1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021-2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
//
//===----------------------------------------------------------------------===//
enum MatchMode {
case wholeString
case partialFromFront
}
/// A concrete CU. Somehow will run the concrete logic and
/// feed stuff back to generic code
struct Controller {
var pc: InstructionAddress
mutating func step() {
pc.rawValue += 1
}
}
struct Processor {
typealias Input = String
typealias Element = Input.Element
/// The base collection of the subject to search.
///
/// Taken together, `input` and `subjectBounds` define the actual subject
/// of the search. `input` can be a "supersequence" of the subject, while
/// `input[subjectBounds]` is the logical entity that is being searched.
let input: Input
/// The bounds of the logical subject in `input`.
///
/// `subjectBounds` represents the bounds of the string or substring that a
/// regex operation is invoked upon. Anchors like `^` and `.startOfSubject`
/// always use `subjectBounds` as their reference points, instead of
/// `input`'s boundaries or `searchBounds`.
///
/// `subjectBounds` is always equal to or a subrange of
/// `input.startIndex..<input.endIndex`.
let subjectBounds: Range<Position>
/// The bounds within the subject for an individual search.
///
/// `searchBounds` is equal to `subjectBounds` in some cases, but can be a
/// subrange when performing operations like searching for matches iteratively
/// or calling `str.replacing(_:with:subrange:)`.
///
/// Anchors like `^` and `.startOfSubject` use `subjectBounds` instead of
/// `searchBounds`. The "start of matching" anchor `\G` uses `searchBounds`
/// as its starting point.
let searchBounds: Range<Position>
let matchMode: MatchMode
let instructions: InstructionList<Instruction>
// MARK: Resettable state
/// The current search position while processing.
///
/// `currentPosition` must always be in the range `subjectBounds` or equal
/// to `subjectBounds.upperBound`.
var currentPosition: Position
var controller: Controller
var registers: Registers
var savePoints: [SavePoint] = []
var callStack: [InstructionAddress] = []
var storedCaptures: Array<_StoredCapture>
var wordIndexCache: Set<String.Index>? = nil
var wordIndexMaxIndex: String.Index? = nil
var state: State = .inProgress
var failureReason: Error? = nil
var metrics: ProcessorMetrics
}
extension Processor {
typealias Position = Input.Index
var start: Position { searchBounds.lowerBound }
var end: Position { searchBounds.upperBound }
}
extension Processor {
init(
program: MEProgram,
input: Input,
subjectBounds: Range<Position>,
searchBounds: Range<Position>,
matchMode: MatchMode,
isTracingEnabled: Bool,
shouldMeasureMetrics: Bool
) {
self.controller = Controller(pc: 0)
self.instructions = program.instructions
self.input = input
self.subjectBounds = subjectBounds
self.searchBounds = searchBounds
self.matchMode = matchMode
self.metrics = ProcessorMetrics(
isTracingEnabled: isTracingEnabled,
shouldMeasureMetrics: shouldMeasureMetrics)
self.currentPosition = searchBounds.lowerBound
// Initialize registers with end of search bounds
self.registers = Registers(program, searchBounds.upperBound)
self.storedCaptures = Array(
repeating: .init(), count: program.registerInfo.captures)
_checkInvariants()
}
mutating func reset(currentPosition: Position) {
self.currentPosition = currentPosition
self.controller = Controller(pc: 0)
self.registers.reset(sentinel: searchBounds.upperBound)
self.savePoints.removeAll(keepingCapacity: true)
self.callStack.removeAll(keepingCapacity: true)
for idx in storedCaptures.indices {
storedCaptures[idx] = .init()
}
self.state = .inProgress
self.failureReason = nil
metrics.addReset()
_checkInvariants()
}
func _checkInvariants() {
assert(searchBounds.lowerBound >= subjectBounds.lowerBound)
assert(searchBounds.upperBound <= subjectBounds.upperBound)
assert(subjectBounds.lowerBound >= input.startIndex)
assert(subjectBounds.upperBound <= input.endIndex)
assert(currentPosition >= searchBounds.lowerBound)
assert(currentPosition <= searchBounds.upperBound)
}
}
extension Processor {
func fetch() -> (Instruction.OpCode, Instruction.Payload) {
instructions[controller.pc].destructure
}
var slice: Input.SubSequence {
// TODO: Should we whole-scale switch to slices, or
// does that depend on options for some anchors?
input[searchBounds]
}
// Advance in our input
//
// Returns whether the advance succeeded. On failure, our
// save point was restored
mutating func consume(_ n: Distance) -> Bool {
// TODO: needs benchmark coverage
if let idx = input.index(
currentPosition, offsetBy: n.rawValue, limitedBy: end
) {
currentPosition = idx
return true
}
// If `end` falls in the middle of a character, and we are trying to advance
// by one "character", then we should max out at `end` even though the above
// advancement will result in `nil`.
if n == 1, let idx = input.unicodeScalars.index(
currentPosition, offsetBy: n.rawValue, limitedBy: end
) {
currentPosition = idx
return true
}
signalFailure()
return false
}
// Advances in unicode scalar view
mutating func consumeScalar(_ n: Distance) -> Bool {
// TODO: needs benchmark coverage
guard let idx = input.unicodeScalars.index(
currentPosition, offsetBy: n.rawValue, limitedBy: end
) else {
signalFailure()
return false
}
currentPosition = idx
return true
}
/// Continue matching at the specified index.
///
/// - Precondition: `bounds.contains(index) || index == bounds.upperBound`
/// - Precondition: `index >= currentPosition`
mutating func resume(at index: Input.Index) {
assert(index >= searchBounds.lowerBound)
assert(index <= searchBounds.upperBound)
assert(index >= currentPosition)
currentPosition = index
}
func doPrint(_ s: String) {
var enablePrinting: Bool { false }
if enablePrinting {
print(s)
}
}
func load() -> Element? {
currentPosition < end ? input[currentPosition] : nil
}
// MARK: Match functions
//
// TODO: refactor these such that `cycle()` calls the corresponding String
// method directly, and all the step, signalFailure, and
// currentPosition logic is collected into a single place inside
// cycle().
// Match against the current input element. Returns whether
// it succeeded vs signaling an error.
mutating func match(
_ e: Element, isCaseInsensitive: Bool
) -> Bool {
guard let next = input.match(
e,
at: currentPosition,
limitedBy: end,
isCaseInsensitive: isCaseInsensitive
) else {
signalFailure()
return false
}
currentPosition = next
return true
}
// Match against the current input prefix. Returns whether
// it succeeded vs signaling an error.
mutating func matchSeq(
_ seq: Substring,
isScalarSemantics: Bool
) -> Bool {
guard let next = input.matchSeq(
seq,
at: currentPosition,
limitedBy: end,
isScalarSemantics: isScalarSemantics
) else {
signalFailure()
return false
}
currentPosition = next
return true
}
mutating func matchScalar(
_ s: Unicode.Scalar,
boundaryCheck: Bool,
isCaseInsensitive: Bool
) -> Bool {
guard let next = input.matchScalar(
s,
at: currentPosition,
limitedBy: end,
boundaryCheck: boundaryCheck,
isCaseInsensitive: isCaseInsensitive
) else {
signalFailure()
return false
}
currentPosition = next
return true
}
// If we have a bitset we know that the CharacterClass only matches against
// ascii characters, so check if the current input element is ascii then
// check if it is set in the bitset
mutating func matchBitset(
_ bitset: DSLTree.CustomCharacterClass.AsciiBitset,
isScalarSemantics: Bool
) -> Bool {
guard let next = input.matchASCIIBitset(
bitset,
at: currentPosition,
limitedBy: end,
isScalarSemantics: isScalarSemantics
) else {
signalFailure()
return false
}
currentPosition = next
return true
}
// Matches the next character/scalar if it is not a newline
mutating func matchAnyNonNewline(
isScalarSemantics: Bool
) -> Bool {
guard let next = input.matchAnyNonNewline(
at: currentPosition,
limitedBy: end,
isScalarSemantics: isScalarSemantics
) else {
signalFailure()
return false
}
currentPosition = next
return true
}
mutating func signalFailure(preservingCaptures: Bool = false) {
guard !savePoints.isEmpty else {
state = .fail
return
}
let (pc, pos, stackEnd, capEnds, intRegisters, posRegisters): (
pc: InstructionAddress,
pos: Position?,
stackEnd: CallStackAddress,
captureEnds: [_StoredCapture],
intRegisters: [Int],
PositionRegister: [Input.Index]
)
let idx = savePoints.index(before: savePoints.endIndex)
// If we have a quantifier save point, move the next range position into
// pos instead of removing it
if savePoints[idx].isQuantified {
savePoints[idx].takePositionFromQuantifiedRange(input)
(pc, pos, stackEnd, capEnds, intRegisters, posRegisters) = savePoints[idx].destructure
} else {
(pc, pos, stackEnd, capEnds, intRegisters, posRegisters) = savePoints.removeLast().destructure
}
assert(stackEnd.rawValue <= callStack.count)
assert(capEnds.count == storedCaptures.count)
controller.pc = pc
currentPosition = pos ?? currentPosition
callStack.removeLast(callStack.count - stackEnd.rawValue)
registers.ints = intRegisters
registers.positions = posRegisters
if !preservingCaptures {
// Reset all capture information
storedCaptures = capEnds
}
metrics.addBacktrack()
}
mutating func abort(_ e: Error? = nil) {
if let e = e {
self.failureReason = e
}
self.state = .fail
}
mutating func tryAccept() {
switch (currentPosition, matchMode) {
// When reaching the end of the match bounds or when we are only doing a
// prefix match, transition to accept.
case (searchBounds.upperBound, _), (_, .partialFromFront):
state = .accept
// When we are doing a full match but did not reach the end of the match
// bounds, backtrack if possible.
case (_, .wholeString):
signalFailure()
}
}
mutating func clearThrough(_ address: InstructionAddress) {
while let sp = savePoints.popLast() {
if sp.pc == address {
controller.step()
return
}
}
// TODO: What should we do here?
fatalError("Invalid code: Tried to clear save points when empty")
}
mutating func cycle() {
_checkInvariants()
assert(state == .inProgress)
startCycleMetrics()
defer { endCycleMetrics() }
let (opcode, payload) = fetch()
switch opcode {
case .invalid:
fatalError("Invalid program")
case .moveImmediate:
let (imm, reg) = payload.pairedImmediateInt
let int = Int(asserting: imm)
assert(int == imm)
registers[reg] = int
controller.step()
case .moveCurrentPosition:
let reg = payload.position
registers[reg] = currentPosition
controller.step()
case .restorePosition:
let reg = payload.position
currentPosition = registers[reg]
controller.step()
case .branch:
controller.pc = payload.addr
case .condBranchZeroElseDecrement:
let (addr, int) = payload.pairedAddrInt
if registers[int] == 0 {
controller.pc = addr
} else {
registers[int] -= 1
controller.step()
}
case .condBranchSamePosition:
let (addr, pos) = payload.pairedAddrPos
if registers[pos] == currentPosition {
controller.pc = addr
} else {
controller.step()
}
case .save:
let resumeAddr = payload.addr
let sp = makeSavePoint(resumingAt: resumeAddr)
savePoints.append(sp)
controller.step()
case .saveAddress:
let resumeAddr = payload.addr
let sp = makeAddressOnlySavePoint(resumingAt: resumeAddr)
savePoints.append(sp)
controller.step()
case .splitSaving:
let (nextPC, resumeAddr) = payload.pairedAddrAddr
let sp = makeSavePoint(resumingAt: resumeAddr)
savePoints.append(sp)
controller.pc = nextPC
case .clear:
if let _ = savePoints.popLast() {
controller.step()
} else {
// TODO: What should we do here?
fatalError("Invalid code: Tried to clear save points when empty")
}
case .clearThrough:
clearThrough(payload.addr)
case .accept:
tryAccept()
case .fail:
let preservingCaptures = payload.boolPayload
signalFailure(preservingCaptures: preservingCaptures)
case .advance:
let (isScalar, distance) = payload.distance
if isScalar {
if consumeScalar(distance) {
controller.step()
}
} else {
if consume(distance) {
controller.step()
}
}
case .matchAnyNonNewline:
if matchAnyNonNewline(isScalarSemantics: payload.isScalar) {
controller.step()
}
case .match:
let (isCaseInsensitive, reg) = payload.elementPayload
if match(registers[reg], isCaseInsensitive: isCaseInsensitive) {
controller.step()
}
case .matchScalar:
let (scalar, caseInsensitive, boundaryCheck) = payload.scalarPayload
if matchScalar(
scalar,
boundaryCheck: boundaryCheck,
isCaseInsensitive: caseInsensitive
) {
controller.step()
}
case .matchBitset:
let (isScalar, reg) = payload.bitsetPayload
let bitset = registers[reg]
if matchBitset(bitset, isScalarSemantics: isScalar) {
controller.step()
}
case .matchBuiltin:
let payload = payload.characterClassPayload
if matchBuiltinCC(
payload.cc,
isInverted: payload.isInverted,
isStrictASCII: payload.isStrictASCII,
isScalarSemantics: payload.isScalarSemantics
) {
controller.step()
}
case .quantify:
if runQuantify(payload.quantify) {
controller.step()
}
case .consumeBy:
let reg = payload.consumer
let consumer = registers[reg]
guard currentPosition < searchBounds.upperBound,
let nextIndex = consumer(input, currentPosition..<searchBounds.upperBound),
nextIndex <= end
else {
signalFailure()
return
}
resume(at: nextIndex)
controller.step()
case .assertBy:
let payload = payload.assertion
do {
guard try builtinAssert(by: payload) else {
signalFailure()
return
}
} catch {
abort(error)
return
}
controller.step()
case .matchBy:
let (matcherReg, valReg) = payload.pairedMatcherValue
let matcher = registers[matcherReg]
do {
guard let (nextIdx, val) = try matcher(
input, currentPosition, searchBounds
), nextIdx <= end else {
signalFailure()
return
}
registers[valReg] = val
resume(at: nextIdx)
controller.step()
} catch {
abort(error)
return
}
case .backreference:
let (isScalarMode, capture) = payload.captureAndMode
let capNum = Int(
asserting: capture.rawValue)
guard capNum < storedCaptures.count else {
fatalError("Should this be an assert?")
}
// TODO:
// Should we assert it's not finished yet?
// What's the behavior there?
let cap = storedCaptures[capNum]
guard let range = cap.range else {
signalFailure()
return
}
if matchSeq(input[range], isScalarSemantics: isScalarMode) {
controller.step()
}
case .beginCapture:
let capNum = Int(
asserting: payload.capture.rawValue)
storedCaptures[capNum].startCapture(currentPosition)
controller.step()
case .endCapture:
let capNum = Int(
asserting: payload.capture.rawValue)
storedCaptures[capNum].endCapture(currentPosition)
controller.step()
case .transformCapture:
let (cap, trans) = payload.pairedCaptureTransform
let transform = registers[trans]
let capNum = Int(asserting: cap.rawValue)
do {
// FIXME: Pass input or the slice?
guard let value = try transform(input, storedCaptures[capNum]) else {
signalFailure()
return
}
storedCaptures[capNum].registerValue(value)
controller.step()
} catch {
abort(error)
return
}
case .captureValue:
let (val, cap) = payload.pairedValueCapture
let value = registers[val]
let capNum = Int(asserting: cap.rawValue)
storedCaptures[capNum].registerValue(value)
controller.step()
}
}
}
// MARK: String matchers
//
// TODO: Refactor into separate file, formalize patterns
extension String {
func match(
_ char: Character,
at pos: Index,
limitedBy end: String.Index,
isCaseInsensitive: Bool
) -> Index? {
// TODO: This can be greatly sped up with string internals
// TODO: This is also very much quick-check-able
guard let (stringChar, next) = characterAndEnd(at: pos, limitedBy: end)
else { return nil }
if isCaseInsensitive {
guard stringChar.lowercased() == char.lowercased() else { return nil }
} else {
guard stringChar == char else { return nil }
}
return next
}
func matchSeq(
_ seq: Substring,
at pos: Index,
limitedBy end: Index,
isScalarSemantics: Bool
) -> Index? {
// TODO: This can be greatly sped up with string internals
// TODO: This is also very much quick-check-able
var cur = pos
if isScalarSemantics {
for e in seq.unicodeScalars {
guard cur < end, unicodeScalars[cur] == e else { return nil }
self.unicodeScalars.formIndex(after: &cur)
}
} else {
for e in seq {
guard let (char, next) = characterAndEnd(at: cur, limitedBy: end),
char == e
else { return nil }
cur = next
}
}
guard cur <= end else { return nil }
return cur
}
func matchScalar(
_ scalar: Unicode.Scalar,
at pos: Index,
limitedBy end: String.Index,
boundaryCheck: Bool,
isCaseInsensitive: Bool
) -> Index? {
// TODO: extremely quick-check-able
// TODO: can be sped up with string internals
guard pos < end else { return nil }
let curScalar = unicodeScalars[pos]
if isCaseInsensitive {
guard curScalar.properties.lowercaseMapping == scalar.properties.lowercaseMapping
else {
return nil
}
} else {
guard curScalar == scalar else { return nil }
}
let idx = unicodeScalars.index(after: pos)
assert(idx <= end, "Input is a substring with a sub-scalar endIndex.")
if boundaryCheck && !isOnGraphemeClusterBoundary(idx) {
return nil
}
return idx
}
func matchASCIIBitset(
_ bitset: DSLTree.CustomCharacterClass.AsciiBitset,
at pos: Index,
limitedBy end: Index,
isScalarSemantics: Bool
) -> Index? {
// FIXME: Inversion should be tracked and handled in only one place.
// That is, we should probably store it as a bit in the instruction, so that
// bitset matching and bitset inversion is bit-based rather that semantically
// inverting the notion of a match or not. As-is, we need to track both
// meanings in some code paths.
let isInverted = bitset.isInverted
// TODO: More fodder for refactoring `_quickASCIICharacter`, see the comment
// there
guard let (asciiByte, next, isCRLF) = _quickASCIICharacter(
at: pos,
limitedBy: end
) else {
if isScalarSemantics {
guard pos < end else { return nil }
guard bitset.matches(unicodeScalars[pos]) else { return nil }
return unicodeScalars.index(after: pos)
} else {
guard let (char, next) = characterAndEnd(at: pos, limitedBy: end),
bitset.matches(char) else { return nil }
return next
}
}
guard bitset.matches(asciiByte) else {
// FIXME: check inversion here after refactored out of bitset
return nil
}
// CR-LF should only match `[\r]` in scalar semantic mode or if inverted
if isCRLF {
if isScalarSemantics {
return self.unicodeScalars.index(before: next)
}
if isInverted {
return next
}
return nil
}
return next
}
}
|