1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
//===--------------- GenericUnixToolchain+LinkerSupport.swift -------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import SwiftOptions
import func TSCBasic.lookupExecutablePath
import struct TSCBasic.AbsolutePath
extension GenericUnixToolchain {
private func majorArchitectureName(for triple: Triple) -> String {
// The concept of a "major" arch name only applies to Linux triples
guard triple.os == .linux else { return triple.archName }
// HACK: We don't wrap LLVM's ARM target architecture parsing, and we should
// definitely not try to port it. This check was only normalizing
// "armv7a/armv7r" and similar variants for armv6 to 'armv7' and
// 'armv6', so just take a brute-force approach
if triple.archName.contains("armv7") { return "armv7" }
if triple.archName.contains("armv6") { return "armv6" }
if triple.archName.contains("armv5") { return "armv5" }
return triple.archName
}
public func addPlatformSpecificLinkerArgs(
to commandLine: inout [Job.ArgTemplate],
parsedOptions: inout ParsedOptions,
linkerOutputType: LinkOutputType,
inputs: [TypedVirtualPath],
outputFile: VirtualPath,
shouldUseInputFileList: Bool,
lto: LTOKind?,
sanitizers: Set<Sanitizer>,
targetInfo: FrontendTargetInfo
) throws -> ResolvedTool {
let targetTriple = targetInfo.target.triple
switch linkerOutputType {
case .dynamicLibrary:
// Same options as an executable, just with '-shared'
commandLine.appendFlag("-shared")
fallthrough
case .executable:
// Select the linker to use.
if let arg = parsedOptions.getLastArgument(.useLd)?.asSingle {
commandLine.appendFlag("-fuse-ld=\(arg)")
} else if lto != nil {
commandLine.appendFlag("-fuse-ld=lld")
}
if let arg = parsedOptions.getLastArgument(.ldPath)?.asSingle {
commandLine.append(.joinedOptionAndPath("--ld-path=", try VirtualPath(path: arg)))
}
// Configure the toolchain.
//
// By default use the system `clang` to perform the link. We use `clang` for
// the driver here because we do not wish to select a particular C++ runtime.
// Furthermore, until C++ interop is enabled, we cannot have a dependency on
// C++ code from pure Swift code. If linked libraries are C++ based, they
// should properly link C++. In the case of static linking, the user can
// explicitly specify the C++ runtime to link against. This is particularly
// important for platforms like android where as it is a Linux platform, the
// default C++ runtime is `libstdc++` which is unsupported on the target but
// as the builds are usually cross-compiled from Linux, libstdc++ is going to
// be present. This results in linking the wrong version of libstdc++
// generating invalid binaries. It is also possible to use different C++
// runtimes than the default C++ runtime for the platform (e.g. libc++ on
// Windows rather than msvcprt). When C++ interop is enabled, we will need to
// surface this via a driver flag. For now, opt for the simpler approach of
// just using `clang` and avoid a dependency on the C++ runtime.
var cxxCompatEnabled = parsedOptions.hasArgument(.enableExperimentalCxxInterop)
if let cxxInteropMode = parsedOptions.getLastArgument(.cxxInteroperabilityMode) {
if cxxInteropMode.asSingle == "swift-5.9" {
cxxCompatEnabled = true
}
}
let clangTool: Tool = cxxCompatEnabled ? .clangxx : .clang
var clangPath = try getToolPath(clangTool)
if let toolsDirPath = parsedOptions.getLastArgument(.toolsDirectory) {
// FIXME: What if this isn't an absolute path?
let toolsDir = try AbsolutePath(validating: toolsDirPath.asSingle)
// If there is a clang in the toolchain folder, use that instead.
if let tool = lookupExecutablePath(filename: cxxCompatEnabled
? "clang++" : "clang",
searchPaths: [toolsDir]) {
clangPath = tool
}
// Look for binutils in the toolchain folder.
commandLine.appendFlag("-B")
commandLine.appendPath(toolsDir)
}
// Executables on Linux get -pie
if targetTriple.os == .linux && linkerOutputType == .executable {
commandLine.appendFlag("-pie")
}
let staticStdlib = parsedOptions.hasFlag(positive: .staticStdlib,
negative: .noStaticStdlib,
default: false)
let staticExecutable = parsedOptions.hasFlag(positive: .staticExecutable,
negative: .noStaticExecutable,
default: false)
let isEmbeddedEnabled = parsedOptions.isEmbeddedEnabled
let toolchainStdlibRpath = parsedOptions
.hasFlag(positive: .toolchainStdlibRpath,
negative: .noToolchainStdlibRpath,
default: true)
let hasRuntimeArgs = !(staticStdlib || staticExecutable || isEmbeddedEnabled)
let runtimePaths = try runtimeLibraryPaths(
for: targetInfo,
parsedOptions: &parsedOptions,
sdkPath: targetInfo.sdkPath?.path,
isShared: hasRuntimeArgs
)
if hasRuntimeArgs && targetTriple.environment != .android &&
toolchainStdlibRpath {
// FIXME: We probably shouldn't be adding an rpath here unless we know
// ahead of time the standard library won't be copied.
for path in runtimePaths {
commandLine.appendFlag(.Xlinker)
commandLine.appendFlag("-rpath")
commandLine.appendFlag(.Xlinker)
commandLine.appendPath(path)
}
}
if !isEmbeddedEnabled && !parsedOptions.hasArgument(.nostartfiles) {
let swiftrtPath = VirtualPath.lookup(targetInfo.runtimeResourcePath.path)
.appending(
components: targetTriple.platformName() ?? "",
String(majorArchitectureName(for: targetTriple)),
"swiftrt.o"
)
commandLine.appendPath(swiftrtPath)
}
// If we are linking statically, we need to add all
// dependencies to a library search group to resolve
// potential circular dependencies
if staticStdlib || staticExecutable {
commandLine.appendFlag(.Xlinker)
commandLine.appendFlag("--start-group")
}
let inputFiles: [Job.ArgTemplate] = inputs.compactMap { input in
// Autolink inputs are handled specially
if input.type == .autolink {
return .responseFilePath(input.file)
} else if input.type == .object {
return .path(input.file)
} else if lto != nil && input.type == .llvmBitcode {
return .path(input.file)
} else {
return nil
}
}
commandLine.append(contentsOf: inputFiles)
if staticStdlib || staticExecutable {
commandLine.appendFlag(.Xlinker)
commandLine.appendFlag("--end-group")
}
let fSystemArgs = parsedOptions.arguments(for: .F, .Fsystem)
for opt in fSystemArgs {
if opt.option == .Fsystem {
commandLine.appendFlag("-iframework")
} else {
commandLine.appendFlag(.F)
}
commandLine.appendPath(try VirtualPath(path: opt.argument.asSingle))
}
if let path = targetInfo.sdkPath?.path {
commandLine.appendFlag("--sysroot")
commandLine.appendPath(VirtualPath.lookup(path))
}
// Add the runtime library link paths.
for path in runtimePaths {
commandLine.appendFlag(.L)
commandLine.appendPath(path)
}
// Link the standard library. In two paths, we do this using a .lnk file
// if we're going that route, we'll set `linkFilePath` to the path to that
// file.
var linkFilePath: VirtualPath? = VirtualPath.lookup(targetInfo.runtimeResourcePath.path)
.appending(component: targetTriple.platformName() ?? "")
if staticExecutable {
linkFilePath = linkFilePath?.appending(component: "static-executable-args.lnk")
} else if staticStdlib {
linkFilePath = linkFilePath?.appending(component: "static-stdlib-args.lnk")
} else {
linkFilePath = nil
if !isEmbeddedEnabled {
commandLine.appendFlag("-lswiftCore")
}
}
if let linkFile = linkFilePath {
guard try fileSystem.exists(linkFile) else {
fatalError("\(linkFile) not found")
}
commandLine.append(.responseFilePath(linkFile))
}
// Pass down an optimization level
if let optArg = mapOptimizationLevelToClangArg(from: &parsedOptions) {
commandLine.appendFlag(optArg)
}
// Explicitly pass the target to the linker
commandLine.appendFlag("--target=\(targetTriple.triple)")
// Delegate to Clang for sanitizers. It will figure out the correct linker
// options.
if linkerOutputType == .executable && !sanitizers.isEmpty {
let sanitizerNames = sanitizers
.map { $0.rawValue }
.sorted() // Sort so we get a stable, testable order
.joined(separator: ",")
commandLine.appendFlag("-fsanitize=\(sanitizerNames)")
// The TSan runtime depends on the blocks runtime and libdispatch.
if sanitizers.contains(.thread) {
commandLine.appendFlag("-lBlocksRuntime")
commandLine.appendFlag("-ldispatch")
}
}
if parsedOptions.hasArgument(.profileGenerate) {
let libProfile = VirtualPath.lookup(targetInfo.runtimeResourcePath.path)
.appending(components: "clang", "lib", targetTriple.osName,
"libclang_rt.profile-\(targetTriple.archName).a")
commandLine.appendPath(libProfile)
// HACK: Hard-coded from llvm::getInstrProfRuntimeHookVarName()
commandLine.appendFlag("-u__llvm_profile_runtime")
}
if let lto = lto {
switch lto {
case .llvmFull:
commandLine.appendFlag("-flto=full")
case .llvmThin:
commandLine.appendFlag("-flto=thin")
}
}
// Run clang++ in verbose mode if "-v" is set
try commandLine.appendLast(.v, from: &parsedOptions)
// These custom arguments should be right before the object file at the
// end.
try commandLine.appendAllExcept(
includeList: [.linkerOption],
excludeList: [.l],
from: &parsedOptions
)
addLinkedLibArgs(to: &commandLine, parsedOptions: &parsedOptions)
try addExtraClangLinkerArgs(to: &commandLine, parsedOptions: &parsedOptions)
// This should be the last option, for convenience in checking output.
commandLine.appendFlag(.o)
commandLine.appendPath(outputFile)
return try resolvedTool(clangTool, pathOverride: clangPath)
case .staticLibrary:
// We're using 'ar' as a linker
commandLine.appendFlag("crs")
commandLine.appendPath(outputFile)
commandLine.append(contentsOf: inputs.lazy.filter {
lto == nil ? $0.type == .object
: $0.type == .object || $0.type == .llvmBitcode
}.map { .path($0.file) })
if targetTriple.environment == .android {
// Always use the LTO archiver llvm-ar for Android
return try resolvedTool(.staticLinker(.llvmFull))
} else {
return try resolvedTool(.staticLinker(lto))
}
}
}
}
|