File: ASN1.swift

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (340 lines) | stat: -rw-r--r-- 14,303 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
//===----------------------------------------------------------------------===//
//
// This source file is part of the SwiftCrypto open source project
//
// Copyright (c) 2019 Apple Inc. and the SwiftCrypto project authors
// Licensed under Apache License v2.0
//
// See LICENSE.txt for license information
// See CONTRIBUTORS.md for the list of SwiftCrypto project authors
//
// SPDX-License-Identifier: Apache-2.0
//
//===----------------------------------------------------------------------===//
import Foundation
import XCTest

#if CRYPTO_IN_SWIFTPM && !CRYPTO_IN_SWIFTPM_FORCE_BUILD_API
// Skip tests that require @testable imports of CryptoKit.
#else
#if !CRYPTO_IN_SWIFTPM_FORCE_BUILD_API
@testable import CryptoKit
#else
@_implementationOnly import CCryptoBoringSSL
@testable import Crypto
#endif

// This module implements "just enough" ASN.1. Specifically, we implement exactly enough ASN.1 DER parsing to handle
// taking the Wycheproof input of EC public keys and to turn them into the x963 representation of the key. This is not
// intended as production quality code, it's really intended to be just enough to get us through these tests.
//
// Let's talk about the DER encoding of ASN.1. DER is fundamentally a TLV (type length value) encoding. Each element is
// made of up some bytes that identify its type, some bytes that identify the length, and then the contents. In the full
// scheme of ASN.1 we care about a lot of things about its structure, but for our case we only care about a few kinds of
// tag. To work out the tag we need, we can look at the X.509 representation of an EC key, from RFC 5480:
//
// SubjectPublicKeyInfo  ::=  SEQUENCE  {
//   algorithm         AlgorithmIdentifier,
//   subjectPublicKey  BIT STRING
// }
//
// AlgorithmIdentifier  ::=  SEQUENCE  {
//   algorithm   OBJECT IDENTIFIER,
//   parameters  ANY DEFINED BY algorithm OPTIONAL
// }
//
// ECParameters ::= CHOICE {
//   namedCurve         OBJECT IDENTIFIER
//   -- implicitCurve   NULL
//   -- specifiedCurve  SpecifiedECDomain
// }
//
// For us, we expect the ECParameters structure to be using the namedCurve representation only.
//
// SEQUENCE, BIT STRING, and OBJECT IDENTIFIER are all primitive representations for ASN.1. Their relevant characteristics are:
//
// ┌───────────────────┬────────────┬──────────────────────────────────────────────┬────────────────┬───────────┐
// │ Name              │ Tag Number │ Primitive                                    │ Encoding Class │ Tag Bytes │
// ├───────────────────┼────────────┼──────────────────────────────────────────────┼────────────────┼───────────┤
// │ SEQUENCE          │       0x10 │                                            N │ Universal      │      0x30 │
// │ BIT STRING        │       0x03 │ Y (we don't support constructed bit strings) │ Universal      │      0x03 │
// │ OBJECT IDENTIFIER │       0x06 │                                            Y │ Universal      │      0x06 │
// └───────────────────┴────────────┴──────────────────────────────────────────────┴────────────────┴───────────┘
//
// In our case, we don't expect to see any parameters, and we're going to ignore them.
//
// The subjectPublicKey is required to be in x9.62 format, either compressed or uncompressed, so we can pass it directly to the
// initializers for CryptoKit once we've done the extraction.
//
// This is the complete set of things we need to be able to parse. It's not that big. Let's see how the code looks.

// MARK: - SPKI

struct ASN1SubjectPublicKeyInfo {
    var algorithm: ASN1AlgorithmIdentifier

    var subjectPublicKey: ASN1BitString

    init(fromASN1 bytes: inout ArraySlice<UInt8>) throws {
        guard bytes.first == 0x30 else {
            throw ECDHTestErrors.ParseSPKIFailure
        }
        bytes = bytes.dropFirst()

        var content = try bytes.readElementContent()

        self.algorithm = try ASN1AlgorithmIdentifier(fromASN1: &content)
        self.subjectPublicKey = try ASN1BitString(fromASN1: &content)
    }
}

// MARK: - AlgorithmIdentifier

struct ASN1AlgorithmIdentifier {
    var algorithm: ASN1ObjectIdentifier

    var namedCurve: ASN1ObjectIdentifier

    init(fromASN1 bytes: inout ArraySlice<UInt8>) throws {
        guard bytes.first == 0x30 else {
            throw ECDHTestErrors.ParseSPKIFailure
        }
        bytes = bytes.dropFirst()

        var content = try bytes.readElementContent()

        self.algorithm = try ASN1ObjectIdentifier(fromASN1: &content)
        self.namedCurve = try ASN1ObjectIdentifier(fromASN1: &content)
    }
}

// MARK: - Bitstring

// A bitstring is a representation of...well...some bits.
struct ASN1BitString {
    private var bytes: [UInt8]

    private static let tagByte = UInt8(0x03)

    init(fromASN1 bytes: inout ArraySlice<UInt8>) throws {
        guard bytes.first == ASN1BitString.tagByte else {
            throw ECDHTestErrors.ParseSPKIFailure
        }
        bytes = bytes.dropFirst()

        var content = try bytes.readElementContent()

        // The initial octet explains how many of the bits in the _final_ octet are not part of the bitstring.
        // The only value we support here is 0.
        guard content.first == 0 else {
            throw ECDHTestErrors.ParseSPKIFailure
        }

        content = content.dropFirst()
        self.bytes = Array(content)
    }
}

extension ASN1BitString: ContiguousBytes {
    func withUnsafeBytes<R>(_ body: (UnsafeRawBufferPointer) throws -> R) rethrows -> R {
        try self.bytes.withUnsafeBytes(body)
    }
}

// MARK: - ObjectIdentifier

// An Object Identifier is a representation of some kind of object: really any kind of object.
//
// It represents a node in an OID hierarchy, and is usually represented as an ordered sequence of numbers.
//
// We mostly don't care about the semantics of the thing, we just care about being able to store and compare them.
struct ASN1ObjectIdentifier {
    private var oidComponents: [UInt]

    private static let tagByte = UInt8(0x06)

    init(fromASN1 bytes: inout ArraySlice<UInt8>) throws {
        guard bytes.first == ASN1ObjectIdentifier.tagByte else {
            throw ECDHTestErrors.ParseSPKIFailure
        }
        bytes = bytes.dropFirst()

        var content = try bytes.readElementContent()

        // Now we have to parse the content. From the spec:
        //
        // > Each subidentifier is represented as a series of (one or more) octets. Bit 8 of each octet indicates whether it
        // > is the last in the series: bit 8 of the last octet is zero, bit 8 of each preceding octet is one. Bits 7 to 1 of
        // > the octets in the series collectively encode the subidentifier. Conceptually, these groups of bits are concatenated
        // > to form an unsigned binary number whose most significant bit is bit 7 of the first octet and whose least significant
        // > bit is bit 1 of the last octet. The subidentifier shall be encoded in the fewest possible octets[...].
        // >
        // > The number of subidentifiers (N) shall be one less than the number of object identifier components in the object identifier
        // > value being encoded.
        // >
        // > The numerical value of the first subidentifier is derived from the values of the first _two_ object identifier components
        // > in the object identifier value being encoded, using the formula:
        // >
        // >  (X*40) + Y
        // >
        // > where X is the value of the first object identifier component and Y is the value of the second object identifier component.
        //
        // Yeah, this is a bit bananas, but basically there are only 3 first OID components (0, 1, 2) and there are no more than 39 children
        // of nodes 0 or 1. In my view this is too clever by half, but the ITU.T didn't ask for my opinion when they were coming up with this
        // scheme, likely because I was in middle school at the time.
        var subcomponents = [UInt]()
        while content.count > 0 {
            subcomponents.append(try content.readOIDSubidentifier())
        }

        guard subcomponents.count >= 2 else {
            throw ECDHTestErrors.ParseSPKIFailure
        }

        // Now we need to expand the subcomponents out. This means we need to undo the step above. The first component will be in the range 0..<40
        // when the first oidComponent is 0, 40..<80 when the first oidComponent is 1, and 80+ when the first oidComponent is 2.
        var oidComponents = [UInt]()
        oidComponents.reserveCapacity(subcomponents.count + 1)

        switch subcomponents.first! {
        case ..<40:
            oidComponents.append(0)
            oidComponents.append(subcomponents.first!)
        case 40 ..< 80:
            oidComponents.append(1)
            oidComponents.append(subcomponents.first! - 40)
        default:
            oidComponents.append(2)
            oidComponents.append(subcomponents.first! - 80)
        }

        oidComponents.append(contentsOf: subcomponents.dropFirst())

        self.oidComponents = oidComponents
    }
}

extension ASN1ObjectIdentifier: Hashable {}

extension ASN1ObjectIdentifier: ExpressibleByArrayLiteral {
    init(arrayLiteral elements: UInt...) {
        self.oidComponents = elements
    }
}

extension ASN1ObjectIdentifier {
    enum NamedCurves {
        static let secp256r1: ASN1ObjectIdentifier = [1, 2, 840, 10045, 3, 1, 7]

        static let secp384r1: ASN1ObjectIdentifier = [1, 3, 132, 0, 34]

        static let secp521r1: ASN1ObjectIdentifier = [1, 3, 132, 0, 35]
    }

    enum AlgorithmIdentifier {
        static let idEcPublicKey: ASN1ObjectIdentifier = [1, 2, 840, 10045, 2, 1]
    }
}

// MARK: - Helpers

extension ArraySlice where Element == UInt8 {
    /// Returns an ArraySlice with the length of the ASN.1 section, and slices this slice to cover the remaining bytes.
    /// Requires the length to be at `startIndex`.
    mutating func readElementContent() throws -> ArraySlice<UInt8> {
        // We need to examine the start of this array as length bytes. This is a bit complex. For now, let's
        // only handle the definite form and error on the indefinite one.
        guard let firstByte = self.first else {
            throw ECDHTestErrors.ParseSPKIFailure
        }

        self = self.dropFirst()

        let length: UInt

        switch firstByte {
        case 0x80:
            // Indefinite form. Unsupported
            throw ECDHTestErrors.ParseSPKIFailure
        case let val where val & 0x80 == 0x80:
            // Top bit is set, this is the long form. The remaining 7 bits of this octet
            // determine how long the length field is.
            let fieldLength = Int(val & 0x7F)
            guard self.count >= fieldLength else {
                throw ECDHTestErrors.ParseSPKIFailure
            }

            // We need to read the length bytes.
            let lengthBytes = self.prefix(fieldLength)
            self = self.dropFirst(fieldLength)
            length = try UInt(bigEndianBytes: lengthBytes)
        case let val:
            // Short form, the length is only one 7-bit integer.
            length = UInt(val)
        }

        guard self.count >= length else {
            throw ECDHTestErrors.ParseSPKIFailure
        }

        let content = self.prefix(Int(length))
        self = self.dropFirst(Int(length))
        return content
    }

    mutating func readOIDSubidentifier() throws -> UInt {
        // In principle OID subidentifiers can be too large to fit into a UInt. We are choosing to not care about that
        // because for us it shouldn't matter.
        guard let subidentifierEndIndex = self.firstIndex(where: { $0 & 0x80 == 0x00 }) else {
            throw ECDHTestErrors.ParseSPKIFailure
        }

        let oidSlice = self[self.startIndex ... subidentifierEndIndex]
        self = self[self.index(after: subidentifierEndIndex)...]

        // We need to compact the bits. These are 7-bit integers, which is really awkward.
        guard let int = UInt(sevenBitBigEndianBytes: oidSlice) else {
            // too big to parse, happens for Wycheproof vectors with comment "large integer in oid"
            throw ECDHTestErrors.ParseSPKIFailure
        }
        return int
    }
}

extension UInt {
    init<Bytes: Collection>(bigEndianBytes bytes: Bytes) throws where Bytes.Element == UInt8 {
        guard bytes.count <= MemoryLayout<UInt>.size else {
            throw ECDHTestErrors.ParseSPKIFailure
        }

        self = 0
        let shiftSizes = stride(from: 0, to: bytes.count * 8, by: 8).reversed()

        var index = bytes.startIndex
        for shift in shiftSizes {
            self |= UInt(bytes[index]) << shift
            bytes.formIndex(after: &index)
        }
    }

    init?<Bytes: Collection>(sevenBitBigEndianBytes bytes: Bytes) where Bytes.Element == UInt8 {
        // We need to know how many bytes we _need_ to store this "int".
        guard ((bytes.count * 7) + 7) / 8 <= MemoryLayout<UInt>.size else {
            // Too big to parse, this happens for e.g. Wycheproof in testvector 'ecdh_secp256r1_test' for
            // tests with comment "large integer in oid", thus we let this
            // initializer be failable.
            return nil
        }

        self = 0
        let shiftSizes = stride(from: 0, to: bytes.count * 7, by: 7).reversed()

        var index = bytes.startIndex
        for shift in shiftSizes {
            self |= UInt(bytes[index] & 0x7F) << shift
            bytes.formIndex(after: &index)
        }
    }
}

#endif // CRYPTO_IN_SWIFTPM