1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the SwiftCrypto open source project
//
// Copyright (c) 2019-2020 Apple Inc. and the SwiftCrypto project authors
// Licensed under Apache License v2.0
//
// See LICENSE.txt for license information
// See CONTRIBUTORS.md for the list of SwiftCrypto project authors
//
// SPDX-License-Identifier: Apache-2.0
//
//===----------------------------------------------------------------------===//
import Foundation
import XCTest
#if CRYPTO_IN_SWIFTPM && !CRYPTO_IN_SWIFTPM_FORCE_BUILD_API
// Skip tests that require @testable imports of CryptoKit.
#else
#if !CRYPTO_IN_SWIFTPM_FORCE_BUILD_API
@testable import CryptoKit
#else
@testable import Crypto
#endif
struct ECDSATestGroup: Codable {
let tests: [SignatureTestVector]
let publicKey: ECDSAKey
}
struct ECDSAKey: Codable {
let uncompressed: String
}
struct SignatureTestVector: Codable {
let comment: String
let msg: String
let sig: String
let result: String
let flags: [String]
let tcId: Int
}
class SignatureTests: XCTestCase {
let data = "Testing Signatures".data(using: String.Encoding.utf8)!
func testWycheproofP256DER() throws {
try orFail {
try wycheproofTest(
bundleType: self,
jsonName: "ecdsa_secp256r1_sha256_test",
testFunction: { (group: ECDSATestGroup) in
try orFail { try testGroup(group: group, curve: P256.Signing.self, hashFunction: SHA256.self, deserializeSignature: P256.Signing.ECDSASignature.init(derRepresentation:)) }
})
}
try orFail {
try wycheproofTest(
bundleType: self,
jsonName: "ecdsa_secp256r1_sha512_test",
testFunction: { (group: ECDSATestGroup) in
try orFail { try testGroup(group: group, curve: P256.Signing.self, hashFunction: SHA512.self, deserializeSignature: P256.Signing.ECDSASignature.init(derRepresentation:)) }
})
}
}
func testWycheproofP384DER() throws {
try orFail {
try wycheproofTest(
bundleType: self,
jsonName: "ecdsa_secp384r1_sha384_test",
testFunction: { (group: ECDSATestGroup) in
try orFail { try testGroup(group: group, curve: P384.Signing.self, hashFunction: SHA384.self, deserializeSignature: P384.Signing.ECDSASignature.init(derRepresentation:)) }
})
}
try orFail {
try wycheproofTest(
bundleType: self,
jsonName: "ecdsa_secp384r1_sha512_test",
testFunction: { (group: ECDSATestGroup) in
try orFail { try testGroup(group: group, curve: P384.Signing.self, hashFunction: SHA512.self, deserializeSignature: P384.Signing.ECDSASignature.init(derRepresentation:)) }
})
}
}
func testWycheproofP521DER() throws {
try orFail {
try wycheproofTest(
bundleType: self,
jsonName: "ecdsa_secp521r1_sha512_test",
testFunction: { (group: ECDSATestGroup) in
try orFail { try testGroup(group: group, curve: P521.Signing.self, hashFunction: SHA512.self, deserializeSignature: P521.Signing.ECDSASignature.init(derRepresentation:)) }
})
}
}
func testWycheproofP256P1363() throws {
try orFail {
try wycheproofTest(
bundleType: self,
jsonName: "ecdsa_secp256r1_sha256_p1363_test",
testFunction: { (group: ECDSATestGroup) in
try orFail { try testGroup(group: group, curve: P256.Signing.self, hashFunction: SHA256.self, deserializeSignature: P256.Signing.ECDSASignature.init(rawRepresentation:)) }
})
}
try orFail {
try wycheproofTest(
bundleType: self,
jsonName: "ecdsa_secp256r1_sha512_p1363_test",
testFunction: { (group: ECDSATestGroup) in
try orFail { try testGroup(group: group, curve: P256.Signing.self, hashFunction: SHA512.self, deserializeSignature: P256.Signing.ECDSASignature.init(rawRepresentation:)) }
})
}
}
func testWycheproofP384P1363() throws {
try orFail {
try wycheproofTest(
bundleType: self,
jsonName: "ecdsa_secp384r1_sha384_p1363_test",
testFunction: { (group: ECDSATestGroup) in
try orFail { try testGroup(group: group, curve: P384.Signing.self, hashFunction: SHA384.self, deserializeSignature: P384.Signing.ECDSASignature.init(rawRepresentation:)) }
})
}
try orFail {
try wycheproofTest(
bundleType: self,
jsonName: "ecdsa_secp384r1_sha512_p1363_test",
testFunction: { (group: ECDSATestGroup) in
try orFail { try testGroup(group: group, curve: P384.Signing.self, hashFunction: SHA512.self, deserializeSignature: P384.Signing.ECDSASignature.init(rawRepresentation:)) }
})
}
}
func testWycheproofP521P1363() throws {
try orFail {
try wycheproofTest(
bundleType: self,
jsonName: "ecdsa_secp521r1_sha512_p1363_test",
testFunction: { (group: ECDSATestGroup) in
try orFail { try testGroup(group: group, curve: P521.Signing.self, hashFunction: SHA512.self, deserializeSignature: P521.Signing.ECDSASignature.init(rawRepresentation:)) }
})
}
}
func testGroup<C: NISTSigning, HF: HashFunction>(group: ECDSATestGroup, curve: C.Type, hashFunction: HF.Type, deserializeSignature: (Data) throws -> C.ECDSASignature, file: StaticString = #file, line: UInt = #line) throws where C.ECDSASignature == C.PublicKey.Signature {
let keyBytes = try orFail(file: file, line: line) { try Array(hexString: group.publicKey.uncompressed) }
let key = try orFail(file: file, line: line) { try C.PublicKey(x963Representation: keyBytes) }
for testVector in group.tests {
if testVector.msg == "" {
continue
}
var isValid = false
do {
let sig = try Data(hexString: testVector.sig)
let msg = try Data(hexString: testVector.msg)
let digest = HF.hash(data: msg)
let signature = try deserializeSignature(sig)
isValid = key.isValidSignature(signature, for: digest)
} catch {
XCTAssert(testVector.result == "invalid" || testVector.result == "acceptable", "Test ID: \(testVector.tcId) is valid, but failed \(error.localizedDescription).", file: file, line: line)
continue
}
switch testVector.result {
case "valid": XCTAssert(isValid, "Test vector is valid, but is rejected \(testVector.tcId)", file: file, line: line)
case "acceptable": do {
XCTAssert(isValid, file: file, line: line)
}
case "invalid": XCTAssert(!isValid, "Test ID: \(testVector.tcId) is valid, but failed.", file: file, line: line)
default:
XCTFail("Unhandled test vector", file: file, line: line)
}
}
}
func testP256Usage() throws {
let signingKey = P256.Signing.PrivateKey()
let signature = try orFail { try signingKey.signature(for: data) }
XCTAssert(signingKey.publicKey.isValidSignature(signature, for: data))
}
func testP256Representations() throws {
let signingKey = P256.Signing.PrivateKey()
let signature = try orFail { try signingKey.signature(for: data) }
XCTAssertEqual(signature.composite.r + signature.composite.s, signature.rawRepresentation)
let signatureBytesFromPointer = signature.withUnsafeBytes { Data($0) }
XCTAssertEqual(signature.rawRepresentation, signatureBytesFromPointer)
let roundTrippedSignature = try orFail { try P256.Signing.ECDSASignature(derRepresentation: signature.derRepresentation) }
XCTAssertEqual(signature.rawRepresentation, roundTrippedSignature.rawRepresentation)
}
func testP384Representations() throws {
let signingKey = P384.Signing.PrivateKey()
let signature = try orFail { try signingKey.signature(for: data) }
XCTAssertEqual(signature.composite.r + signature.composite.s, signature.rawRepresentation)
let signatureBytesFromPointer = signature.withUnsafeBytes { Data($0) }
XCTAssertEqual(signature.rawRepresentation, signatureBytesFromPointer)
let roundTrippedSignature = try orFail { try P384.Signing.ECDSASignature(derRepresentation: signature.derRepresentation) }
XCTAssertEqual(signature.rawRepresentation, roundTrippedSignature.rawRepresentation)
}
func testP521Representations() throws {
let signingKey = P521.Signing.PrivateKey()
let signature = try orFail { try signingKey.signature(for: data) }
XCTAssertEqual(signature.composite.r + signature.composite.s, signature.rawRepresentation)
let signatureBytesFromPointer = signature.withUnsafeBytes { Data($0) }
XCTAssertEqual(signature.rawRepresentation, signatureBytesFromPointer)
let roundTrippedSignature = try orFail { try P521.Signing.ECDSASignature(derRepresentation: signature.derRepresentation) }
XCTAssertEqual(signature.rawRepresentation, roundTrippedSignature.rawRepresentation)
}
func testProperSignatureSizes() throws {
XCTAssertThrowsError(try P256.Signing.ECDSASignature(rawRepresentation: Array("hello".utf8))) { error in
guard case .some(.incorrectParameterSize) = error as? CryptoKitError else {
XCTFail("Incorrect error: \(error)")
return
}
}
XCTAssertThrowsError(try P384.Signing.ECDSASignature(rawRepresentation: Array("hello".utf8))) { error in
guard case .some(.incorrectParameterSize) = error as? CryptoKitError else {
XCTFail("Incorrect error: \(error)")
return
}
}
XCTAssertThrowsError(try P521.Signing.ECDSASignature(rawRepresentation: Array("hello".utf8))) { error in
guard case .some(.incorrectParameterSize) = error as? CryptoKitError else {
XCTFail("Incorrect error: \(error)")
return
}
}
}
func testP256SigningDiscontiguousData() throws {
let signingKey = P256.Signing.PrivateKey()
// We generate 4 signatures here, all of which should be identical. We validate them all, which means there is a lot of validating here:
// 8 in total.
let (contiguousData, discontiguousData) = Array(data).asDataProtocols()
let (contiguousContiguous, discontiguousContiguous) = try orFail { Array(try signingKey.signature(for: contiguousData).derRepresentation).asDataProtocols() }
let (contiguousDiscontiguous, discontiguousDiscontiguous) = try orFail { Array(try signingKey.signature(for: discontiguousData).derRepresentation).asDataProtocols() }
XCTAssertTrue(signingKey.publicKey.isValidSignature(try .init(derRepresentation: contiguousContiguous), for: contiguousData))
XCTAssertTrue(signingKey.publicKey.isValidSignature(try .init(derRepresentation: discontiguousContiguous), for: contiguousData))
XCTAssertTrue(signingKey.publicKey.isValidSignature(try .init(derRepresentation: contiguousDiscontiguous), for: contiguousData))
XCTAssertTrue(signingKey.publicKey.isValidSignature(try .init(derRepresentation: discontiguousDiscontiguous), for: contiguousData))
XCTAssertTrue(signingKey.publicKey.isValidSignature(try .init(derRepresentation: contiguousContiguous), for: discontiguousData))
XCTAssertTrue(signingKey.publicKey.isValidSignature(try .init(derRepresentation: discontiguousContiguous), for: discontiguousData))
XCTAssertTrue(signingKey.publicKey.isValidSignature(try .init(derRepresentation: contiguousDiscontiguous), for: discontiguousData))
XCTAssertTrue(signingKey.publicKey.isValidSignature(try .init(derRepresentation: discontiguousDiscontiguous), for: discontiguousData))
// While we're here, let's confirm that we can also reject this appropriately.
let anotherKey = P256.Signing.PrivateKey()
XCTAssertFalse(anotherKey.publicKey.isValidSignature(try .init(derRepresentation: contiguousContiguous), for: contiguousData))
XCTAssertFalse(anotherKey.publicKey.isValidSignature(try .init(derRepresentation: discontiguousContiguous), for: contiguousData))
XCTAssertFalse(anotherKey.publicKey.isValidSignature(try .init(derRepresentation: contiguousDiscontiguous), for: contiguousData))
XCTAssertFalse(anotherKey.publicKey.isValidSignature(try .init(derRepresentation: discontiguousDiscontiguous), for: contiguousData))
XCTAssertFalse(anotherKey.publicKey.isValidSignature(try .init(derRepresentation: contiguousContiguous), for: discontiguousData))
XCTAssertFalse(anotherKey.publicKey.isValidSignature(try .init(derRepresentation: discontiguousContiguous), for: discontiguousData))
XCTAssertFalse(anotherKey.publicKey.isValidSignature(try .init(derRepresentation: contiguousDiscontiguous), for: discontiguousData))
XCTAssertFalse(anotherKey.publicKey.isValidSignature(try .init(derRepresentation: discontiguousDiscontiguous), for: discontiguousData))
}
func testP384SigningDiscontiguousData() throws {
let signingKey = P384.Signing.PrivateKey()
// We generate 4 signatures here, all of which should be identical. We validate them all, which means there is a lot of validating here:
// 8 in total.
let (contiguousData, discontiguousData) = Array(data).asDataProtocols()
let (contiguousContiguous, discontiguousContiguous) = try orFail { Array(try signingKey.signature(for: contiguousData).derRepresentation).asDataProtocols() }
let (contiguousDiscontiguous, discontiguousDiscontiguous) = try orFail { Array(try signingKey.signature(for: discontiguousData).derRepresentation).asDataProtocols() }
XCTAssertTrue(signingKey.publicKey.isValidSignature(try .init(derRepresentation: contiguousContiguous), for: contiguousData))
XCTAssertTrue(signingKey.publicKey.isValidSignature(try .init(derRepresentation: discontiguousContiguous), for: contiguousData))
XCTAssertTrue(signingKey.publicKey.isValidSignature(try .init(derRepresentation: contiguousDiscontiguous), for: contiguousData))
XCTAssertTrue(signingKey.publicKey.isValidSignature(try .init(derRepresentation: discontiguousDiscontiguous), for: contiguousData))
XCTAssertTrue(signingKey.publicKey.isValidSignature(try .init(derRepresentation: contiguousContiguous), for: discontiguousData))
XCTAssertTrue(signingKey.publicKey.isValidSignature(try .init(derRepresentation: discontiguousContiguous), for: discontiguousData))
XCTAssertTrue(signingKey.publicKey.isValidSignature(try .init(derRepresentation: contiguousDiscontiguous), for: discontiguousData))
XCTAssertTrue(signingKey.publicKey.isValidSignature(try .init(derRepresentation: discontiguousDiscontiguous), for: discontiguousData))
// While we're here, let's confirm that we can also reject this appropriately.
let anotherKey = P384.Signing.PrivateKey()
XCTAssertFalse(anotherKey.publicKey.isValidSignature(try .init(derRepresentation: contiguousContiguous), for: contiguousData))
XCTAssertFalse(anotherKey.publicKey.isValidSignature(try .init(derRepresentation: discontiguousContiguous), for: contiguousData))
XCTAssertFalse(anotherKey.publicKey.isValidSignature(try .init(derRepresentation: contiguousDiscontiguous), for: contiguousData))
XCTAssertFalse(anotherKey.publicKey.isValidSignature(try .init(derRepresentation: discontiguousDiscontiguous), for: contiguousData))
XCTAssertFalse(anotherKey.publicKey.isValidSignature(try .init(derRepresentation: contiguousContiguous), for: discontiguousData))
XCTAssertFalse(anotherKey.publicKey.isValidSignature(try .init(derRepresentation: discontiguousContiguous), for: discontiguousData))
XCTAssertFalse(anotherKey.publicKey.isValidSignature(try .init(derRepresentation: contiguousDiscontiguous), for: discontiguousData))
XCTAssertFalse(anotherKey.publicKey.isValidSignature(try .init(derRepresentation: discontiguousDiscontiguous), for: discontiguousData))
}
func testP521SigningDiscontiguousData() throws {
let signingKey = P521.Signing.PrivateKey()
// We generate 4 signatures here, all of which should be identical. We validate them all, which means there is a lot of validating here:
// 8 in total.
let (contiguousData, discontiguousData) = Array(data).asDataProtocols()
let (contiguousContiguous, discontiguousContiguous) = try orFail { Array(try signingKey.signature(for: contiguousData).derRepresentation).asDataProtocols() }
let (contiguousDiscontiguous, discontiguousDiscontiguous) = try orFail { Array(try signingKey.signature(for: discontiguousData).derRepresentation).asDataProtocols() }
XCTAssertTrue(signingKey.publicKey.isValidSignature(try .init(derRepresentation: contiguousContiguous), for: contiguousData))
XCTAssertTrue(signingKey.publicKey.isValidSignature(try .init(derRepresentation: discontiguousContiguous), for: contiguousData))
XCTAssertTrue(signingKey.publicKey.isValidSignature(try .init(derRepresentation: contiguousDiscontiguous), for: contiguousData))
XCTAssertTrue(signingKey.publicKey.isValidSignature(try .init(derRepresentation: discontiguousDiscontiguous), for: contiguousData))
XCTAssertTrue(signingKey.publicKey.isValidSignature(try .init(derRepresentation: contiguousContiguous), for: discontiguousData))
XCTAssertTrue(signingKey.publicKey.isValidSignature(try .init(derRepresentation: discontiguousContiguous), for: discontiguousData))
XCTAssertTrue(signingKey.publicKey.isValidSignature(try .init(derRepresentation: contiguousDiscontiguous), for: discontiguousData))
XCTAssertTrue(signingKey.publicKey.isValidSignature(try .init(derRepresentation: discontiguousDiscontiguous), for: discontiguousData))
// While we're here, let's confirm that we can also reject this appropriately.
let anotherKey = P521.Signing.PrivateKey()
XCTAssertFalse(anotherKey.publicKey.isValidSignature(try .init(derRepresentation: contiguousContiguous), for: contiguousData))
XCTAssertFalse(anotherKey.publicKey.isValidSignature(try .init(derRepresentation: discontiguousContiguous), for: contiguousData))
XCTAssertFalse(anotherKey.publicKey.isValidSignature(try .init(derRepresentation: contiguousDiscontiguous), for: contiguousData))
XCTAssertFalse(anotherKey.publicKey.isValidSignature(try .init(derRepresentation: discontiguousDiscontiguous), for: contiguousData))
XCTAssertFalse(anotherKey.publicKey.isValidSignature(try .init(derRepresentation: contiguousContiguous), for: discontiguousData))
XCTAssertFalse(anotherKey.publicKey.isValidSignature(try .init(derRepresentation: discontiguousContiguous), for: discontiguousData))
XCTAssertFalse(anotherKey.publicKey.isValidSignature(try .init(derRepresentation: contiguousDiscontiguous), for: discontiguousData))
XCTAssertFalse(anotherKey.publicKey.isValidSignature(try .init(derRepresentation: discontiguousDiscontiguous), for: discontiguousData))
}
func testCompressedKeys() throws {
let x963Positive = Data(base64Encoded: "A+QHCXtGd5WWSQgp37FBPXMy+nnSwFK79QQD0ZeNMv7L")!
let key = try P256.Signing.PublicKey(compressedRepresentation: x963Positive)
XCTAssertEqual(
key.x963Representation.base64EncodedString(),
"BOQHCXtGd5WWSQgp37FBPXMy+nnSwFK79QQD0ZeNMv7LE6xvfFkB4Y3VXoOpB/Kp6ngpf3Lce9hDMl7fqaDUfYE="
)
let x963Negative = Data(base64Encoded: "AuQHCXtGd5WWSQgp37FBPXMy+nnSwFK79QQD0ZeNMv7L")!
let negativeKey = try P256.Signing.PublicKey(compressedRepresentation: x963Negative)
XCTAssertEqual(
negativeKey.x963Representation.base64EncodedString(),
"BOQHCXtGd5WWSQgp37FBPXMy+nnSwFK79QQD0ZeNMv7L7FOQgqb+HnMqoXxW+A1WFYfWgI4jhCe8zaEgVl8rgn4="
)
let p384Positive = Data(base64Encoded: "AyEfGE5ySReJyfSruLRdsjvCB5RNWGLk8JYrzIrans3MprXf5Q4nh69bQ2rI4+DNpw==")!
let p384Key = try P384.Signing.PublicKey(compressedRepresentation: p384Positive)
XCTAssertEqual(
p384Key.x963Representation.base64EncodedString(),
"BCEfGE5ySReJyfSruLRdsjvCB5RNWGLk8JYrzIrans3MprXf5Q4nh69bQ2rI4+DNp22k0ZcxSL1Ljf19pe25Y6UgedrZf1sOLBVVDZxO36mxwUgPUqFp5/0nNmGMDdQeTQ=="
)
let p384Negative = Data(base64Encoded: "AiEfGE5ySReJyfSruLRdsjvCB5RNWGLk8JYrzIrans3MprXf5Q4nh69bQ2rI4+DNpw==")!
let p384NegativeKey = try P384.Signing.PublicKey(compressedRepresentation: p384Negative)
XCTAssertEqual(
p384NegativeKey.x963Representation.base64EncodedString(),
"BCEfGE5ySReJyfSruLRdsjvCB5RNWGLk8JYrzIrans3MprXf5Q4nh69bQ2rI4+DNp5JbLmjOt0K0cgKCWhJGnFrfhiUmgKTx0+qq8mOxIFZNPrfwrF6WGALYyZ508ivhsg=="
)
let p521Positive = Data(base64Encoded: "AwGUsatNKbCi6jeO1oFHpvhxesJnRxeZ45/sqCvaEZgwnpyj+/SsXjgBViEjvlJUdqentCaUFCwjuYZJM9HpdVq4Iw==")!
let p521Key = try P521.Signing.PublicKey(compressedRepresentation: p521Positive)
XCTAssertEqual(
p521Key.x963Representation.base64EncodedString(),
"BAGUsatNKbCi6jeO1oFHpvhxesJnRxeZ45/sqCvaEZgwnpyj+/SsXjgBViEjvlJUdqentCaUFCwjuYZJM9HpdVq4IwE8xEGqskayEkbPkQCGqSKfVYPZTkBdEs1ham1IXcqT4HSfoGGw98UwjQRiDPfIv0+vU6ocPbxURTdvwUSWPm72WQ=="
)
let p521Negative = Data(base64Encoded: "AgGUsatNKbCi6jeO1oFHpvhxesJnRxeZ45/sqCvaEZgwnpyj+/SsXjgBViEjvlJUdqentCaUFCwjuYZJM9HpdVq4Iw==")!
let p521NegativeKey = try P521.Signing.PublicKey(compressedRepresentation: p521Negative)
XCTAssertEqual(
p521NegativeKey.x963Representation.base64EncodedString(),
"BAGUsatNKbCi6jeO1oFHpvhxesJnRxeZ45/sqCvaEZgwnpyj+/SsXjgBViEjvlJUdqentCaUFCwjuYZJM9HpdVq4IwDDO75VTblN7bkwbv95Vt1gqnwmsb+i7TKelZK3ojVsH4tgX55PCDrPcvud8wg3QLBQrFXjwkOrusiQPrtpwZEJpg=="
)
// Check that the uncompressed key gets rejected
let uncompressedX963 = Data(base64Encoded: "BOQHCXtGd5WWSQgp37FBPXMy+nnSwFK79QQD0ZeNMv7LE6xvfFkB4Y3VXoOpB/Kp6ngpf3Lce9hDMl7fqaDUfYE=")!
XCTAssertThrowsError(try P256.Signing.PublicKey(compressedRepresentation: uncompressedX963))
}
func testUncompressedKeys() throws {
let uncompressedX963 = Data(base64Encoded: "BOQHCXtGd5WWSQgp37FBPXMy+nnSwFK79QQD0ZeNMv7LE6xvfFkB4Y3VXoOpB/Kp6ngpf3Lce9hDMl7fqaDUfYE=")!
let key = try P256.Signing.PublicKey(x963Representation: uncompressedX963)
XCTAssertEqual(
key.x963Representation.base64EncodedString(),
"BOQHCXtGd5WWSQgp37FBPXMy+nnSwFK79QQD0ZeNMv7LE6xvfFkB4Y3VXoOpB/Kp6ngpf3Lce9hDMl7fqaDUfYE="
)
let compressedX963Positive = Data(base64Encoded: "A+QHCXtGd5WWSQgp37FBPXMy+nnSwFK79QQD0ZeNMv7L")!
XCTAssertThrowsError(try P256.Signing.PublicKey(x963Representation: compressedX963Positive))
}
}
#endif // CRYPTO_IN_SWIFTPM
|