File: Processor.swift

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (779 lines) | stat: -rw-r--r-- 21,462 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021-2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
//
//===----------------------------------------------------------------------===//


enum MatchMode {
  case wholeString
  case partialFromFront
}

/// A concrete CU. Somehow will run the concrete logic and
/// feed stuff back to generic code
struct Controller {
  var pc: InstructionAddress

  mutating func step() {
    pc.rawValue += 1
  }
}

struct Processor {
  typealias Input = String
  typealias Element = Input.Element

  /// The base collection of the subject to search.
  ///
  /// Taken together, `input` and `subjectBounds` define the actual subject
  /// of the search. `input` can be a "supersequence" of the subject, while
  /// `input[subjectBounds]` is the logical entity that is being searched.
  let input: Input

  /// The bounds of the logical subject in `input`.
  ///
  /// `subjectBounds` represents the bounds of the string or substring that a
  /// regex operation is invoked upon. Anchors like `^` and `.startOfSubject`
  /// always use `subjectBounds` as their reference points, instead of
  /// `input`'s boundaries or `searchBounds`.
  ///
  /// `subjectBounds` is always equal to or a subrange of
  /// `input.startIndex..<input.endIndex`.
  let subjectBounds: Range<Position>

  /// The bounds within the subject for an individual search.
  ///
  /// `searchBounds` is equal to `subjectBounds` in some cases, but can be a
  /// subrange when performing operations like searching for matches iteratively
  /// or calling `str.replacing(_:with:subrange:)`.
  ///
  /// Anchors like `^` and `.startOfSubject` use `subjectBounds` instead of
  /// `searchBounds`. The "start of matching" anchor `\G` uses `searchBounds`
  /// as its starting point.
  let searchBounds: Range<Position>

  let matchMode: MatchMode
  let instructions: InstructionList<Instruction>

  // MARK: Resettable state

  /// The current search position while processing.
  ///
  /// `currentPosition` must always be in the range `subjectBounds` or equal
  /// to `subjectBounds.upperBound`.
  var currentPosition: Position

  var controller: Controller

  var registers: Registers

  var savePoints: [SavePoint] = []

  var callStack: [InstructionAddress] = []

  var storedCaptures: Array<_StoredCapture>

  var wordIndexCache: Set<String.Index>? = nil
  var wordIndexMaxIndex: String.Index? = nil

  var state: State = .inProgress

  var failureReason: Error? = nil

  var metrics: ProcessorMetrics
}

extension Processor {
  typealias Position = Input.Index

  var start: Position { searchBounds.lowerBound }
  var end: Position { searchBounds.upperBound }
}

extension Processor {
  init(
    program: MEProgram,
    input: Input,
    subjectBounds: Range<Position>,
    searchBounds: Range<Position>,
    matchMode: MatchMode,
    isTracingEnabled: Bool,
    shouldMeasureMetrics: Bool
  ) {
    self.controller = Controller(pc: 0)
    self.instructions = program.instructions
    self.input = input
    self.subjectBounds = subjectBounds
    self.searchBounds = searchBounds
    self.matchMode = matchMode

    self.metrics = ProcessorMetrics(
      isTracingEnabled: isTracingEnabled,
      shouldMeasureMetrics: shouldMeasureMetrics)

    self.currentPosition = searchBounds.lowerBound

    // Initialize registers with end of search bounds
    self.registers = Registers(program, searchBounds.upperBound)
    self.storedCaptures = Array(
      repeating: .init(), count: program.registerInfo.captures)

    _checkInvariants()
  }

  mutating func reset(currentPosition: Position) {
    self.currentPosition = currentPosition

    self.controller = Controller(pc: 0)

    self.registers.reset(sentinel: searchBounds.upperBound)

    self.savePoints.removeAll(keepingCapacity: true)
    self.callStack.removeAll(keepingCapacity: true)

    for idx in storedCaptures.indices {
      storedCaptures[idx] = .init()
    }

    self.state = .inProgress
    self.failureReason = nil

    metrics.addReset()
    _checkInvariants()
  }

  func _checkInvariants() {
    assert(searchBounds.lowerBound >= subjectBounds.lowerBound)
    assert(searchBounds.upperBound <= subjectBounds.upperBound)
    assert(subjectBounds.lowerBound >= input.startIndex)
    assert(subjectBounds.upperBound <= input.endIndex)
    assert(currentPosition >= searchBounds.lowerBound)
    assert(currentPosition <= searchBounds.upperBound)
  }
}

extension Processor {
  func fetch() -> (Instruction.OpCode, Instruction.Payload) {
    instructions[controller.pc].destructure
  }

  var slice: Input.SubSequence {
    // TODO: Should we whole-scale switch to slices, or
    // does that depend on options for some anchors?
    input[searchBounds]
  }

  // Advance in our input
  //
  // Returns whether the advance succeeded. On failure, our
  // save point was restored
  mutating func consume(_ n: Distance) -> Bool {
    // TODO: needs benchmark coverage
    if let idx = input.index(
      currentPosition, offsetBy: n.rawValue, limitedBy: end
    ) {
      currentPosition = idx
      return true
    }

    // If `end` falls in the middle of a character, and we are trying to advance
    // by one "character", then we should max out at `end` even though the above
    // advancement will result in `nil`.
    if n == 1, let idx = input.unicodeScalars.index(
      currentPosition, offsetBy: n.rawValue, limitedBy: end
    ) {
      currentPosition = idx
      return true
    }

    signalFailure()
    return false
  }

  // Advances in unicode scalar view
  mutating func consumeScalar(_ n: Distance) -> Bool {
    // TODO: needs benchmark coverage
    guard let idx = input.unicodeScalars.index(
      currentPosition, offsetBy: n.rawValue, limitedBy: end
    ) else {
      signalFailure()
      return false
    }
    currentPosition = idx
    return true
  }

  /// Continue matching at the specified index.
  ///
  /// - Precondition: `bounds.contains(index) || index == bounds.upperBound`
  /// - Precondition: `index >= currentPosition`
  mutating func resume(at index: Input.Index) {
    assert(index >= searchBounds.lowerBound)
    assert(index <= searchBounds.upperBound)
    assert(index >= currentPosition)
    currentPosition = index
  }

  func doPrint(_ s: String) {
    var enablePrinting: Bool { false }
    if enablePrinting {
      print(s)
    }
  }

  func load() -> Element? {
    currentPosition < end ? input[currentPosition] : nil
  }

  // MARK: Match functions
  //
  // TODO: refactor these such that `cycle()` calls the corresponding String
  //       method directly, and all the step, signalFailure, and
  //       currentPosition logic is collected into a single place inside
  //       cycle().

  // Match against the current input element. Returns whether
  // it succeeded vs signaling an error.
  mutating func match(
    _ e: Element, isCaseInsensitive: Bool
  ) -> Bool {
    guard let next = input.match(
      e,
      at: currentPosition,
      limitedBy: end,
      isCaseInsensitive: isCaseInsensitive
    ) else {
      signalFailure()
      return false
    }
    currentPosition = next
    return true
  }

  // Match against the current input prefix. Returns whether
  // it succeeded vs signaling an error.
  mutating func matchSeq(
    _ seq: Substring,
    isScalarSemantics: Bool
  ) -> Bool  {
    guard let next = input.matchSeq(
      seq,
      at: currentPosition,
      limitedBy: end,
      isScalarSemantics: isScalarSemantics
    ) else {
      signalFailure()
      return false
    }

    currentPosition = next
    return true
  }

  mutating func matchScalar(
    _ s: Unicode.Scalar,
    boundaryCheck: Bool,
    isCaseInsensitive: Bool
  ) -> Bool {
    guard let next = input.matchScalar(
      s,
      at: currentPosition,
      limitedBy: end,
      boundaryCheck: boundaryCheck,
      isCaseInsensitive: isCaseInsensitive
    ) else {
      signalFailure()
      return false
    }
    currentPosition = next
    return true
  }

  // If we have a bitset we know that the CharacterClass only matches against
  // ascii characters, so check if the current input element is ascii then
  // check if it is set in the bitset
  mutating func matchBitset(
    _ bitset: DSLTree.CustomCharacterClass.AsciiBitset,
    isScalarSemantics: Bool
  ) -> Bool {
    guard let next = input.matchASCIIBitset(
      bitset,
      at: currentPosition,
      limitedBy: end,
      isScalarSemantics: isScalarSemantics
    ) else {
      signalFailure()
      return false
    }
    currentPosition = next
    return true
  }

  // Matches the next character/scalar if it is not a newline
  mutating func matchAnyNonNewline(
    isScalarSemantics: Bool
  ) -> Bool {
    guard let next = input.matchAnyNonNewline(
      at: currentPosition,
      limitedBy: end,
      isScalarSemantics: isScalarSemantics
    ) else {
      signalFailure()
      return false
    }
    currentPosition = next
    return true
  }

  mutating func signalFailure(preservingCaptures: Bool = false) {
    guard !savePoints.isEmpty else {
      state = .fail
      return
    }
    let (pc, pos, stackEnd, capEnds, intRegisters, posRegisters): (
      pc: InstructionAddress,
      pos: Position?,
      stackEnd: CallStackAddress,
      captureEnds: [_StoredCapture],
      intRegisters: [Int],
      PositionRegister: [Input.Index]
    )

    let idx = savePoints.index(before: savePoints.endIndex)

    // If we have a quantifier save point, move the next range position into
    // pos instead of removing it
    if savePoints[idx].isQuantified {
      savePoints[idx].takePositionFromQuantifiedRange(input)
      (pc, pos, stackEnd, capEnds, intRegisters, posRegisters) = savePoints[idx].destructure
    } else {
      (pc, pos, stackEnd, capEnds, intRegisters, posRegisters) = savePoints.removeLast().destructure
    }

    assert(stackEnd.rawValue <= callStack.count)
    assert(capEnds.count == storedCaptures.count)

    controller.pc = pc
    currentPosition = pos ?? currentPosition
    callStack.removeLast(callStack.count - stackEnd.rawValue)
    registers.ints = intRegisters
    registers.positions = posRegisters

    if !preservingCaptures {
      // Reset all capture information
      storedCaptures = capEnds
    }

    metrics.addBacktrack()
  }

  mutating func abort(_ e: Error? = nil) {
    if let e = e {
      self.failureReason = e
    }
    self.state = .fail
  }

  mutating func tryAccept() {
    switch (currentPosition, matchMode) {
    // When reaching the end of the match bounds or when we are only doing a
    // prefix match, transition to accept.
    case (searchBounds.upperBound, _), (_, .partialFromFront):
      state = .accept

    // When we are doing a full match but did not reach the end of the match
    // bounds, backtrack if possible.
    case (_, .wholeString):
      signalFailure()
    }
  }

  mutating func clearThrough(_ address: InstructionAddress) {
    while let sp = savePoints.popLast() {
      if sp.pc == address {
        controller.step()
        return
      }
    }
    // TODO: What should we do here?
    fatalError("Invalid code: Tried to clear save points when empty")
  }

  mutating func cycle() {
    _checkInvariants()
    assert(state == .inProgress)

    startCycleMetrics()
    defer { endCycleMetrics() }

    let (opcode, payload) = fetch()
    switch opcode {
    case .invalid:
      fatalError("Invalid program")

    case .moveImmediate:
      let (imm, reg) = payload.pairedImmediateInt
      let int = Int(asserting: imm)
      assert(int == imm)

      registers[reg] = int
      controller.step()
    case .moveCurrentPosition:
      let reg = payload.position
      registers[reg] = currentPosition
      controller.step()
    case .restorePosition:
      let reg = payload.position
      currentPosition = registers[reg]
      controller.step()
    case .branch:
      controller.pc = payload.addr

    case .condBranchZeroElseDecrement:
      let (addr, int) = payload.pairedAddrInt
      if registers[int] == 0 {
        controller.pc = addr
      } else {
        registers[int] -= 1
        controller.step()
      }
    case .condBranchSamePosition:
      let (addr, pos) = payload.pairedAddrPos
      if registers[pos] == currentPosition {
        controller.pc = addr
      } else {
        controller.step()
      }
    case .save:
      let resumeAddr = payload.addr
      let sp = makeSavePoint(resumingAt: resumeAddr)
      savePoints.append(sp)
      controller.step()

    case .saveAddress:
      let resumeAddr = payload.addr
      let sp = makeAddressOnlySavePoint(resumingAt: resumeAddr)
      savePoints.append(sp)
      controller.step()

    case .splitSaving:
      let (nextPC, resumeAddr) = payload.pairedAddrAddr
      let sp = makeSavePoint(resumingAt: resumeAddr)
      savePoints.append(sp)
      controller.pc = nextPC

    case .clear:
      if let _ = savePoints.popLast() {
        controller.step()
      } else {
        // TODO: What should we do here?
        fatalError("Invalid code: Tried to clear save points when empty")
      }

    case .clearThrough:
      clearThrough(payload.addr)

    case .accept:
      tryAccept()

    case .fail:
      let preservingCaptures = payload.boolPayload
      signalFailure(preservingCaptures: preservingCaptures)

    case .advance:
      let (isScalar, distance) = payload.distance
      if isScalar {
        if consumeScalar(distance) {
          controller.step()
        }
      } else {
        if consume(distance) {
          controller.step()
        }
      }
    case .matchAnyNonNewline:
      if matchAnyNonNewline(isScalarSemantics: payload.isScalar) {
        controller.step()
      }
    case .match:
      let (isCaseInsensitive, reg) = payload.elementPayload
      if match(registers[reg], isCaseInsensitive: isCaseInsensitive) {
        controller.step()
      }

    case .matchScalar:
      let (scalar, caseInsensitive, boundaryCheck) = payload.scalarPayload
      if matchScalar(
        scalar,
        boundaryCheck: boundaryCheck,
        isCaseInsensitive: caseInsensitive
      ) {
        controller.step()
      }

    case .matchBitset:
      let (isScalar, reg) = payload.bitsetPayload
      let bitset = registers[reg]
      if matchBitset(bitset, isScalarSemantics: isScalar) {
        controller.step()
      }

    case .matchBuiltin:
      let payload = payload.characterClassPayload
      if matchBuiltinCC(
        payload.cc,
        isInverted: payload.isInverted,
        isStrictASCII: payload.isStrictASCII,
        isScalarSemantics: payload.isScalarSemantics
      ) {
        controller.step()
      }
    case .quantify:
      if runQuantify(payload.quantify) {
        controller.step()
      }

    case .consumeBy:
      let reg = payload.consumer
      let consumer = registers[reg]
      guard currentPosition < searchBounds.upperBound,
            let nextIndex = consumer(input, currentPosition..<searchBounds.upperBound),
            nextIndex <= end
      else {
        signalFailure()
        return
      }
      resume(at: nextIndex)
      controller.step()

    case .assertBy:
      let payload = payload.assertion
      do {
        guard try builtinAssert(by: payload) else {
          signalFailure()
          return
        }
      } catch {
        abort(error)
        return
      }
      controller.step()

    case .matchBy:
      let (matcherReg, valReg) = payload.pairedMatcherValue
      let matcher = registers[matcherReg]
      do {
        guard let (nextIdx, val) = try matcher(
          input, currentPosition, searchBounds
        ), nextIdx <= end else {
          signalFailure()
          return
        }
        registers[valReg] = val
        resume(at: nextIdx)
        controller.step()
      } catch {
        abort(error)
        return
      }

    case .backreference:
      let (isScalarMode, capture) = payload.captureAndMode
      let capNum = Int(
        asserting: capture.rawValue)
      guard capNum < storedCaptures.count else {
        fatalError("Should this be an assert?")
      }
      // TODO:
      //   Should we assert it's not finished yet?
      //   What's the behavior there?
      let cap = storedCaptures[capNum]
      guard let range = cap.range else {
        signalFailure()
        return
      }
      if matchSeq(input[range], isScalarSemantics: isScalarMode) {
        controller.step()
      }

    case .beginCapture:
      let capNum = Int(
        asserting: payload.capture.rawValue)
      storedCaptures[capNum].startCapture(currentPosition)
      controller.step()

    case .endCapture:
      let capNum = Int(
        asserting: payload.capture.rawValue)
      storedCaptures[capNum].endCapture(currentPosition)
      controller.step()

    case .transformCapture:
      let (cap, trans) = payload.pairedCaptureTransform
      let transform = registers[trans]
      let capNum = Int(asserting: cap.rawValue)

      do {
        // FIXME: Pass input or the slice?
        guard let value = try transform(input, storedCaptures[capNum]) else {
          signalFailure()
          return
        }
        storedCaptures[capNum].registerValue(value)
        controller.step()
      } catch {
        abort(error)
        return
      }

    case .captureValue:
      let (val, cap) = payload.pairedValueCapture
      let value = registers[val]
      let capNum = Int(asserting: cap.rawValue)
      storedCaptures[capNum].registerValue(value)
      controller.step()
    }
  }
}

// MARK: String matchers
//
// TODO: Refactor into separate file, formalize patterns

extension String {

  func match(
    _ char: Character,
    at pos: Index,
    limitedBy end: String.Index,
    isCaseInsensitive: Bool
  ) -> Index? {
    // TODO: This can be greatly sped up with string internals
    // TODO: This is also very much quick-check-able
    guard let (stringChar, next) = characterAndEnd(at: pos, limitedBy: end)
    else { return nil }

    if isCaseInsensitive {
      guard stringChar.lowercased() == char.lowercased() else { return nil }
    } else {
      guard stringChar == char else { return nil }
    }

    return next
  }

  func matchSeq(
    _ seq: Substring,
    at pos: Index,
    limitedBy end: Index,
    isScalarSemantics: Bool
  ) -> Index? {
    // TODO: This can be greatly sped up with string internals
    // TODO: This is also very much quick-check-able
    var cur = pos

    if isScalarSemantics {
      for e in seq.unicodeScalars {
        guard cur < end, unicodeScalars[cur] == e else { return nil }
        self.unicodeScalars.formIndex(after: &cur)
      }
    } else {
      for e in seq {
        guard let (char, next) = characterAndEnd(at: cur, limitedBy: end),
              char == e
        else { return nil }
        cur = next
      }
    }

    guard cur <= end else { return nil }
    return cur
  }

  func matchScalar(
    _ scalar: Unicode.Scalar,
    at pos: Index,
    limitedBy end: String.Index,
    boundaryCheck: Bool,
    isCaseInsensitive: Bool
  ) -> Index? {
    // TODO: extremely quick-check-able
    // TODO: can be sped up with string internals
    guard pos < end else { return nil }
    let curScalar = unicodeScalars[pos]

    if isCaseInsensitive {
      guard curScalar.properties.lowercaseMapping == scalar.properties.lowercaseMapping
      else {
        return nil
      }
    } else {
      guard curScalar == scalar else { return nil }
    }

    let idx = unicodeScalars.index(after: pos)
    assert(idx <= end, "Input is a substring with a sub-scalar endIndex.")

    if boundaryCheck && !isOnGraphemeClusterBoundary(idx) {
      return nil
    }

    return idx
  }

  func matchASCIIBitset(
    _ bitset: DSLTree.CustomCharacterClass.AsciiBitset,
    at pos: Index,
    limitedBy end: Index,
    isScalarSemantics: Bool
  ) -> Index? {

    // FIXME: Inversion should be tracked and handled in only one place.
    // That is, we should probably store it as a bit in the instruction, so that
    // bitset matching and bitset inversion is bit-based rather that semantically
    // inverting the notion of a match or not. As-is, we need to track both
    // meanings in some code paths.
    let isInverted = bitset.isInverted

    // TODO: More fodder for refactoring `_quickASCIICharacter`, see the comment 
    // there
    guard let (asciiByte, next, isCRLF) = _quickASCIICharacter(
      at: pos,
      limitedBy: end
    ) else {
      if isScalarSemantics {
        guard pos < end else { return nil }
        guard bitset.matches(unicodeScalars[pos]) else { return nil }
        return unicodeScalars.index(after: pos)
      } else {
        guard let (char, next) = characterAndEnd(at: pos, limitedBy: end),
              bitset.matches(char) else { return nil }
        return next
      }
    }

    guard bitset.matches(asciiByte) else {
      // FIXME: check inversion here after refactored out of bitset
      return nil
    }

    // CR-LF should only match `[\r]` in scalar semantic mode or if inverted
    if isCRLF {
      if isScalarSemantics {
        return self.unicodeScalars.index(before: next)
      }
      if isInverted {
        return next
      }
      return nil
    }

    return next
  }
}