
let pemPrivateKey = """
-----BEGIN EC PRIVATE KEY-----
MIHcAgEBBEIBf4tGkyicrFEadZv7iWnmCGsDk7S18CTCUD7n4+XOG6GbVNLwpBsE
naUP5eXHm5Bxuiir0BIsKATXx0ZwEjULpfCgBwYFK4EEACOhgYkDgYYABAEiHfCR
mQtxxjthsfQ987aSYGgxcCLxBaj8/fW4U7jufPcqxz27x9wi1qB2rZmOKaSsh1JZ
wF5yOAMX4/acIK1OdgGzbafukRZjqF3wKVP8UFH0DzdNaZ8aSplgUu8gV2TjJyQB
1sCKaVuecBtTRiIwvnapv5PgQIgstPQmRhqVOLriDA==
-----END EC PRIVATE KEY-----
"""
// Test the working private keys.
let signingKey = try orFail { try P521.Signing.PrivateKey(pemRepresentation: pemPrivateKey) }
let keyAgreementKey = try orFail { try P521.KeyAgreement.PrivateKey(pemRepresentation: pemPrivateKey) }
XCTAssertEqual(signingKey.rawRepresentation, keyAgreementKey.rawRepresentation)
// Now the non-matching private keys.
XCTAssertThrowsError(try P256.Signing.PrivateKey(pemRepresentation: pemPrivateKey))
XCTAssertThrowsError(try P256.KeyAgreement.PrivateKey(pemRepresentation: pemPrivateKey))
XCTAssertThrowsError(try P384.Signing.PrivateKey(pemRepresentation: pemPrivateKey))
XCTAssertThrowsError(try P384.KeyAgreement.PrivateKey(pemRepresentation: pemPrivateKey))
// Now the public keys, which all fail.
XCTAssertThrowsError(try P256.Signing.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P256.KeyAgreement.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P384.Signing.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P384.KeyAgreement.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P521.Signing.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
XCTAssertThrowsError(try P521.KeyAgreement.PublicKey(pemRepresentation: pemPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidPEMDocument)
}
// We can't reserialize the SEC1 keys, we don't emit them.
}
func testSimpleDERP256SPKI() throws {
let b64PublicKey = "MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEIq+Qd2HviOb1JAkvKInCCec/gbZRnEZ6H9gO29wJ1H/a8Mmmog7b8nj+xEgo7Rh5dKlNgRaKvVjlLDllq+bPAA=="
let derPublicKey = Data(base64Encoded: b64PublicKey)!
// Test the working public keys.
let signingKey = try orFail { try P256.Signing.PublicKey(derRepresentation: derPublicKey) }
let keyAgreementKey = try orFail { try P256.KeyAgreement.PublicKey(derRepresentation: derPublicKey) }
XCTAssertEqual(signingKey.rawRepresentation, keyAgreementKey.rawRepresentation)
// Now the non-matching public keys.
XCTAssertThrowsError(try P384.Signing.PublicKey(derRepresentation: derPublicKey)) { error in
guard case .incorrectParameterSize = error as? CryptoKitError else {
XCTFail("Unexpected error: \(error)")
return
}
}
XCTAssertThrowsError(try P384.KeyAgreement.PublicKey(derRepresentation: derPublicKey)) { error in
guard case .incorrectParameterSize = error as? CryptoKitError else {
XCTFail("Unexpected error: \(error)")
return
}
}
XCTAssertThrowsError(try P521.Signing.PublicKey(derRepresentation: derPublicKey)) { error in
guard case .incorrectParameterSize = error as? CryptoKitError else {
XCTFail("Unexpected error: \(error)")
return
}
}
XCTAssertThrowsError(try P521.KeyAgreement.PublicKey(derRepresentation: derPublicKey)) { error in
guard case .incorrectParameterSize = error as? CryptoKitError else {
XCTFail("Unexpected error: \(error)")
return
}
}
// Now the private keys, which all fail.
XCTAssertThrowsError(try P256.Signing.PrivateKey(derRepresentation: derPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P256.KeyAgreement.PrivateKey(derRepresentation: derPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P384.Signing.PrivateKey(derRepresentation: derPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P384.KeyAgreement.PrivateKey(derRepresentation: derPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P521.Signing.PrivateKey(derRepresentation: derPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P521.KeyAgreement.PrivateKey(derRepresentation: derPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
// Validate we can reserialize.
let firstReserialization = signingKey.derRepresentation
let secondReserialization = keyAgreementKey.derRepresentation
XCTAssertEqual(firstReserialization, derPublicKey)
XCTAssertEqual(secondReserialization, derPublicKey)
}
func testSimpleDERP384SPKI() throws {
let b64PublicKey = "MHYwEAYHKoZIzj0CAQYFK4EEACIDYgAEvt9xABn4WAo0EQsp3BMEd26f3qrXJ5RrhU1i2wp0G29oK2cdNareBirnyjlsQEg/OQ+ZQyKmMrxm5OrbhvJf/+97dc6phzb2R/blH62I65BiUSBAsGaXU69ObTPOwDKT"
let derPublicKey = Data(base64Encoded: b64PublicKey)!
// Test the working public keys.
let signingKey = try orFail { try P384.Signing.PublicKey(derRepresentation: derPublicKey) }
let keyAgreementKey = try orFail { try P384.KeyAgreement.PublicKey(derRepresentation: derPublicKey) }
XCTAssertEqual(signingKey.rawRepresentation, keyAgreementKey.rawRepresentation)
// Now the non-matching public keys.
XCTAssertThrowsError(try P256.Signing.PublicKey(derRepresentation: derPublicKey)) { error in
guard case .incorrectParameterSize = error as? CryptoKitError else {
XCTFail("Unexpected error: \(error)")
return
}
}
XCTAssertThrowsError(try P256.KeyAgreement.PublicKey(derRepresentation: derPublicKey)) { error in
guard case .incorrectParameterSize = error as? CryptoKitError else {
XCTFail("Unexpected error: \(error)")
return
}
}
XCTAssertThrowsError(try P521.Signing.PublicKey(derRepresentation: derPublicKey)) { error in
guard case .incorrectParameterSize = error as? CryptoKitError else {
XCTFail("Unexpected error: \(error)")
return
}
}
XCTAssertThrowsError(try P521.KeyAgreement.PublicKey(derRepresentation: derPublicKey)) { error in
guard case .incorrectParameterSize = error as? CryptoKitError else {
XCTFail("Unexpected error: \(error)")
return
}
}
// Now the private keys, which all fail.
XCTAssertThrowsError(try P256.Signing.PrivateKey(derRepresentation: derPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P256.KeyAgreement.PrivateKey(derRepresentation: derPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P384.Signing.PrivateKey(derRepresentation: derPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P384.KeyAgreement.PrivateKey(derRepresentation: derPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P521.Signing.PrivateKey(derRepresentation: derPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P521.KeyAgreement.PrivateKey(derRepresentation: derPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
// Validate we can reserialize.
let firstReserialization = signingKey.derRepresentation
let secondReserialization = keyAgreementKey.derRepresentation
XCTAssertEqual(firstReserialization, derPublicKey)
XCTAssertEqual(secondReserialization, derPublicKey)
}
func testSimpleDERP521SPKI() throws {
let b64PublicKey = "MIGbMBAGByqGSM49AgEGBSuBBAAjA4GGAAQAfH9fsVM7MdTe88+kvkZmFq9nPLMAPvCyAf5PYnJ7qV3W0rtVC2R3c0Aw21QxeN4XAIFcElO9NQ+ErT/m4o6+1YgBlLfBTnHKTq/WTNjQWxQk8i1PzHMsplT41OMAm0LaHwi9s+mWUIGlbfcP+MmVKY5dMkskPsU2YBlLZI81xk+z2X4="
let derPublicKey = Data(base64Encoded: b64PublicKey)!
// Test the working public keys.
let signingKey = try orFail { try P521.Signing.PublicKey(derRepresentation: derPublicKey) }
let keyAgreementKey = try orFail { try P521.KeyAgreement.PublicKey(derRepresentation: derPublicKey) }
XCTAssertEqual(signingKey.rawRepresentation, keyAgreementKey.rawRepresentation)
// Now the non-matching public keys.
XCTAssertThrowsError(try P256.Signing.PublicKey(derRepresentation: derPublicKey)) { error in
guard case .incorrectParameterSize = error as? CryptoKitError else {
XCTFail("Unexpected error: \(error)")
return
}
}
XCTAssertThrowsError(try P256.KeyAgreement.PublicKey(derRepresentation: derPublicKey)) { error in
guard case .incorrectParameterSize = error as? CryptoKitError else {
XCTFail("Unexpected error: \(error)")
return
}
}
XCTAssertThrowsError(try P384.Signing.PublicKey(derRepresentation: derPublicKey)) { error in
guard case .incorrectParameterSize = error as? CryptoKitError else {
XCTFail("Unexpected error: \(error)")
return
}
}
XCTAssertThrowsError(try P384.KeyAgreement.PublicKey(derRepresentation: derPublicKey)) { error in
guard case .incorrectParameterSize = error as? CryptoKitError else {
XCTFail("Unexpected error: \(error)")
return
}
}
// Now the private keys, which all fail.
XCTAssertThrowsError(try P256.Signing.PrivateKey(derRepresentation: derPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P256.KeyAgreement.PrivateKey(derRepresentation: derPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P384.Signing.PrivateKey(derRepresentation: derPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P384.KeyAgreement.PrivateKey(derRepresentation: derPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P521.Signing.PrivateKey(derRepresentation: derPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P521.KeyAgreement.PrivateKey(derRepresentation: derPublicKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
// Validate we can reserialize.
let firstReserialization = signingKey.derRepresentation
let secondReserialization = keyAgreementKey.derRepresentation
XCTAssertEqual(firstReserialization, derPublicKey)
XCTAssertEqual(secondReserialization, derPublicKey)
}
func testSimpleDERP256PKCS8() throws {
let b64PrivateKey = "MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgxWaWfbbhHsTjtEwkANo6ZDeJ2CARYhjOSt2auAW7xNOhRANCAAQsAL3hTMCCbh1kVCSJa8V22WLNDriEpVOLEJXiVFEwAFjWd1BufewuT69tYa0hyB1Q3pt12HPK2c1KGwjOpScW"
let derPrivateKey = Data(base64Encoded: b64PrivateKey)!
// Test the working private keys.
let signingKey = try orFail { try P256.Signing.PrivateKey(derRepresentation: derPrivateKey) }
let keyAgreementKey = try orFail { try P256.KeyAgreement.PrivateKey(derRepresentation: derPrivateKey) }
XCTAssertEqual(signingKey.rawRepresentation, keyAgreementKey.rawRepresentation)
// Now the non-matching private keys.
XCTAssertThrowsError(try P384.Signing.PrivateKey(derRepresentation: derPrivateKey))
XCTAssertThrowsError(try P384.KeyAgreement.PrivateKey(derRepresentation: derPrivateKey))
XCTAssertThrowsError(try P521.Signing.PrivateKey(derRepresentation: derPrivateKey))
XCTAssertThrowsError(try P521.KeyAgreement.PrivateKey(derRepresentation: derPrivateKey))
// Now the public keys, which all fail.
XCTAssertThrowsError(try P256.Signing.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P256.KeyAgreement.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P384.Signing.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P384.KeyAgreement.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P521.Signing.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P521.KeyAgreement.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
// Validate we can reserialize.
let firstReserialization = signingKey.derRepresentation
let secondReserialization = keyAgreementKey.derRepresentation
XCTAssertEqual(firstReserialization, derPrivateKey)
XCTAssertEqual(secondReserialization, derPrivateKey)
}
func testSimpleDERP384PKCS8() throws {
let b64PrivateKey = "MIG2AgEAMBAGByqGSM49AgEGBSuBBAAiBIGeMIGbAgEBBDAsdACCJGneotN0y5zQjZxImZuH3TuvHeKWXKi2m6d3fYsGOufibIqaxfCLVZGvxb2hZANiAARL6IhECKbw5UCSqGaaZ3H5FNbXuk/4y4QTJLhdQRBkibr6YjEzFGDgd1yjU0msBOMBvx3oCZ5rPgVaogQXPdZbx8PnTt2I+2x2BuoRibA+/yCAyJSluVm/005p0EcAmuI="
let derPrivateKey = Data(base64Encoded: b64PrivateKey)!
// Test the working private keys.
let signingKey = try orFail { try P384.Signing.PrivateKey(derRepresentation: derPrivateKey) }
let keyAgreementKey = try orFail { try P384.KeyAgreement.PrivateKey(derRepresentation: derPrivateKey) }
XCTAssertEqual(signingKey.rawRepresentation, keyAgreementKey.rawRepresentation)
// Now the non-matching private keys.
XCTAssertThrowsError(try P256.Signing.PrivateKey(derRepresentation: derPrivateKey))
XCTAssertThrowsError(try P256.KeyAgreement.PrivateKey(derRepresentation: derPrivateKey))
XCTAssertThrowsError(try P521.Signing.PrivateKey(derRepresentation: derPrivateKey))
XCTAssertThrowsError(try P521.KeyAgreement.PrivateKey(derRepresentation: derPrivateKey))
// Now the public keys, which all fail.
XCTAssertThrowsError(try P256.Signing.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P256.KeyAgreement.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P384.Signing.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P384.KeyAgreement.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P521.Signing.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P521.KeyAgreement.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
// Validate we can reserialize.
let firstReserialization = signingKey.derRepresentation
let secondReserialization = keyAgreementKey.derRepresentation
XCTAssertEqual(firstReserialization, derPrivateKey)
XCTAssertEqual(secondReserialization, derPrivateKey)
}
func testSimpleDERP521PKCS8() throws {
let b64PrivateKey = "MIHuAgEAMBAGByqGSM49AgEGBSuBBAAjBIHWMIHTAgEBBEIA2u5+KHPk/vVrYI53Khh3WrFmxUCQ5YeK6HAi+GyebeRM3w1KoQuD4oHocp2aKffjjWKVkEfLRfjraJgh1jH+GPihgYkDgYYABAC4M0cSEZ+hKwn65PQtdFu+L1ZdBt4kjrGJ2ggNG+tQ3z4S11KV9b+R+CyUajajhU2nJ4UkHQO5bEaTPmaWySFSVQEZilLlYtnQZSKGLS2DR4zBsny0O2+D5DpFSYKsDPN23MdOBdTam2Gqtm/WAirVmXMqs8v5VSjmh3i/EG6EDPEtXw=="
let derPrivateKey = Data(base64Encoded: b64PrivateKey)!
// Test the working private keys.
let signingKey = try orFail { try P521.Signing.PrivateKey(derRepresentation: derPrivateKey) }
let keyAgreementKey = try orFail { try P521.KeyAgreement.PrivateKey(derRepresentation: derPrivateKey) }
XCTAssertEqual(signingKey.rawRepresentation, keyAgreementKey.rawRepresentation)
// Now the non-matching private keys.
XCTAssertThrowsError(try P256.Signing.PrivateKey(derRepresentation: derPrivateKey))
XCTAssertThrowsError(try P256.KeyAgreement.PrivateKey(derRepresentation: derPrivateKey))
XCTAssertThrowsError(try P384.Signing.PrivateKey(derRepresentation: derPrivateKey))
XCTAssertThrowsError(try P384.KeyAgreement.PrivateKey(derRepresentation: derPrivateKey))
// Now the public keys, which all fail.
XCTAssertThrowsError(try P256.Signing.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P256.KeyAgreement.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P384.Signing.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P384.KeyAgreement.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P521.Signing.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P521.KeyAgreement.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
// Validate we can reserialize.
let firstReserialization = signingKey.derRepresentation
let secondReserialization = keyAgreementKey.derRepresentation
XCTAssertEqual(firstReserialization, derPrivateKey)
XCTAssertEqual(secondReserialization, derPrivateKey)
}
func testSimpleDERP256SEC1PrivateKey() throws {
let b64PrivateKey = "MHcCAQEEIKzmkxtADyr8LymuVMqpLFVlx27bdgT0+un4I2a3DE1KoAoGCCqGSM49AwEHoUQDQgAEZp2q8QP4shIBZIHS1b1ZBUeLbrpnTA6CB17iFzF8udyYmcRkDAPSBamFXf4IthinYkfnru/PymZl+tpeM56BOw=="
let derPrivateKey = Data(base64Encoded: b64PrivateKey)!
// Test the working private keys.
let signingKey = try orFail { try P256.Signing.PrivateKey(derRepresentation: derPrivateKey) }
let keyAgreementKey = try orFail { try P256.KeyAgreement.PrivateKey(derRepresentation: derPrivateKey) }
XCTAssertEqual(signingKey.rawRepresentation, keyAgreementKey.rawRepresentation)
// Now the non-matching private keys.
XCTAssertThrowsError(try P384.Signing.PrivateKey(derRepresentation: derPrivateKey))
XCTAssertThrowsError(try P384.KeyAgreement.PrivateKey(derRepresentation: derPrivateKey))
XCTAssertThrowsError(try P521.Signing.PrivateKey(derRepresentation: derPrivateKey))
XCTAssertThrowsError(try P521.KeyAgreement.PrivateKey(derRepresentation: derPrivateKey))
// Now the public keys, which all fail.
XCTAssertThrowsError(try P256.Signing.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P256.KeyAgreement.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P384.Signing.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P384.KeyAgreement.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P521.Signing.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P521.KeyAgreement.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
// We can't reserialize the SEC1 keys, we don't emit them.
}
func testSimpleDERP384SEC1PrivateKey() throws {
let b64PrivateKey = "MIGkAgEBBDAF5FSBF7Se55zRtIyMRcKgFWAEx0ixHqeevUFerPVtvZC7U2LfGOx9GMR5V+Nj7uagBwYFK4EEACKhZANiAAQCXRQ9B+RYv6zvQVdP2xZ0/8U3nzcOdWuAMb0BvjqkE/xDhHp7DYNGEv4pWhj1hkl9Tv5jum0eqAGgzq1hLpeY2aWnwk8fqnrDVDcnWrZe/9QpmHGaOP1YJXuyaJRnBWo="
let derPrivateKey = Data(base64Encoded: b64PrivateKey)!
// Test the working private keys.
let signingKey = try orFail { try P384.Signing.PrivateKey(derRepresentation: derPrivateKey) }
let keyAgreementKey = try orFail { try P384.KeyAgreement.PrivateKey(derRepresentation: derPrivateKey) }
XCTAssertEqual(signingKey.rawRepresentation, keyAgreementKey.rawRepresentation)
// Now the non-matching private keys.
XCTAssertThrowsError(try P256.Signing.PrivateKey(derRepresentation: derPrivateKey))
XCTAssertThrowsError(try P256.KeyAgreement.PrivateKey(derRepresentation: derPrivateKey))
XCTAssertThrowsError(try P521.Signing.PrivateKey(derRepresentation: derPrivateKey))
XCTAssertThrowsError(try P521.KeyAgreement.PrivateKey(derRepresentation: derPrivateKey))
// Now the public keys, which all fail.
XCTAssertThrowsError(try P256.Signing.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P256.KeyAgreement.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P384.Signing.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P384.KeyAgreement.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P521.Signing.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P521.KeyAgreement.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
// We can't reserialize the SEC1 keys, we don't emit them.
}
func testSimpleDERP521SEC1PrivateKey() throws {
let b64PrivateKey = "MIHcAgEBBEIBFQwJ2Spw90Sn7oOnBKU6ob5Zoq9qBo6YiarvTok4jurO2VSQTyrmk02KK8EmZ/ZQqXRl/mZm0hLXwKBdUe+MPfSgBwYFK4EEACOhgYkDgYYABAEFYqZABFf2NBxxLb7rUV/pKAO8IF/ddIs2BY9dU/Ru6sQBOT6lzr5pGZC4a0o30ZGWNOvMq503Ev7/XDjW8fdPCQBGm4JGOOI/Pr008wsASEQOvloAUEQ+HOTZ94Dk3OTHqqahtgjp2BLGvMWHf1PwMsXv98nLE+LEYTQ8fzTgbUJwxg=="
let derPrivateKey = Data(base64Encoded: b64PrivateKey)!
// Test the working private keys.
let signingKey = try orFail { try P521.Signing.PrivateKey(derRepresentation: derPrivateKey) }
let keyAgreementKey = try orFail { try P521.KeyAgreement.PrivateKey(derRepresentation: derPrivateKey) }
XCTAssertEqual(signingKey.rawRepresentation, keyAgreementKey.rawRepresentation)
// Now the non-matching private keys.
XCTAssertThrowsError(try P256.Signing.PrivateKey(derRepresentation: derPrivateKey))
XCTAssertThrowsError(try P256.KeyAgreement.PrivateKey(derRepresentation: derPrivateKey))
XCTAssertThrowsError(try P384.Signing.PrivateKey(derRepresentation: derPrivateKey))
XCTAssertThrowsError(try P384.KeyAgreement.PrivateKey(derRepresentation: derPrivateKey))
// Now the public keys, which all fail.
XCTAssertThrowsError(try P256.Signing.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P256.KeyAgreement.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P384.Signing.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P384.KeyAgreement.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P521.Signing.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
XCTAssertThrowsError(try P521.KeyAgreement.PublicKey(derRepresentation: derPrivateKey)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .unexpectedFieldType)
}
// We can't reserialize the SEC1 keys, we don't emit them.
}
func testInvalidPEMP521PKCS8() throws {
// This key is generated by an older OpenSSL or LibreSSL, which forgets to zero-pad the
// private key. We want to validate that we correctly reject this.
let pemPrivateKey = """
-----BEGIN PRIVATE KEY-----
MIHtAgEAMBAGByqGSM49AgEGBSuBBAAjBIHVMIHSAgEBBEFtmqAvS3jccVAam+Yn
y3iiwMi6q8roJeAtxqdOkZUCdZ3Rf6lD0nehiH4QN7xOrhHrAIeZWe0ld2XUawGF
H0ltO6GBiQOBhgAEAJHKKLTdXvL1DyZX4TI0kEi63I9cwtg09CQZ/Bp+K9MWsx9S
bjIEBcr3yEKlUmRW+TKNoXo50ycbl4DlLknN2VbGAXE22e2sz8RQ1omvDE6lLBvB
A5UvlNrk6ioTg2tumXD3Co06r1Hn+7lkkcjfT5mZO4jy7vP9ItvprJrIa6ySzVQ8
-----END PRIVATE KEY-----
"""
// This is not a valid private key for P521.
XCTAssertThrowsError(try P521.Signing.PrivateKey(pemRepresentation: pemPrivateKey))
XCTAssertThrowsError(try P521.KeyAgreement.PrivateKey(pemRepresentation: pemPrivateKey))
}
func testInvalidDERP521PKCS8() throws {
// This key is generated by an older OpenSSL or LibreSSL, which forgets to zero-pad the
// private key. We want to validate that we correctly reject this.
let b64PrivateKey = "MIHtAgEAMBAGByqGSM49AgEGBSuBBAAjBIHVMIHSAgEBBEG1erZ/O4JMc11uT3SLJPQ4ICWbEdM0e8d1mI/uUhbZ6nE90jq38FZYkvKf6q3d1DUWJj8aWjktq2+gfCSD+XFulaGBiQOBhgAEAYKbRHQpjqaS17SwXAQzpUct9i+TyVUdDtQVpwxVTVhuklvTEWqypvSAyhqo9nPf/aKHl4fQD94Fd3RTzOmW8x+nAGnWGO6ZG1OQ72NCmT9fyB8dG2ifeDpICKuEq6reVIBDSQvi5F98C/lEIgu2r+MGYWj+S7pjEmSqksSjsJ3Oxo9U"
let derPrivateKey = Data(base64Encoded: b64PrivateKey)!
// This is not a valid private key for P521.
XCTAssertThrowsError(try P521.Signing.PrivateKey(derRepresentation: derPrivateKey))
XCTAssertThrowsError(try P521.KeyAgreement.PrivateKey(derRepresentation: derPrivateKey))
}
func testExcessiveDepth() throws {
// This is an ASN1 document that has a deeply nested structure: Sequences within
// Sequences, for eleven levels.
let badASN1: [UInt8] = [
0x30, 0x15, 0x30, 0x13, 0x30, 0x11, 0x30, 0x0f, 0x30, 0x0d,
0x30, 0x0b, 0x30, 0x09, 0x30, 0x07, 0x30, 0x05, 0x30, 0x03,
0x02, 0x01, 0x00 // Integer zero
]
XCTAssertThrowsError(try ASN1.parse(badASN1)) { error in
XCTAssertEqual(error as? CryptoKitASN1Error, .invalidASN1Object)
}
}
func testCanaryValuesOfFixedWidthIntegerEncoding() throws {
// This test exercises integer encoding with all the stdlib fixed width integers, to confirm they work well.
// We try four or five values for each: max, min, 0, and 1, as well as -1 for the signed integers.
// This correctly validates that we know how to handle twos complement integers.
func oneShotSerialize<T: FixedWidthInteger & ASN1IntegerRepresentable>(_ t: T) -> [UInt8] {
var serializer = ASN1.Serializer()
XCTAssertNoThrow(try serializer.serialize(t))
return serializer.serializedBytes
}
XCTAssertEqual(oneShotSerialize(UInt8.max), [0x02, 0x02, 0x00, 0xFF])
XCTAssertEqual(oneShotSerialize(UInt8.min), [0x02, 0x01, 0x00])
XCTAssertEqual(oneShotSerialize(UInt8(0)), [0x02, 0x01, 0x00])
XCTAssertEqual(oneShotSerialize(UInt8(1)), [0x02, 0x01, 0x01])
XCTAssertEqual(oneShotSerialize(UInt16.max), [0x02, 0x03, 0x00, 0xFF, 0xFF])
XCTAssertEqual(oneShotSerialize(UInt16.min), [0x02, 0x01, 0x00])
XCTAssertEqual(oneShotSerialize(UInt16(0)), [0x02, 0x01, 0x00])
XCTAssertEqual(oneShotSerialize(UInt16(1)), [0x02, 0x01, 0x01])
XCTAssertEqual(oneShotSerialize(UInt32.max), [0x02, 0x05, 0x00, 0xFF, 0xFF, 0xFF, 0xFF])
XCTAssertEqual(oneShotSerialize(UInt32.min), [0x02, 0x01, 0x00])
XCTAssertEqual(oneShotSerialize(UInt32(0)), [0x02, 0x01, 0x00])
XCTAssertEqual(oneShotSerialize(UInt32(1)), [0x02, 0x01, 0x01])
XCTAssertEqual(oneShotSerialize(UInt64.max), [0x02, 0x09, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF])
XCTAssertEqual(oneShotSerialize(UInt64.min), [0x02, 0x01, 0x00])
XCTAssertEqual(oneShotSerialize(UInt64(0)), [0x02, 0x01, 0x00])
XCTAssertEqual(oneShotSerialize(UInt64(1)), [0x02, 0x01, 0x01])
XCTAssertEqual(oneShotSerialize(Int8.max), [0x02, 0x01, 0x7F])
XCTAssertEqual(oneShotSerialize(Int8.min), [0x02, 0x01, 0x80])
XCTAssertEqual(oneShotSerialize(Int8(0)), [0x02, 0x01, 0x00])
XCTAssertEqual(oneShotSerialize(Int8(1)), [0x02, 0x01, 0x01])
XCTAssertEqual(oneShotSerialize(Int8(-1)), [0x02, 0x01, 0xFF])
XCTAssertEqual(oneShotSerialize(Int16.max), [0x02, 0x02, 0x7F, 0xFF])
XCTAssertEqual(oneShotSerialize(Int16.min), [0x02, 0x02, 0x80, 0x00])
XCTAssertEqual(oneShotSerialize(Int16(0)), [0x02, 0x01, 0x00])
XCTAssertEqual(oneShotSerialize(Int16(1)), [0x02, 0x01, 0x01])
XCTAssertEqual(oneShotSerialize(Int16(-1)), [0x02, 0x01, 0xFF])
XCTAssertEqual(oneShotSerialize(Int32.max), [0x02, 0x04, 0x7F, 0xFF, 0xFF, 0xFF])
XCTAssertEqual(oneShotSerialize(Int32.min), [0x02, 0x04, 0x80, 0x00, 0x00, 0x00])
XCTAssertEqual(oneShotSerialize(Int32(0)), [0x02, 0x01, 0x00])
XCTAssertEqual(oneShotSerialize(Int32(1)), [0x02, 0x01, 0x01])
XCTAssertEqual(oneShotSerialize(Int32(-1)), [0x02, 0x01, 0xFF])
XCTAssertEqual(oneShotSerialize(Int64.max), [0x02, 0x08, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF])
XCTAssertEqual(oneShotSerialize(Int64.min), [0x02, 0x08, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00])
XCTAssertEqual(oneShotSerialize(Int64(0)), [0x02, 0x01, 0x00])
XCTAssertEqual(oneShotSerialize(Int64(1)), [0x02, 0x01, 0x01])
XCTAssertEqual(oneShotSerialize(Int64(-1)), [0x02, 0x01, 0xFF])
}
func testCanaryValuesOfFixedWidthIntegerDecoding() throws {
// This test exercises integer decoding with all the stdlib fixed width integers, to confirm they work well.
// We try four or five values for each: max, min, 0, and 1, as well as -1 for the signed integers.
// This correctly validates that we know how to handle twos complement integers.
func oneShotDecode<T: FixedWidthInteger & ASN1IntegerRepresentable>(_ bytes: [UInt8]) throws -> T {
let baseNode = try orFail { try ASN1.parse(bytes) }
return try orFail { try T(asn1Encoded: baseNode) }
}
XCTAssertEqual(UInt8.max, try oneShotDecode([0x02, 0x02, 0x00, 0xFF]))
XCTAssertEqual(UInt8.min, try oneShotDecode([0x02, 0x01, 0x00]))
XCTAssertEqual(UInt8(0), try oneShotDecode([0x02, 0x01, 0x00]))
XCTAssertEqual(UInt8(1), try oneShotDecode([0x02, 0x01, 0x01]))
XCTAssertEqual(UInt16.max, try oneShotDecode([0x02, 0x03, 0x00, 0xFF, 0xFF]))
XCTAssertEqual(UInt16.min, try oneShotDecode([0x02, 0x01, 0x00]))
XCTAssertEqual(UInt16(0), try oneShotDecode([0x02, 0x01, 0x00]))
XCTAssertEqual(UInt16(1), try oneShotDecode([0x02, 0x01, 0x01]))
XCTAssertEqual(UInt32.max, try oneShotDecode([0x02, 0x05, 0x00, 0xFF, 0xFF, 0xFF, 0xFF]))
XCTAssertEqual(UInt32.min, try oneShotDecode([0x02, 0x01, 0x00]))
XCTAssertEqual(UInt32(0), try oneShotDecode([0x02, 0x01, 0x00]))
XCTAssertEqual(UInt32(1), try oneShotDecode([0x02, 0x01, 0x01]))
XCTAssertEqual(UInt64.max, try oneShotDecode([0x02, 0x09, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF]))
XCTAssertEqual(UInt64.min, try oneShotDecode([0x02, 0x01, 0x00]))
XCTAssertEqual(UInt64(0), try oneShotDecode([0x02, 0x01, 0x00]))
XCTAssertEqual(UInt64(1), try oneShotDecode([0x02, 0x01, 0x01]))
XCTAssertEqual(Int8.max, try oneShotDecode([0x02, 0x01, 0x7F]))
XCTAssertEqual(Int8.min, try oneShotDecode([0x02, 0x01, 0x80]))
XCTAssertEqual(Int8(0), try oneShotDecode([0x02, 0x01, 0x00]))
XCTAssertEqual(Int8(1), try oneShotDecode([0x02, 0x01, 0x01]))
XCTAssertEqual(Int8(-1), try oneShotDecode([0x02, 0x01, 0xFF]))
XCTAssertEqual(Int16.max, try oneShotDecode([0x02, 0x02, 0x7F, 0xFF]))
XCTAssertEqual(Int16.min, try oneShotDecode([0x02, 0x02, 0x80, 0x00]))
XCTAssertEqual(Int16(0), try oneShotDecode([0x02, 0x01, 0x00]))
XCTAssertEqual(Int16(1), try oneShotDecode([0x02, 0x01, 0x01]))
XCTAssertEqual(Int16(-1), try oneShotDecode([0x02, 0x01, 0xFF]))
XCTAssertEqual(Int32.max, try oneShotDecode([0x02, 0x04, 0x7F, 0xFF, 0xFF, 0xFF]))
XCTAssertEqual(Int32.min, try oneShotDecode([0x02, 0x04, 0x80, 0x00, 0x00, 0x00]))
XCTAssertEqual(Int32(0), try oneShotDecode([0x02, 0x01, 0x00]))
XCTAssertEqual(Int32(1), try oneShotDecode([0x02, 0x01, 0x01]))
XCTAssertEqual(Int32(-1), try oneShotDecode([0x02, 0x01, 0xFF]))
XCTAssertEqual(Int64.max, try oneShotDecode([0x02, 0x08, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF]))
XCTAssertEqual(Int64.min, try oneShotDecode([0x02, 0x08, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]))
XCTAssertEqual(Int64(0), try oneShotDecode([0x02, 0x01, 0x00]))
XCTAssertEqual(Int64(1), try oneShotDecode([0x02, 0x01, 0x01]))
XCTAssertEqual(Int64(-1), try oneShotDecode([0x02, 0x01, 0xFF]))
}
func testWeirdBigIntSerialization() throws {
// This is a bigint we can hook to get the test function to do weird things.
// We just take and accept arbitrary bytes.
struct BigIntOfBytes: ASN1IntegerRepresentable, Equatable {
var bytes: [UInt8]
static let isSigned: Bool = false
init(bytes: [UInt8]) {
self.bytes = bytes
}
init(asn1IntegerBytes: ArraySlice<UInt8>) {
self.bytes = Array(asn1IntegerBytes)
}
func withBigEndianIntegerBytes<ReturnType>(_ body: ([UInt8]) throws -> ReturnType) rethrows -> ReturnType {
return try body(self.bytes)
}
}
func oneShotSerialize(_ t: BigIntOfBytes) -> [UInt8] {
var serializer = ASN1.Serializer()
XCTAssertNoThrow(try serializer.serialize(t))
return serializer.serializedBytes
}
func oneShotDecode(_ bytes: [UInt8]) throws -> BigIntOfBytes {
let baseNode = try orFail { try ASN1.parse(bytes) }
return try orFail { try BigIntOfBytes(asn1Encoded: baseNode) }
}
// Leading zero bytes should be stripped.
let leadingZeros = BigIntOfBytes(bytes: [0, 0, 0, 0, 1])
XCTAssertEqual(oneShotSerialize(leadingZeros), [0x02, 0x01, 0x01])
// Except when they are guarding a 1 in the next byte.
let fakeOutLeadingZeros = BigIntOfBytes(bytes: [0x00, 0x00, 0x80])
XCTAssertEqual(oneShotSerialize(fakeOutLeadingZeros), [0x02, 0x02, 0x00, 0x80])
// And a leading zero is removed for unsigned bigints.
let leadingZeroFromWire = try oneShotDecode([0x02, 0x02, 0x00, 0x80])
XCTAssertEqual(leadingZeroFromWire.bytes, [0x80])
// Check encoding and decoding results should be same
let smallBytes = BigIntOfBytes(bytes: [1, 1, 1])
XCTAssertEqual(smallBytes, try oneShotDecode(oneShotSerialize(smallBytes)))
let largeBytes = BigIntOfBytes(bytes: .init(repeating: 1, count: 1024))
XCTAssertEqual(largeBytes, try oneShotDecode(oneShotSerialize(largeBytes)))
}
}
#endif
|