File: ByteCodeGen.swift

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (1349 lines) | stat: -rw-r--r-- 42,282 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021-2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
//
//===----------------------------------------------------------------------===//

@_spi(_Unicode)
import Swift

@_implementationOnly import _RegexParser

extension Compiler {
  struct ByteCodeGen {
    var options: MatchingOptions
    var builder = MEProgram.Builder()
    /// A Boolean indicating whether the first matchable atom has been emitted.
    /// This is used to determine whether to apply initial options.
    var hasEmittedFirstMatchableAtom = false

    private let compileOptions: _CompileOptions
    fileprivate var optimizationsEnabled: Bool {
      !compileOptions.contains(.disableOptimizations)
    }

    init(
      options: MatchingOptions,
      compileOptions: _CompileOptions,
      captureList: CaptureList
    ) {
      self.options = options
      self.compileOptions = compileOptions
      self.builder.captureList = captureList
      self.builder.enableTracing = compileOptions.contains(.enableTracing)
      self.builder.enableMetrics = compileOptions.contains(.enableMetrics)
    }
  }
}

extension Compiler.ByteCodeGen {
  mutating func emitRoot(_ root: DSLTree.Node) throws -> MEProgram {
    // The whole match (`.0` element of output) is equivalent to an implicit
    // capture over the entire regex.
    try emitNode(.capture(name: nil, reference: nil, root))
    builder.canOnlyMatchAtStart = root.canOnlyMatchAtStart()
    builder.buildAccept()
    return try builder.assemble()
  }
}

fileprivate extension Compiler.ByteCodeGen {
  mutating func emitAtom(_ a: DSLTree.Atom) throws {
    defer {
      if a.isMatchable {
        hasEmittedFirstMatchableAtom = true
      }
    }
    switch a {
    case .any:
      emitAny()

    case .anyNonNewline:
      emitAnyNonNewline()

    case .dot:
      try emitDot()

    case let .char(c):
      emitCharacter(c)

    case let .scalar(s):
      if options.semanticLevel == .graphemeCluster {
        emitCharacter(Character(s))
      } else {
        emitMatchScalar(s)
      }

    case let .characterClass(cc):
      emitCharacterClass(cc)

    case let .assertion(kind):
      try emitAssertion(kind)

    case let .backreference(ref):
      try emitBackreference(ref.ast)

    case let .symbolicReference(id):
      builder.buildUnresolvedReference(
        id: id, isScalarMode: options.semanticLevel == .unicodeScalar)

    case let .changeMatchingOptions(optionSequence):
      if !hasEmittedFirstMatchableAtom {
        builder.initialOptions.apply(optionSequence.ast)
      }
      options.apply(optionSequence.ast)

    case let .unconverted(astAtom):
      if let consumer = try astAtom.ast.generateConsumer(options) {
        builder.buildConsume(by: consumer)
      } else {
        throw Unsupported("\(astAtom.ast._patternBase)")
      }
    }
  }

  mutating func emitQuotedLiteral(_ s: String) {
    guard options.semanticLevel == .graphemeCluster else {
      for char in s {
        for scalar in char.unicodeScalars {
          emitMatchScalar(scalar)
        }
      }
      return
    }

    // Fast path for eliding boundary checks for an all ascii quoted literal
    if optimizationsEnabled && s.allSatisfy(\.isASCII) && !s.isEmpty {
      let lastIdx = s.unicodeScalars.indices.last!
      for idx in s.unicodeScalars.indices {
        let boundaryCheck = idx == lastIdx
        let scalar = s.unicodeScalars[idx]
        if options.isCaseInsensitive && scalar.properties.isCased {
          builder.buildMatchScalarCaseInsensitive(scalar, boundaryCheck: boundaryCheck)
        } else {
          builder.buildMatchScalar(scalar, boundaryCheck: boundaryCheck)
        }
      }
      return
    }

    for c in s { emitCharacter(c) }
  }

  mutating func emitBackreference(
    _ ref: AST.Reference
  ) throws {
    if ref.recursesWholePattern {
      // TODO: A recursive call isn't a backreference, but
      // we could in theory match the whole match so far...
      throw Unsupported("Backreference kind: \(ref)")
    }

    switch ref.kind {
    case .absolute(let n):
      guard let i = n.value else {
        throw Unreachable("Expected a value")
      }
      builder.buildBackreference(
        .init(i), isScalarMode: options.semanticLevel == .unicodeScalar)
    case .named(let name):
      try builder.buildNamedReference(
        name, isScalarMode: options.semanticLevel == .unicodeScalar)
    case .relative:
      throw Unsupported("Backreference kind: \(ref)")
    #if RESILIENT_LIBRARIES
    @unknown default:
      fatalError()
    #endif
    }
  }

  mutating func emitAssertion(
    _ kind: DSLTree.Atom.Assertion
  ) throws {
    if kind == .resetStartOfMatch {
      throw Unsupported(#"\K (reset/keep assertion)"#)
    }
    builder.buildAssert(
      by: kind,
      options.anchorsMatchNewlines,
      options.usesSimpleUnicodeBoundaries,
      options.usesASCIIWord,
      options.semanticLevel)
  }

  mutating func emitCharacterClass(_ cc: DSLTree.Atom.CharacterClass) {
    builder.buildMatchBuiltin(model: cc.asRuntimeModel(options))
  }

  mutating func emitMatchScalar(_ s: UnicodeScalar) {
    assert(options.semanticLevel == .unicodeScalar)
    if options.isCaseInsensitive && s.properties.isCased {
      builder.buildMatchScalarCaseInsensitive(s, boundaryCheck: false)
    } else {
      builder.buildMatchScalar(s, boundaryCheck: false)
    }
  }
  
  mutating func emitCharacter(_ c: Character) {
    // Unicode scalar mode matches the specific scalars that comprise a character
    if options.semanticLevel == .unicodeScalar {
      for scalar in c.unicodeScalars {
        emitMatchScalar(scalar)
      }
      return
    }
    
    if options.isCaseInsensitive && c.isCased {
      if optimizationsEnabled && c.isASCII {
        // c.isCased ensures that c is not CR-LF,
        // so we know that c is a single scalar
        assert(c.unicodeScalars.count == 1)
        builder.buildMatchScalarCaseInsensitive(
          c.unicodeScalars.last!,
          boundaryCheck: true)
      } else {
        builder.buildMatch(c, isCaseInsensitive: true)
      }
      return
    }
    
    if optimizationsEnabled && c.isASCII {
      let lastIdx = c.unicodeScalars.indices.last!
      for idx in c.unicodeScalars.indices {
        builder.buildMatchScalar(c.unicodeScalars[idx], boundaryCheck: idx == lastIdx)
      }
      return
    }
      
    builder.buildMatch(c, isCaseInsensitive: false)
  }

  mutating func emitAny() {
    switch options.semanticLevel {
    case .graphemeCluster:
      builder.buildAdvance(1)
    case .unicodeScalar:
      builder.buildAdvanceUnicodeScalar(1)
    }
  }

  mutating func emitAnyNonNewline() {
    switch options.semanticLevel {
    case .graphemeCluster:
      builder.buildConsumeNonNewline()
    case .unicodeScalar:
      builder.buildConsumeScalarNonNewline()
    }
  }

  mutating func emitDot() throws {
    if options.dotMatchesNewline {
      if options.usesNSRECompatibleDot {
        try emitAlternation([
          .atom(.characterClass(.newlineSequence)),
          .atom(.anyNonNewline)])
      } else {
        emitAny()
      }
    } else {
      emitAnyNonNewline()
    }
  }

  mutating func emitAlternationGen<C: BidirectionalCollection>(
    _ elements: C,
    withBacktracking: Bool,
    _ body: (inout Compiler.ByteCodeGen, C.Element) throws -> Void
  ) rethrows {
    // Alternation: p0 | p1 | ... | pn
    //     save next_p1
    //     <code for p0>
    //     branch done
    //   next_p1:
    //     save next_p2
    //     <code for p1>
    //     branch done
    //   next_p2:
    //     save next_p...
    //     <code for p2>
    //     branch done
    //   ...
    //   next_pn:
    //     <code for pn>
    //   done:
    let done = builder.makeAddress()
    for element in elements.dropLast() {
      let next = builder.makeAddress()
      builder.buildSave(next)
      try body(&self, element)
      if !withBacktracking {
        builder.buildClear()
      }
      builder.buildBranch(to: done)
      builder.label(next)
    }
    try body(&self, elements.last!)
    builder.label(done)
  }
  
  mutating func emitAlternation(
    _ children: [DSLTree.Node]
  ) throws {
    try emitAlternationGen(children, withBacktracking: true) {
      try $0.emitNode($1)
    }
  }

  mutating func emitConcatenationComponent(
    _ node: DSLTree.Node
  ) throws {
    // TODO: Should we do anything special since we can
    // be glueing sub-grapheme components together?
    try emitNode(node)
  }

  mutating func emitPositiveLookahead(_ child: DSLTree.Node) throws {
    /*
      save(restoringAt: success)
      save(restoringAt: intercept)
      <sub-pattern>    // failure restores at intercept
      clearThrough(intercept)       // remove intercept and any leftovers from <sub-pattern>
     fail(preservingCaptures: true) // ->success
    intercept:
      clearSavePoint   // remove success
      fail             // propagate failure
    success:
      ...
    */
    let intercept = builder.makeAddress()
    let success = builder.makeAddress()

    builder.buildSave(success)
    builder.buildSave(intercept)
    try emitNode(child)
    builder.buildClearThrough(intercept)
    builder.buildFail(preservingCaptures: true) // Lookahead succeeds here

    builder.label(intercept)
    builder.buildClear()
    builder.buildFail()

    builder.label(success)
  }
  
  mutating func emitNegativeLookahead(_ child: DSLTree.Node) throws {
    /*
      save(restoringAt: success)
      save(restoringAt: intercept)
      <sub-pattern>    // failure restores at intercept
      clearThrough(intercept) // remove intercept and any leftovers from <sub-pattern>
      clearSavePoint   // remove success
      fail             // propagate failure
    intercept:
      fail             // ->success
    success:
      ...
    */
    let intercept = builder.makeAddress()
    let success = builder.makeAddress()

    builder.buildSave(success)
    builder.buildSave(intercept)
    try emitNode(child)
    builder.buildClearThrough(intercept)
    builder.buildClear()
    builder.buildFail()

    builder.label(intercept)
    builder.buildFail()

    builder.label(success)
  }
  
  mutating func emitLookaround(
    _ kind: (forwards: Bool, positive: Bool),
    _ child: DSLTree.Node
  ) throws {
    guard kind.forwards else {
      throw Unsupported("backwards assertions")
    }
    if kind.positive {
      try emitPositiveLookahead(child)
    } else {
      try emitNegativeLookahead(child)
    }
  }

  mutating func emitAtomicNoncapturingGroup(
    _ child: DSLTree.Node
  ) throws {
    /*
      save(continuingAt: success)
      save(restoringAt: intercept)
      <sub-pattern>    // failure restores at intercept
      clearThrough(intercept)        // remove intercept and any leftovers from <sub-pattern>
      fail(preservingCaptures: true) // ->success
    intercept:
      clearSavePoint   // remove success
      fail             // propagate failure
    success:
      ...
    */

    let intercept = builder.makeAddress()
    let success = builder.makeAddress()

    builder.buildSaveAddress(success)
    builder.buildSave(intercept)
    try emitNode(child)
    builder.buildClearThrough(intercept)
    builder.buildFail(preservingCaptures: true) // Atomic group succeeds here

    builder.label(intercept)
    builder.buildClear()
    builder.buildFail()

    builder.label(success)
  }

  mutating func emitMatcher(
    _ matcher: @escaping _MatcherInterface
  ) -> ValueRegister {

    // TODO: Consider emitting consumer interface if
    // not captured. This may mean we should store
    // an existential instead of a closure...

    let matcher = builder.makeMatcherFunction { input, start, range in
      try matcher(input, start, range)
    }

    let valReg = builder.makeValueRegister()
    builder.buildMatcher(matcher, into: valReg)
    return valReg
  }

  mutating func emitNoncapturingGroup(
    _ kind: AST.Group.Kind,
    _ child: DSLTree.Node
  ) throws {
    assert(!kind.isCapturing)

    options.beginScope()
    defer { options.endScope() }

    if let lookaround = kind.lookaroundKind {
      try emitLookaround(lookaround, child)
      return
    }

    switch kind {
    case .lookahead, .negativeLookahead,
        .lookbehind, .negativeLookbehind:
      throw Unreachable("TODO: reason")

    case .capture, .namedCapture, .balancedCapture:
      throw Unreachable("These should produce a capture node")

    case .changeMatchingOptions(let optionSequence):
      if !hasEmittedFirstMatchableAtom {
        builder.initialOptions.apply(optionSequence)
      }
      options.apply(optionSequence)
      try emitNode(child)
      
    case .atomicNonCapturing:
      try emitAtomicNoncapturingGroup(child)

    default:
      // FIXME: Other kinds...
      try emitNode(child)
    }
  }

  mutating func emitQuantification(
    _ amount: AST.Quantification.Amount,
    _ kind: DSLTree.QuantificationKind,
    _ child: DSLTree.Node
  ) throws {
    let updatedKind: AST.Quantification.Kind
    switch kind {
    case .explicit(let kind):
      updatedKind = kind.ast
    case .syntax(let kind):
      updatedKind = kind.ast.applying(options)
    case .default:
      updatedKind = options.defaultQuantificationKind
    }

    let (low, high) = amount.bounds
    guard let low = low else {
      throw Unreachable("Must have a lower bound")
    }
    switch (low, high) {
    case (_, 0):
      // TODO: Should error out earlier, maybe DSL and parser
      // has validation logic?
      return
    case let (n, m?) where n > m:
      // TODO: Should error out earlier, maybe DSL and parser
      // has validation logic?
      return

    case let (n, m) where m == nil || n <= m!:
      // Ok
      break
    default:
      throw Unreachable("TODO: reason")
    }

    // Compiler and/or parser should enforce these invariants
    // before we are called
    assert(high != 0)
    assert((0...(high ?? Int.max)).contains(low))

    let maxExtraTrips: Int?
    if let h = high {
      maxExtraTrips = h - low
    } else {
      maxExtraTrips = nil
    }
    let minTrips = low
    assert((maxExtraTrips ?? 1) >= 0)

    if tryEmitFastQuant(child, updatedKind, minTrips, maxExtraTrips) {
      return
    }

    // The below is a general algorithm for bounded and unbounded
    // quantification. It can be specialized when the min
    // is 0 or 1, or when extra trips is 1 or unbounded.
    //
    // Stuff inside `<` and `>` are decided at compile time,
    // while run-time values stored in registers start with a `%`
    _ = """
      min-trip-count control block:
        if %minTrips is zero:
          goto exit-policy control block
        else:
          decrement %minTrips and fallthrough

      loop-body:
        <if can't guarantee forward progress && maxExtraTrips = nil>:
          mov currentPosition %pos
        evaluate the subexpression
        <if can't guarantee forward progress && maxExtraTrips = nil>:
          if %pos is currentPosition:
            goto exit
        goto min-trip-count control block

      exit-policy control block:
        if %maxExtraTrips is zero:
          goto exit
        else:
          decrement %maxExtraTrips and fallthrough

        <if eager>:
          save exit and goto loop-body
        <if possessive>:
          ratchet and goto loop
        <if reluctant>:
          save loop-body and fallthrough (i.e. goto exit)

      exit
        ... the rest of the program ...
    """

    // Specialization based on `minTrips` for 0 or 1:
    _ = """
      min-trip-count control block:
        <if minTrips == 0>:
          goto exit-policy
        <if minTrips == 1>:
          /* fallthrough */

      loop-body:
        evaluate the subexpression
        <if minTrips <= 1>
          /* fallthrough */
    """

    // Specialization based on `maxExtraTrips` for 0 or unbounded
    _ = """
      exit-policy control block:
        <if maxExtraTrips == 0>:
          goto exit
        <if maxExtraTrips == .unbounded>:
          /* fallthrough */
    """

    /*
      NOTE: These specializations don't emit the optimal
      code layout (e.g. fallthrough vs goto), but that's better
      done later (not prematurely) and certainly better
      done by an optimizing compiler.

      NOTE: We're intentionally emitting essentially the same
      algorithm for all quantifications for now, for better
      testing and surfacing difficult bugs. We can specialize
      for other things, like `.*`, later.

      When it comes time for optimizing, we can also look into
      quantification instructions (e.g. reduce save-point traffic)
    */

    let minTripsControl = builder.makeAddress()
    let loopBody = builder.makeAddress()
    let exitPolicy = builder.makeAddress()
    let exit = builder.makeAddress()

    // We'll need registers if we're (non-trivially) bounded
    let minTripsReg: IntRegister?
    if minTrips > 1 {
      minTripsReg = builder.makeIntRegister(
        initialValue: minTrips)
    } else {
      minTripsReg = nil
    }

    let maxExtraTripsReg: IntRegister?
    if (maxExtraTrips ?? 0) > 0 {
      maxExtraTripsReg = builder.makeIntRegister(
        initialValue: maxExtraTrips!)
    } else {
      maxExtraTripsReg = nil
    }

    // Set up a dummy save point for possessive to update
    if updatedKind == .possessive {
      builder.pushEmptySavePoint()
    }

    // min-trip-count:
    //   condBranch(to: exitPolicy, ifZeroElseDecrement: %min)
    builder.label(minTripsControl)
    switch minTrips {
    case 0: builder.buildBranch(to: exitPolicy)
    case 1: break
    default:
      assert(minTripsReg != nil, "logic inconsistency")
      builder.buildCondBranch(
        to: exitPolicy, ifZeroElseDecrement: minTripsReg!)
    }

    // FIXME: Possessive needs a "dummy" save point to ratchet

    // loop:
    //   <subexpression>
    //   branch min-trip-count
    builder.label(loopBody)

    // if we aren't sure if the child node will have forward progress and
    // we have an unbounded quantification
    let startPosition: PositionRegister?
    let emitPositionChecking =
      (!optimizationsEnabled || !child.guaranteesForwardProgress) &&
      maxExtraTrips == nil

    if emitPositionChecking {
      startPosition = builder.makePositionRegister()
      builder.buildMoveCurrentPosition(into: startPosition!)
    } else {
      startPosition = nil
    }
    try emitNode(child)
    if emitPositionChecking {
      // in all quantifier cases, no matter what minTrips or maxExtraTrips is,
      // if we have a successful non-advancing match, branch to exit because it
      // can match an arbitrary number of times
      builder.buildCondBranch(to: exit, ifSamePositionAs: startPosition!)
    }

    if minTrips <= 1 {
      // fallthrough
    } else {
      builder.buildBranch(to: minTripsControl)
    }

    // exit-policy:
    //   condBranch(to: exit, ifZeroElseDecrement: %maxExtraTrips)
    //   <eager: split(to: loop, saving: exit)>
    //   <possesive:
    //     clearSavePoint
    //     split(to: loop, saving: exit)>
    //   <reluctant: save(restoringAt: loop)
    builder.label(exitPolicy)
    switch maxExtraTrips {
    case nil: break
    case 0:   builder.buildBranch(to: exit)
    default:
      assert(maxExtraTripsReg != nil, "logic inconsistency")
      builder.buildCondBranch(
        to: exit, ifZeroElseDecrement: maxExtraTripsReg!)
    }

    switch updatedKind {
    case .eager:
      builder.buildSplit(to: loopBody, saving: exit)
    case .possessive:
      builder.buildClear()
      builder.buildSplit(to: loopBody, saving: exit)
    case .reluctant:
      builder.buildSave(loopBody)
      // FIXME: Is this re-entrant? That is would nested
      // quantification break if trying to restore to a prior
      // iteration because the register got overwritten?
      //
    #if RESILIENT_LIBRARIES
    @unknown default:
      fatalError()
    #endif
    }

    builder.label(exit)
  }

  /// Specialized quantification instruction for repetition of certain nodes in grapheme semantic mode
  /// Allowed nodes are:
  /// - single ascii scalar .char
  /// - ascii .customCharacterClass
  /// - single grapheme consumgin built in character classes
  /// - .any, .anyNonNewline, .dot
  mutating func tryEmitFastQuant(
    _ child: DSLTree.Node,
    _ kind: AST.Quantification.Kind,
    _ minTrips: Int,
    _ maxExtraTrips: Int?
  ) -> Bool {
    let isScalarSemantics = options.semanticLevel == .unicodeScalar
    guard optimizationsEnabled
            && minTrips <= QuantifyPayload.maxStorableTrips
            && maxExtraTrips ?? 0 <= QuantifyPayload.maxStorableTrips
            && kind != .reluctant else {
      return false
    }
    switch child {
    case .customCharacterClass(let ccc):
      // ascii only custom character class
      guard let bitset = ccc.asAsciiBitset(options) else {
        return false
      }
      builder.buildQuantify(bitset: bitset, kind, minTrips, maxExtraTrips, isScalarSemantics: isScalarSemantics)

    case .atom(let atom):
      switch atom {
      case .char(let c):
        // Single scalar ascii value character
        guard let val = c._singleScalarAsciiValue else {
          return false
        }
        builder.buildQuantify(asciiChar: val, kind, minTrips, maxExtraTrips, isScalarSemantics: isScalarSemantics)

      case .any:
        builder.buildQuantifyAny(
          matchesNewlines: true, kind, minTrips, maxExtraTrips, isScalarSemantics: isScalarSemantics)
      case .anyNonNewline:
        builder.buildQuantifyAny(
          matchesNewlines: false, kind, minTrips, maxExtraTrips, isScalarSemantics: isScalarSemantics)
      case .dot:
        builder.buildQuantifyAny(
          matchesNewlines: options.dotMatchesNewline, kind, minTrips, maxExtraTrips, isScalarSemantics: isScalarSemantics)

      case .characterClass(let cc):
        // Custom character class that consumes a single grapheme
        let model = cc.asRuntimeModel(options)
        builder.buildQuantify(
          model: model,
          kind,
          minTrips,
          maxExtraTrips,
          isScalarSemantics: isScalarSemantics)
      default:
        return false
      }
    case .convertedRegexLiteral(let node, _):
      return tryEmitFastQuant(node, kind, minTrips, maxExtraTrips)
    case .nonCapturingGroup(let groupKind, let node):
      // .nonCapture nonCapturingGroups are ignored during compilation
      guard groupKind.ast == .nonCapture else {
        return false
      }
      return tryEmitFastQuant(node, kind, minTrips, maxExtraTrips)
    default:
      return false
    }
    return true
  }

  /// Coalesce any adjacent scalar members in a custom character class together.
  /// This is required in order to produce correct grapheme matching behavior.
  func coalescingCustomCharacterClassMembers(
    _ members: [DSLTree.CustomCharacterClass.Member]
  ) -> [DSLTree.CustomCharacterClass.Member] {
    struct Accumulator {
      /// A series of range operands. For example, in `[ab-cde-fg]`, this will
      /// contain the strings `["ab", "cde", "fg"]`. From there, the resulting
      /// ranges will be created.
      private var rangeOperands: [String] = [""]

      /// The current range operand.
      private var current: String {
        _read { yield rangeOperands[rangeOperands.count - 1] }
        _modify { yield &rangeOperands[rangeOperands.count - 1] }
      }

      /// Try to accumulate a character class member, returning `true` if
      /// successful, `false` otherwise.
      mutating func tryAccumulate(
        _ member: DSLTree.CustomCharacterClass.Member
      ) -> Bool {
        switch member {
        case .atom(let a):
          guard let c = a.literalCharacterValue else { return false }
          current.append(c)
          return true
        case .quotedLiteral(let str):
          current += str
          return true
        case let .range(lhs, rhs):
          guard let lhs = lhs.literalCharacterValue,
                let rhs = rhs.literalCharacterValue
          else { return false }
          current.append(lhs)
          rangeOperands.append(String(rhs))
          return true
        case .trivia:
          // Trivia can be completely ignored if we've already coalesced
          // something.
          return !current.isEmpty
        default:
          return false
        }
      }

      func finish() -> [DSLTree.CustomCharacterClass.Member] {
        if rangeOperands.count == 1 {
          // If we didn't have any additional range operands, this isn't a
          // range, we can just form a standard quoted literal.
          return [.quotedLiteral(current)]
        }
        var members = [DSLTree.CustomCharacterClass.Member]()

        // We have other range operands, splice them together. For N operands
        // we have N - 1 ranges.
        for (i, lhs) in rangeOperands.dropLast().enumerated() {
          let rhs = rangeOperands[i + 1]

          // If this is the first operand we only need to drop the last
          // character for its quoted members, otherwise this is both an LHS
          // and RHS of a range, and as such needs both sides trimmed.
          let leading = i == 0 ? lhs.dropLast() : lhs.dropFirst().dropLast()
          if !leading.isEmpty {
            members.append(.quotedLiteral(String(leading)))
          }
          members.append(.range(.char(lhs.last!), .char(rhs.first!)))
        }
        // We've handled everything except the quoted portion of the last
        // operand, add it now.
        let trailing = rangeOperands.last!.dropFirst()
        if !trailing.isEmpty {
          members.append(.quotedLiteral(String(trailing)))
        }
        return members
      }
    }
    return members
      .map { m -> DSLTree.CustomCharacterClass.Member in
        // First we need to recursively coalsce any child character classes.
        switch m {
        case .custom(let ccc):
          return .custom(coalescingCustomCharacterClass(ccc))
        case .intersection(let lhs, let rhs):
          return .intersection(
            coalescingCustomCharacterClass(lhs),
            coalescingCustomCharacterClass(rhs))
        case .subtraction(let lhs, let rhs):
          return .subtraction(
            coalescingCustomCharacterClass(lhs),
            coalescingCustomCharacterClass(rhs))
        case .symmetricDifference(let lhs, let rhs):
          return .symmetricDifference(
            coalescingCustomCharacterClass(lhs),
            coalescingCustomCharacterClass(rhs))
        case .atom, .range, .quotedLiteral, .trivia:
          return m
        }
      }
      .coalescing(with: Accumulator(), into: { $0.finish() }) { accum, member in
        accum.tryAccumulate(member)
      }
  }

  /// Flatten quoted strings into sequences of atoms, so that the standard
  /// CCC codegen will handle them.
  func flatteningCustomCharacterClassMembers(
    _ members: [DSLTree.CustomCharacterClass.Member]
  ) -> [DSLTree.CustomCharacterClass.Member] {
    var characters: Set<Character> = []
    var scalars: Set<UnicodeScalar> = []
    var result: [DSLTree.CustomCharacterClass.Member] = []
    for member in members {
      switch member {
      case .atom(let atom):
        switch atom {
        case let .char(char):
          characters.insert(char)
        case let .scalar(scalar):
          scalars.insert(scalar)
        default:
          result.append(member)
        }
      case let .quotedLiteral(str):
        characters.formUnion(str)
      default:
        result.append(member)
      }
    }
    result.append(contentsOf: characters.map { .atom(.char($0)) })
    result.append(contentsOf: scalars.map { .atom(.scalar($0)) })
    return result
  }
  
  func coalescingCustomCharacterClass(
    _ ccc: DSLTree.CustomCharacterClass
  ) -> DSLTree.CustomCharacterClass {
    // This only needs to be done in grapheme semantic mode. In scalar semantic
    // mode, we don't want to coalesce any scalars into a grapheme. This
    // means that e.g `[e\u{301}-\u{302}]` remains a range between U+301 and
    // U+302.
    let members = options.semanticLevel == .graphemeCluster
      ? coalescingCustomCharacterClassMembers(ccc.members)
      : ccc.members
    return .init(
      members: flatteningCustomCharacterClassMembers(members),
      isInverted: ccc.isInverted)
  }

  mutating func emitCharacterInCCC(_ c: Character)  {
    switch options.semanticLevel {
    case .graphemeCluster:
      emitCharacter(c)
    case .unicodeScalar:
      // When in scalar mode, act like an alternation of the individual scalars
      // that comprise a character.
      emitAlternationGen(c.unicodeScalars, withBacktracking: false) {
        $0.emitMatchScalar($1)
      }
    }
  }
  
  mutating func emitCCCMember(
    _ member: DSLTree.CustomCharacterClass.Member
  ) throws {
    switch member {
    case .atom(let atom):
      switch atom {
      case .char(let c):
        emitCharacterInCCC(c)
      case .scalar(let s):
        emitCharacterInCCC(Character(s))
      default:
        try emitAtom(atom)
      }
    case .custom(let ccc):
      try emitCustomCharacterClass(ccc)
    case .quotedLiteral:
      fatalError("Removed in 'flatteningCustomCharacterClassMembers'")
    case .range:
      let consumer = try member.generateConsumer(options)
      builder.buildConsume(by: consumer)
    case .trivia:
      return
      
    // TODO: Can we decide when it's better to try `rhs` first?
    // Intersection is trivial, since failure on either side propagates:
    // - store current position
    // - lhs
    // - restore current position
    // - rhs
    case let .intersection(lhs, rhs):
      let r = builder.makePositionRegister()
      builder.buildMoveCurrentPosition(into: r)
      try emitCustomCharacterClass(lhs)
      builder.buildRestorePosition(from: r)
      try emitCustomCharacterClass(rhs)
      
    // TODO: Can we decide when it's better to try `rhs` first?
    // For subtraction, failure in `lhs` propagates, while failure in `rhs` is
    // swallowed/reversed:
    // - store current position
    // - lhs
    // - save to end
    // - restore current position
    // - rhs
    // - clear, fail (since both succeeded)
    // - end: ...
    case let .subtraction(lhs, rhs):
      let r = builder.makePositionRegister()
      let end = builder.makeAddress()
      builder.buildMoveCurrentPosition(into: r)
      try emitCustomCharacterClass(lhs)   // no match here = failure, propagates
      builder.buildSave(end)
      builder.buildRestorePosition(from: r)
      try emitCustomCharacterClass(rhs)   // no match here = success, resumes at 'end'
      builder.buildClear()                // clears 'end'
      builder.buildFail()                 // this failure propagates outward
      builder.label(end)
    
    // Symmetric difference always requires executing both `rhs` and `lhs`.
    // Execute each, ignoring failure and storing the resulting position in a
    // register. If those results are equal, fail. If they're different, use
    // the position that is different from the starting position:
    // - store current position as r0
    // - save to lhsFail
    // - lhs
    // - clear lhsFail (and continue)
    // - lhsFail: save position as r1
    //
    // - restore current position
    // - save to rhsFail
    // - rhs
    // - clear rhsFail (and continue)
    // - rhsFail: save position as r2
    //
    // - restore to resulting position from lhs (r1)
    // - if equal to r2, goto fail (both sides had same result)
    // - if equal to r0, goto advance (lhs failed)
    // - goto end
    // - advance: restore to resulting position from rhs (r2)
    // - goto end
    // - fail: fail
    // - end: ...
    case let .symmetricDifference(lhs, rhs):
      let r0 = builder.makePositionRegister()
      let r1 = builder.makePositionRegister()
      let r2 = builder.makePositionRegister()
      let lhsFail = builder.makeAddress()
      let rhsFail = builder.makeAddress()
      let advance = builder.makeAddress()
      let fail = builder.makeAddress()
      let end = builder.makeAddress()

      builder.buildMoveCurrentPosition(into: r0)
      builder.buildSave(lhsFail)
      try emitCustomCharacterClass(lhs)
      builder.buildClear()
      builder.label(lhsFail)
      builder.buildMoveCurrentPosition(into: r1)
      
      builder.buildRestorePosition(from: r0)
      builder.buildSave(rhsFail)
      try emitCustomCharacterClass(rhs)
      builder.buildClear()
      builder.label(rhsFail)
      builder.buildMoveCurrentPosition(into: r2)
      
      // If r1 == r2, then fail
      builder.buildRestorePosition(from: r1)
      builder.buildCondBranch(to: fail, ifSamePositionAs: r2)
      
      // If r1 == r0, then move to r2 before ending
      builder.buildCondBranch(to: advance, ifSamePositionAs: r0)
      builder.buildBranch(to: end)
      builder.label(advance)
      builder.buildRestorePosition(from: r2)
      builder.buildBranch(to: end)

      builder.label(fail)
      builder.buildFail()
      builder.label(end)      
    }
  }
  
  mutating func emitCustomCharacterClass(
    _ ccc: DSLTree.CustomCharacterClass
  ) throws {
    // Before emitting a custom character class in grapheme semantic mode, we
    // need to coalesce together any adjacent characters and scalars, over which
    // we can perform grapheme breaking. This includes e.g range bounds for
    // `[e\u{301}-\u{302}]`.
    let ccc = coalescingCustomCharacterClass(ccc)
    if let asciiBitset = ccc.asAsciiBitset(options),
        optimizationsEnabled {
      if options.semanticLevel == .unicodeScalar {
        builder.buildScalarMatchAsciiBitset(asciiBitset)
      } else {
        builder.buildMatchAsciiBitset(asciiBitset)
      }
      return
    }

    let updatedCCC: DSLTree.CustomCharacterClass
    if optimizationsEnabled {
      updatedCCC = ccc.coalescingASCIIMembers(options)
    } else {
      updatedCCC = ccc
    }
    let filteredMembers = updatedCCC.members.filter({!$0.isOnlyTrivia})
    
    if updatedCCC.isInverted {
      // inverted
      // custom character class: p0 | p1 | ... | pn
      // Try each member to make sure they all fail
      //     save next_p1
      //     <code for p0>
      //     clear, fail
      //   next_p1:
      //     save next_p2
      //     <code for p1>
      //     clear fail
      //   next_p2:
      //     save next_p...
      //     <code for p2>
      //     clear fail
      //   ...
      //   next_pn:
      //     save done
      //     <code for pn>
      //     clear fail
      //   done:
      //     step forward by 1
      let done = builder.makeAddress()
      for member in filteredMembers.dropLast() {
        let next = builder.makeAddress()
        builder.buildSave(next)
        try emitCCCMember(member)
        builder.buildClear()
        builder.buildFail()
        builder.label(next)
      }
      builder.buildSave(done)
      try emitCCCMember(filteredMembers.last!)
      builder.buildClear()
      builder.buildFail()
      builder.label(done)
      
      // Consume a single unit for the inverted ccc
      switch options.semanticLevel {
      case .graphemeCluster:
        builder.buildAdvance(1)
      case .unicodeScalar:
        builder.buildAdvanceUnicodeScalar(1)
      }
      return
    }
    // non inverted CCC
    // Custom character class: p0 | p1 | ... | pn
    // Very similar to alternation, but we don't keep backtracking save points
    try emitAlternationGen(filteredMembers, withBacktracking: false) {
      try $0.emitCCCMember($1)
    }
  }

  mutating func emitConcatenation(_ children: [DSLTree.Node]) throws {
    // Before emitting a concatenation, we need to flatten out any nested
    // concatenations, and coalesce any adjacent characters and scalars, forming
    // quoted literals of their contents, over which we can perform grapheme
    // breaking.
    func flatten(_ node: DSLTree.Node) -> [DSLTree.Node] {
      switch node {
      case .concatenation(let ch):
        return ch.flatMap(flatten)
      case .convertedRegexLiteral(let n, _), .ignoreCapturesInTypedOutput(let n):
        return flatten(n)
      default:
        return [node]
      }
    }
    let children = children
      .flatMap(flatten)
      .coalescing(with: "", into: DSLTree.Node.quotedLiteral) { str, node in
        switch node {
        case .atom(let a):
          guard let c = a.literalCharacterValue else { return false }
          str.append(c)
          return true
        case .quotedLiteral(let q):
          str += q
          return true
        case .trivia:
          // Trivia can be completely ignored if we've already coalesced
          // something.
          return !str.isEmpty
        default:
          return false
        }
      }
    for child in children {
      try emitConcatenationComponent(child)
    }
  }

  @discardableResult
  mutating func emitNode(_ node: DSLTree.Node) throws -> ValueRegister? {
    switch node {
      
    case let .orderedChoice(children):
      try emitAlternation(children)

    case let .concatenation(children):
      try emitConcatenation(children)

    case let .capture(name, refId, child, transform):
      options.beginScope()
      defer { options.endScope() }

      let cap = builder.makeCapture(id: refId, name: name)
      builder.buildBeginCapture(cap)
      let value = try emitNode(child)
      builder.buildEndCapture(cap)
      // If the child node produced a custom capture value, e.g. the result of
      // a matcher, this should override the captured substring.
      if let value {
        builder.buildMove(value, into: cap)
      }
      // If there's a capture transform, apply it now.
      if let transform = transform {
        let fn = builder.makeTransformFunction { input, cap in
          // If it's a substring capture with no custom value, apply the
          // transform directly to the substring to avoid existential traffic.
          //
          // FIXME: separate out this code path. This is fragile,
          // slow, and these are clearly different constructs
          if let range = cap.range, cap.value == nil {
            return try transform(input[range])
          }

          let value = constructExistentialOutputComponent(
             from: input,
             component: cap.deconstructed,
             optionalCount: 0)
          return try transform(value)
        }
        builder.buildTransformCapture(cap, fn)
      }

    case let .nonCapturingGroup(kind, child):
      try emitNoncapturingGroup(kind.ast, child)

    case let .ignoreCapturesInTypedOutput(child):
      try emitNode(child)
      
    case .conditional:
      throw Unsupported("Conditionals")

    case let .quantification(amt, kind, child):
      try emitQuantification(amt.ast, kind, child)

    case let .customCharacterClass(ccc):
      if ccc.containsDot {
        if !ccc.isInverted {
          try emitDot()
        } else {
          throw Unsupported("Inverted any")
        }
      } else {
        try emitCustomCharacterClass(ccc)
      }

    case let .atom(a):
      try emitAtom(a)

    case let .quotedLiteral(s):
      emitQuotedLiteral(s)

    case let .convertedRegexLiteral(n, _):
      return try emitNode(n)

    case .absentFunction:
      throw Unsupported("absent function")
    case .consumer:
      throw Unsupported("consumer")

    case let .matcher(_, f):
      return emitMatcher(f)

    case .characterPredicate:
      throw Unsupported("character predicates")

    case .trivia, .empty:
      return nil
    }
    return nil
  }
}

extension DSLTree.Node {
  /// A Boolean value indicating whether this node advances the match position
  /// on a successful match.
  ///
  /// For example, an alternation like `(a|b|c)` always advances the position
  /// by a character, but `(a|b|)` has an empty branch, which matches without
  /// advancing.
  var guaranteesForwardProgress: Bool {
    switch self {
    case .orderedChoice(let children):
      return children.allSatisfy { $0.guaranteesForwardProgress }
    case .concatenation(let children):
      return children.contains(where: { $0.guaranteesForwardProgress })
    case .capture(_, _, let node, _):
      return node.guaranteesForwardProgress
    case .nonCapturingGroup(let kind, let child):
      switch kind.ast {
      case .lookahead, .negativeLookahead, .lookbehind, .negativeLookbehind:
        return false
      default: return child.guaranteesForwardProgress
      }
    case .atom(let atom):
      switch atom {
      case .changeMatchingOptions, .assertion: return false
      // Captures may be nil so backreferences may be zero length matches
      case .backreference: return false
      default: return true
      }
    case .trivia, .empty:
      return false
    case .quotedLiteral(let string):
      return !string.isEmpty
    case .convertedRegexLiteral(let node, _):
      return node.guaranteesForwardProgress
    case .consumer, .matcher:
      // Allow zero width consumers and matchers
     return false
    case .customCharacterClass(let ccc):
      return ccc.guaranteesForwardProgress
    case .quantification(let amount, _, let child):
      let (atLeast, _) = amount.ast.bounds
      return atLeast ?? 0 > 0 && child.guaranteesForwardProgress
    default: return false
    }
  }
}

extension DSLTree.CustomCharacterClass {
  /// We allow trivia into CustomCharacterClass, which could result in a CCC
  /// that matches nothing, ie `(?x)[ ]`.
  var guaranteesForwardProgress: Bool {
    for m in members {
      switch m {
      case .trivia:
        continue
      case let .intersection(lhs, rhs):
        return lhs.guaranteesForwardProgress && rhs.guaranteesForwardProgress
      case let .subtraction(lhs, _):
        return lhs.guaranteesForwardProgress
      case let .symmetricDifference(lhs, rhs):
        return lhs.guaranteesForwardProgress && rhs.guaranteesForwardProgress
      default:
        return true
      }
    }
    return false
  }
}