1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
|
/*
This source file is part of the Swift.org open source project
Copyright (c) 2021-2024 Apple Inc. and the Swift project authors
Licensed under Apache License v2.0 with Runtime Library Exception
See https://swift.org/LICENSE.txt for license information
See https://swift.org/CONTRIBUTORS.txt for Swift project authors
*/
import Foundation
import SymbolKit
/// Translates a symbol's declaration into a render node's Declarations section.
struct DeclarationsSectionTranslator: RenderSectionTranslator {
func translateSection(
for symbol: Symbol,
renderNode: inout RenderNode,
renderNodeTranslator: inout RenderNodeTranslator
) -> VariantCollection<CodableContentSection?>? {
translateSectionToVariantCollection(documentationDataVariants: symbol.declarationVariants) { trait, declaration -> RenderSection? in
guard !declaration.isEmpty else {
return nil
}
/// Convert a ``SymbolGraph`` declaration fragment into a ``DeclarationRenderSection/Token``
/// by resolving any symbol USRs to the appropriate reference link.
func translateFragment(
_ fragment: SymbolGraph.Symbol.DeclarationFragments.Fragment,
highlight: Bool
) -> DeclarationRenderSection.Token {
let reference: ResolvedTopicReference?
if let preciseIdentifier = fragment.preciseIdentifier,
let resolved = renderNodeTranslator.context.localOrExternalReference(
symbolID: preciseIdentifier
)
{
reference = resolved
renderNodeTranslator.collectedTopicReferences.append(resolved)
} else {
reference = nil
}
// Add the declaration token
return DeclarationRenderSection.Token(
fragment: fragment,
identifier: reference?.absoluteString,
highlight: highlight
)
}
/// Convenience wrapper for `translateFragment(_:highlight:)` that can be used in
/// an iterator mapping.
func translateFragment(
_ fragment: SymbolGraph.Symbol.DeclarationFragments.Fragment
) -> DeclarationRenderSection.Token {
return translateFragment(fragment, highlight: false)
}
/// Translate a whole ``SymbolGraph`` declaration to a ``DeclarationRenderSection``
/// declaration and highlight any tokens that aren't shared with a sequence of common tokens.
func translateDeclaration(
_ declaration: [SymbolGraph.Symbol.DeclarationFragments.Fragment],
commonFragments: [SymbolGraph.Symbol.DeclarationFragments.Fragment]
) -> [DeclarationRenderSection.Token] {
var translatedDeclaration: [DeclarationRenderSection.Token] = []
var commonIndex = 0
for fragment in declaration {
if commonIndex < commonFragments.count, fragment == commonFragments[commonIndex] {
// fragment is common to all declarations, render plain
translatedDeclaration.append(translateFragment(fragment))
commonIndex += 1
} else {
// fragment is unique to this declaration, render highlighted
translatedDeclaration.append(translateFragment(fragment, highlight: true))
}
}
return postProcessTokens(translatedDeclaration)
}
typealias OverloadDeclaration = (
declaration: [SymbolGraph.Symbol.DeclarationFragments.Fragment],
reference: ResolvedTopicReference
)
func renderOtherDeclarationsTokens(
from overloadDeclarations: [OverloadDeclaration],
displayIndex: Int,
commonFragments: [SymbolGraph.Symbol.DeclarationFragments.Fragment]
) -> DeclarationRenderSection.OtherDeclarations {
var otherDeclarations: [DeclarationRenderSection.OtherDeclarations.Declaration] = []
for overloadDeclaration in overloadDeclarations {
let translatedDeclaration = translateDeclaration(
overloadDeclaration.declaration,
commonFragments: commonFragments)
otherDeclarations.append(.init(
tokens: translatedDeclaration,
identifier: overloadDeclaration.reference.absoluteString))
// Add a topic reference to the overload
renderNodeTranslator.collectedTopicReferences.append(
overloadDeclaration.reference
)
}
return .init(declarations: otherDeclarations, displayIndex: displayIndex)
}
func collectOverloadDeclarations(from overloads: Symbol.Overloads) -> [OverloadDeclaration]? {
let declarations = overloads.references.compactMap { overloadReference -> OverloadDeclaration? in
guard let overload = try? renderNodeTranslator.context
.entity(with: overloadReference).semantic as? Symbol
else {
return nil
}
let declarationFragments = overload.declarationVariants[trait]?.values
.first?
.declarationFragments
precondition(
declarationFragments != nil,
"Overloaded symbols must have declaration fragments."
)
return declarationFragments.map({
(declaration: $0, reference: overloadReference)
})
}
guard !declarations.isEmpty else {
return nil
}
return declarations
}
func sortPlatformNames(_ platforms: [PlatformName?]) -> [PlatformName?] {
platforms.sorted { (lhs, rhs) -> Bool in
guard let lhsValue = lhs, let rhsValue = rhs else {
return lhs == nil
}
return lhsValue.rawValue < rhsValue.rawValue
}
}
var declarations: [DeclarationRenderSection] = []
let languages = [
trait.interfaceLanguage ?? renderNodeTranslator.identifier.sourceLanguage.id
]
for pair in declaration {
let (platforms, declaration) = pair
let renderedTokens: [DeclarationRenderSection.Token]
let otherDeclarations: DeclarationRenderSection.OtherDeclarations?
// If this symbol has overloads, render their declarations as well.
if let overloads = symbol.overloadsVariants[trait],
let overloadDeclarations = collectOverloadDeclarations(from: overloads)
{
// Pre-process the declarations by splitting text fragments apart to increase legibility
let mainDeclaration = declaration.declarationFragments.flatMap(preProcessFragment(_:))
let processedOverloadDeclarations = overloadDeclarations.map({
OverloadDeclaration($0.declaration.flatMap(preProcessFragment(_:)), $0.reference)
})
let preProcessedDeclarations = [mainDeclaration] + processedOverloadDeclarations.map(\.declaration)
// Collect the "common fragments" so we can highlight the ones that are different
// in each declaration
let commonFragments = longestCommonSubsequence(preProcessedDeclarations)
renderedTokens = translateDeclaration(
mainDeclaration,
commonFragments: commonFragments
)
otherDeclarations = renderOtherDeclarationsTokens(
from: processedOverloadDeclarations,
displayIndex: overloads.displayIndex,
commonFragments: commonFragments)
} else {
renderedTokens = declaration.declarationFragments.map(translateFragment)
otherDeclarations = nil
}
declarations.append(
DeclarationRenderSection(
languages: languages,
platforms: sortPlatformNames(platforms),
tokens: renderedTokens,
otherDeclarations: otherDeclarations
)
)
}
if let alternateDeclarations = symbol.alternateDeclarationVariants[trait] {
for pair in alternateDeclarations {
let (platforms, decls) = pair
let platformNames = sortPlatformNames(platforms)
for alternateDeclaration in decls {
let renderedTokens = alternateDeclaration.declarationFragments.map(translateFragment)
declarations.append(
DeclarationRenderSection(
languages: languages,
platforms: platformNames,
tokens: renderedTokens
)
)
}
}
}
return DeclarationsRenderSection(declarations: declarations)
}
}
}
fileprivate extension DeclarationRenderSection.Token {
/// Whether this token is a text token with a changed highlight.
var isHighlightedText: Bool {
self.highlight == .changed && self.kind == .text
}
/// Whether this token has any highlight applied to it.
var isHighlighted: Bool {
self.highlight != nil
}
/// Create a new ``Kind/text`` token with the given text and highlight.
init(plainText text: String, highlight: Highlight? = nil) {
self.init(text: text, kind: .text, highlight: highlight)
}
}
/// "Post-process" a sequence of declaration tokens by recombining text tokens and cleaning up
/// highlighted spans of tokens.
///
/// The output of `preProcessFragment` is suitable for differencing, but causes unexpected results
/// when handed directly to Swift-DocC-Render and applied to its declaration formatter. This
/// function recombines adjacent tokens so that the declaration formatter can correctly see the
/// structure of a declaration and format it accordingly.
///
/// In addition, this function takes the opportunity to trim whitespace at the beginning and end of
/// highlighted spans of tokens, to beautify the resulting declaration.
fileprivate func postProcessTokens(
_ tokens: [DeclarationRenderSection.Token]
) -> [DeclarationRenderSection.Token] {
var processedTokens: [DeclarationRenderSection.Token] = []
// This function iterates a list of tokens, keeping track of a "previous token" and comparing it
// against the "current token" to perform the following transformations:
//
// 1. Trim whitespace from the end of a highlighted token if the following token is not
// highlighted.
// 2. Trim whitespace from the beginning of a highlighted token if the previous token was not
// highlighted.
// 3. Concatenate plain-text tokens if they are both highlighted or both not highlighted.
/// If the given tokens are both plain-text tokens with the same highlight, return a token with
/// both tokens' texts.
func concatenateTokens(
_ lhs: DeclarationRenderSection.Token,
_ rhs: DeclarationRenderSection.Token
) -> DeclarationRenderSection.Token? {
guard lhs.kind == .text, rhs.kind == .text, lhs.highlight == rhs.highlight else {
return nil
}
var result = lhs
result.text += rhs.text
return result
}
guard var previousToken = tokens.first else { return [] }
for var currentToken in tokens.dropFirst() {
// First, check whether the tokens we have start or end a highlighted span, and whether
// that span started or ended (respectively) with whitespace. If so, break off that
// whitespace into a new, unhighlighted token, and save any excess tokens accordingly.
// This is complicated by the fact that the whitespace token could be all whitespace,
// removing the need to create a new token. Both of these branches also "fall through"
// to the concatenation check below, in case the creation of a new unhighlighted token
// allows it to be combined with the current token.
// If the previous token was a highlighted plain-text token that ended with whitespace,
// and the current token is not highlighted, then remove the highlighting for the
// whitespace.
if previousToken.isHighlightedText,
!currentToken.isHighlighted,
previousToken.text.last?.isWhitespace == true
{
if previousToken.text.allSatisfy(\.isWhitespace) {
// if the last token was all whitespace, just convert it to be unhighlighted
previousToken.highlight = nil
} else {
// otherwise, split the trailing whitespace into a new token
let trimmedText = previousToken.text.removingTrailingWhitespace()
let trailingWhitespace = previousToken.text.suffix(
previousToken.text.count - trimmedText.count
)
previousToken.text = trimmedText
processedTokens.append(previousToken)
previousToken = .init(plainText: String(trailingWhitespace))
}
} else if !previousToken.isHighlighted,
currentToken.isHighlightedText,
currentToken.text.first?.isWhitespace == true
{
// Vice versa: If the current token is a highlighted plain-text token that begins
// with whitespace, and the previous token is not highlighted, then remove the
// highlighting for that whitespace.
if currentToken.text.allSatisfy(\.isWhitespace) {
// if this token is all whitespace, just convert it to be unhighlighted
currentToken.highlight = nil
} else {
// otherwise, split the leading whitespace into a new token
let trimmedText = currentToken.text.removingLeadingWhitespace()
let leadingWhitespace = currentToken.text.prefix(
currentToken.text.count - trimmedText.count
)
currentToken.text = trimmedText
// if we can combine the whitespace with the previous token, do that
let whitespaceToken = DeclarationRenderSection.Token(plainText: String(leadingWhitespace))
if let combinedToken = concatenateTokens(previousToken, whitespaceToken) {
previousToken = combinedToken
} else {
processedTokens.append(previousToken)
previousToken = whitespaceToken
}
}
}
if let combinedToken = concatenateTokens(previousToken, currentToken) {
// if we could combine the tokens, save it to the current token so it becomes the
// "previous" token at the end of the loop
currentToken = combinedToken
} else {
// otherwise, just save off the previous token so we can store the next
// one for the next iteration
processedTokens.append(previousToken)
}
previousToken = currentToken
}
processedTokens.append(previousToken)
return processedTokens
}
/// "Pre-process" a declaration fragment by eagerly splitting apart text fragments into chunks that
/// are more likely to be held in common with other declarations.
///
/// This method exists to clean up the diff visualization in circumstances where parts of a text
/// fragment are shared in common, but have been combined with other text that is not shared. For
/// example, a declaration such as `myFunc<T>(param: T)` will have a text fragment `>(` before the
/// parameter list, which is technically not shared with a similar declaration `myFunc(param: Int)`
/// which only has a `(` fragment.
///
/// Text should be broken up in three scenarios:
/// 1. Before a parenthesis or comma, as in the previous example,
/// 2. Before and after whitespace, to increase the chances of matching non-whitespace tokens with
/// each other, and
/// 3. After a `?` character, to eagerly separate optional parameter types from their surrounding
/// syntax.
///
/// > Note: Any adjacent text fragments that are both shared or highlighted should be recombined
/// > after translation, to allow Swift-DocC-Render to correctly format Swift declarations into
/// > multiple lines. This is performed as part of `translateDeclaration(_:commonFragments:)` above.
fileprivate func preProcessFragment(
_ fragment: SymbolGraph.Symbol.DeclarationFragments.Fragment
) -> [SymbolGraph.Symbol.DeclarationFragments.Fragment] {
guard fragment.kind == .text, !fragment.spelling.isEmpty else {
return [fragment]
}
var textPartitions: [Substring] = []
var substringIndex = fragment.spelling.startIndex
var currentElement = fragment.spelling[substringIndex]
func areInSameChunk(_ currentElement: Character, _ nextElement: Character) -> Bool {
if "(),".contains(nextElement) {
// an open paren means we have a token like `>(` which should be split
// a close paren means we have a token like ` = nil)` which should be split
// a comma is similar to the close paren situation
return false
} else if currentElement.isWhitespace != nextElement.isWhitespace {
// break whitespace into their own blocks
return false
} else if currentElement == "?" {
// if we have a token like `?>` or similar we should break the fragment
return false
} else {
return true
}
}
// FIXME: replace this with `chunked(by:)` if we add swift-algorithms as a dependency
for (nextIndex, nextElement) in fragment.spelling.indexed().dropFirst() {
if !areInSameChunk(currentElement, nextElement) {
textPartitions.append(fragment.spelling[substringIndex..<nextIndex])
substringIndex = nextIndex
}
currentElement = nextElement
}
if substringIndex != fragment.spelling.endIndex {
textPartitions.append(fragment.spelling[substringIndex...])
}
return textPartitions.map({ .init(kind: .text, spelling: String($0), preciseIdentifier: nil) })
}
/// Calculate the "longest common subsequence" of a list of sequences.
///
/// The longest common subsequence (LCS) of a set of sequences is the sequence of items that
/// appears in all the input sequences in the same order. For example given the sequences `ABAC`
/// and `CAACB`, the letters `AAC` appear in the same order in both of them, even though the letter
/// `B` interrupts the sequence in the first one.
fileprivate func longestCommonSubsequence<Element: Equatable>(_ sequences: [[Element]]) -> [Element] {
guard var result = sequences.first else { return [] }
for other in sequences.dropFirst() {
// This implementation uses the Swift standard library's `CollectionDifference` API to
// calculate the difference between two sequences, then back-computes the LCS by applying
// just the calculated "removals" to the first sequence. Then, in the next loop iteration,
// recalculate the LCS between the result and the next input sequence. By the time all the
// input sequences have been iterated, we have a common subsequence from all the inputs.
for case .remove(let offset, _, _) in other.difference(from: result).removals.reversed() {
result.remove(at: result.startIndex + offset)
}
}
return result
}
|