1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021-2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
//
//===----------------------------------------------------------------------===//
@_implementationOnly import _RegexParser
@_spi(RegexBuilder)
public struct DSLTree {
var root: Node
init(_ r: Node) {
self.root = r
}
}
extension DSLTree {
indirect enum Node {
/// Matches each node in order.
///
/// ... | ... | ...
case orderedChoice([Node])
/// Match each node in sequence.
///
/// ... ...
case concatenation([Node])
/// Captures the result of a subpattern.
///
/// (...), (?<name>...)
case capture(
name: String? = nil, reference: ReferenceID? = nil, Node,
CaptureTransform? = nil)
/// Matches a noncapturing subpattern.
case nonCapturingGroup(_AST.GroupKind, Node)
/// Marks all captures in a subpattern as ignored in strongly-typed output.
case ignoreCapturesInTypedOutput(Node)
// TODO: Consider splitting off grouped conditions, or have
// our own kind
/// Matches a choice of two nodes, based on a condition.
///
/// (?(cond) true-branch | false-branch)
///
case conditional(
_AST.ConditionKind, Node, Node)
case quantification(
_AST.QuantificationAmount,
QuantificationKind,
Node)
case customCharacterClass(CustomCharacterClass)
case atom(Atom)
/// Comments, non-semantic whitespace, and so on.
// TODO: Do we want this? Could be interesting
case trivia(String)
// TODO: Probably some atoms, built-ins, etc.
case empty
case quotedLiteral(String)
// TODO: What should we do here?
///
/// TODO: Consider splitting off expression functions, or have our own kind
case absentFunction(_AST.AbsentFunction)
// MARK: - Tree conversions
/// The target of AST conversion.
///
/// Keeps original AST around for rich syntactic and source information
case convertedRegexLiteral(Node, _AST.ASTNode)
// MARK: - Extensibility points
case consumer(_ConsumerInterface)
case matcher(Any.Type, _MatcherInterface)
// TODO: Would this just boil down to a consumer?
case characterPredicate(_CharacterPredicateInterface)
}
}
extension DSLTree {
enum QuantificationKind {
/// The default quantification kind, as set by options.
case `default`
/// An explicitly chosen kind, overriding any options.
case explicit(_AST.QuantificationKind)
/// A kind set via syntax, which can be affected by options.
case syntax(_AST.QuantificationKind)
var ast: AST.Quantification.Kind? {
switch self {
case .default: return nil
case .explicit(let kind), .syntax(let kind):
return kind.ast
}
}
}
@_spi(RegexBuilder)
public struct CustomCharacterClass {
var members: [Member]
var isInverted: Bool
var containsDot: Bool {
members.contains { member in
switch member {
case .atom(.dot): return true
case .custom(let ccc): return ccc.containsDot
default:
return false
}
}
}
func coalescingASCIIMembers(_ opts: MatchingOptions) -> CustomCharacterClass {
var ascii: [Member] = []
var nonAscii: [Member] = []
for member in members {
if member.asAsciiBitset(opts, false) != nil {
ascii.append(member)
} else {
nonAscii.append(member)
}
}
if ascii.isEmpty || nonAscii.isEmpty { return self }
return CustomCharacterClass(members: [
.custom(CustomCharacterClass(members: ascii)),
.custom(CustomCharacterClass(members: nonAscii))
], isInverted: isInverted)
}
public init(members: [DSLTree.CustomCharacterClass.Member], isInverted: Bool = false) {
self.members = members
self.isInverted = isInverted
}
public static func generalCategory(_ category: Unicode.GeneralCategory) -> Self {
let property = AST.Atom.CharacterProperty(.generalCategory(category.extendedGeneralCategory!), isInverted: false, isPOSIX: false)
let astAtom = AST.Atom(.property(property), .fake)
return .init(members: [.atom(.unconverted(.init(ast: astAtom)))])
}
public var inverted: CustomCharacterClass {
var result = self
result.isInverted.toggle()
return result
}
@_spi(RegexBuilder)
public enum Member {
case atom(Atom)
case range(Atom, Atom)
case custom(CustomCharacterClass)
case quotedLiteral(String)
case trivia(String)
indirect case intersection(CustomCharacterClass, CustomCharacterClass)
indirect case subtraction(CustomCharacterClass, CustomCharacterClass)
indirect case symmetricDifference(CustomCharacterClass, CustomCharacterClass)
var isOnlyTrivia: Bool {
switch self {
case .custom(let ccc):
return ccc.members.all(\.isOnlyTrivia)
case .trivia:
return true
default:
return false
}
}
}
}
@_spi(RegexBuilder)
public enum Atom {
case char(Character)
case scalar(Unicode.Scalar)
/// Any character, including newlines.
case any
/// Any character, excluding newlines. This differs from '.', as it is not
/// affected by single line mode.
case anyNonNewline
/// The DSL representation of '.' in a regex literal. This does not match
/// newlines unless single line mode is enabled.
case dot
case characterClass(CharacterClass)
case assertion(Assertion)
case backreference(_AST.Reference)
case symbolicReference(ReferenceID)
case changeMatchingOptions(_AST.MatchingOptionSequence)
case unconverted(_AST.Atom)
}
}
extension DSLTree.Atom {
@_spi(RegexBuilder)
public enum Assertion: UInt64, Hashable {
/// \A
case startOfSubject = 0
/// \Z
case endOfSubjectBeforeNewline
/// \z
case endOfSubject
/// \K
case resetStartOfMatch
/// \G
case firstMatchingPositionInSubject
/// \y
case textSegment
/// \Y
case notTextSegment
/// The DSL's Anchor.startOfLine, which matches the start of a line
/// even if `anchorsMatchNewlines` is false.
case startOfLine
/// The DSL's Anchor.endOfLine, which matches the end of a line
/// even if `anchorsMatchNewlines` is false.
case endOfLine
/// ^
case caretAnchor
/// $
case dollarAnchor
/// \b (from outside a custom character class)
case wordBoundary
/// \B
case notWordBoundary
}
@_spi(RegexBuilder)
public enum CharacterClass: Hashable {
case digit
case notDigit
case horizontalWhitespace
case notHorizontalWhitespace
case newlineSequence
case notNewline
case whitespace
case notWhitespace
case verticalWhitespace
case notVerticalWhitespace
case word
case notWord
case anyGrapheme
case anyUnicodeScalar
}
}
extension DSLTree.Atom.CharacterClass {
@_spi(RegexBuilder)
public var inverted: DSLTree.Atom.CharacterClass? {
switch self {
case .anyGrapheme: return nil
case .digit: return .notDigit
case .notDigit: return .digit
case .word: return .notWord
case .notWord: return .word
case .horizontalWhitespace: return .notHorizontalWhitespace
case .notHorizontalWhitespace: return .horizontalWhitespace
case .newlineSequence: return .notNewline
case .notNewline: return .newlineSequence
case .verticalWhitespace: return .notVerticalWhitespace
case .notVerticalWhitespace: return .verticalWhitespace
case .whitespace: return .notWhitespace
case .notWhitespace: return .whitespace
case .anyUnicodeScalar:
fatalError("Unsupported")
}
}
}
extension Unicode.GeneralCategory {
var extendedGeneralCategory: Unicode.ExtendedGeneralCategory? {
switch self {
case .uppercaseLetter: return .uppercaseLetter
case .lowercaseLetter: return .lowercaseLetter
case .titlecaseLetter: return .titlecaseLetter
case .modifierLetter: return .modifierLetter
case .otherLetter: return .otherLetter
case .nonspacingMark: return .nonspacingMark
case .spacingMark: return .spacingMark
case .enclosingMark: return .enclosingMark
case .decimalNumber: return .decimalNumber
case .letterNumber: return .letterNumber
case .otherNumber: return .otherNumber
case .connectorPunctuation: return .connectorPunctuation
case .dashPunctuation: return .dashPunctuation
case .openPunctuation: return .openPunctuation
case .closePunctuation: return .closePunctuation
case .initialPunctuation: return .initialPunctuation
case .finalPunctuation: return .finalPunctuation
case .otherPunctuation: return .otherPunctuation
case .mathSymbol: return .mathSymbol
case .currencySymbol: return .currencySymbol
case .modifierSymbol: return .modifierSymbol
case .otherSymbol: return .otherSymbol
case .spaceSeparator: return .spaceSeparator
case .lineSeparator: return .lineSeparator
case .paragraphSeparator: return .paragraphSeparator
case .control: return .control
case .format: return .format
case .surrogate: return .surrogate
case .privateUse: return .privateUse
case .unassigned: return .unassigned
@unknown default: return nil
}
}
}
// CollectionConsumer
typealias _ConsumerInterface = (
String, Range<String.Index>
) throws -> String.Index?
// Type producing consume
// TODO: better name
typealias _MatcherInterface = (
String, String.Index, Range<String.Index>
) throws -> (String.Index, Any)?
// Character-set (post grapheme segmentation)
typealias _CharacterPredicateInterface = (
(Character) -> Bool
)
/*
TODO: Use of syntactic types, like group kinds, is a
little suspect. We may want to figure out a model here.
TODO: Do capturing groups need explicit numbers?
TODO: Are storing closures better/worse than existentials?
*/
extension DSLTree.Node {
/// Indicates whether this node has at least one child node (among other
/// associated values).
var hasChildNodes: Bool {
switch self {
case .trivia, .empty, .quotedLiteral,
.consumer, .matcher, .characterPredicate,
.customCharacterClass, .atom:
return false
case .orderedChoice(let c), .concatenation(let c):
return !c.isEmpty
case .convertedRegexLiteral, .capture, .nonCapturingGroup,
.quantification, .ignoreCapturesInTypedOutput, .conditional:
return true
case .absentFunction(let abs):
return !abs.ast.children.isEmpty
}
}
@_spi(RegexBuilder)
public var children: [DSLTree.Node] {
switch self {
case let .orderedChoice(v): return v
case let .concatenation(v): return v
case let .convertedRegexLiteral(n, _):
// Treat this transparently
return n.children
case let .capture(_, _, n, _): return [n]
case let .nonCapturingGroup(_, n): return [n]
case let .quantification(_, _, n): return [n]
case let .ignoreCapturesInTypedOutput(n): return [n]
case let .conditional(_, t, f): return [t,f]
case .trivia, .empty, .quotedLiteral,
.consumer, .matcher, .characterPredicate,
.customCharacterClass, .atom:
return []
case let .absentFunction(abs):
return abs.ast.children.map(\.dslTreeNode)
}
}
}
extension DSLTree.Node {
var astNode: AST.Node? {
switch self {
case let .convertedRegexLiteral(_, literal): return literal.ast
default: return nil
}
}
/// If this node is for a converted literal, look through it.
var lookingThroughConvertedLiteral: Self {
switch self {
case let .convertedRegexLiteral(n, _): return n
default: return self
}
}
}
extension DSLTree.Atom {
// Return the Character or promote a scalar to a Character
var literalCharacterValue: Character? {
switch self {
case let .char(c): return c
case let .scalar(s): return Character(s)
default: return nil
}
}
}
extension DSLTree {
struct Options {
// TBD
}
}
extension DSLTree {
/// Indicates whether this DSLTree contains any capture groups.
var hasCapture: Bool {
root.hasCapture
}
}
extension DSLTree.Node {
/// Indicates whether this DSLTree node contains any capture groups.
var hasCapture: Bool {
switch self {
case .capture:
return true
case let .convertedRegexLiteral(n, re):
assert(n.hasCapture == re.ast.hasCapture)
return n.hasCapture
default:
return self.children.any(\.hasCapture)
}
}
}
extension DSLTree.Node {
func appending(_ newNode: DSLTree.Node) -> DSLTree.Node {
if case .concatenation(let components) = self {
return .concatenation(components + [newNode])
}
return .concatenation([self, newNode])
}
func appendingAlternationCase(
_ newNode: DSLTree.Node
) -> DSLTree.Node {
if case .orderedChoice(let components) = self {
return .orderedChoice(components + [newNode])
}
return .orderedChoice([self, newNode])
}
}
@_spi(RegexBuilder)
public struct ReferenceID: Hashable {
private static var counter: Int = 0
var base: Int
public var _raw: Int {
base
}
public init() {
base = Self.counter
Self.counter += 1
}
init(_ base: Int) {
self.base = base
}
}
struct CaptureTransform: Hashable, CustomStringConvertible {
enum Closure {
/// A failable transform.
case failable((Any) throws -> Any?)
/// Specialized case of `failable` for performance.
case substringFailable((Substring) throws -> Any?)
/// A non-failable transform.
case nonfailable((Any) throws -> Any)
/// Specialized case of `failable` for performance.
case substringNonfailable((Substring) throws -> Any?)
}
let argumentType: Any.Type
let resultType: Any.Type
let closure: Closure
init(argumentType: Any.Type, resultType: Any.Type, closure: Closure) {
self.argumentType = argumentType
self.resultType = resultType
self.closure = closure
}
init<Argument, Result>(
_ userSpecifiedTransform: @escaping (Argument) throws -> Result
) {
let closure: Closure
if let substringTransform = userSpecifiedTransform
as? (Substring) throws -> Result {
closure = .substringNonfailable(substringTransform)
} else {
closure = .nonfailable {
try userSpecifiedTransform($0 as! Argument) as Any
}
}
self.init(
argumentType: Argument.self,
resultType: Result.self,
closure: closure)
}
init<Argument, Result>(
_ userSpecifiedTransform: @escaping (Argument) throws -> Result?
) {
let closure: Closure
if let substringTransform = userSpecifiedTransform
as? (Substring) throws -> Result? {
closure = .substringFailable(substringTransform)
} else {
closure = .failable {
try userSpecifiedTransform($0 as! Argument) as Any?
}
}
self.init(
argumentType: Argument.self,
resultType: Result.self,
closure: closure)
}
func callAsFunction(_ input: Any) throws -> Any? {
switch closure {
case .nonfailable(let transform):
let result = try transform(input)
assert(type(of: result) == resultType)
return result
case .substringNonfailable(let transform):
let result = try transform(input as! Substring)
assert(type(of: result) == resultType)
return result
case .failable(let transform):
guard let result = try transform(input) else {
return nil
}
assert(type(of: result) == resultType)
return result
case .substringFailable(let transform):
guard let result = try transform(input as! Substring) else {
return nil
}
assert(type(of: result) == resultType)
return result
}
}
func callAsFunction(_ input: Substring) throws -> Any? {
switch closure {
case .substringFailable(let transform):
return try transform(input)
case .substringNonfailable(let transform):
return try transform(input)
case .failable(let transform):
return try transform(input)
case .nonfailable(let transform):
return try transform(input)
}
}
static func == (lhs: CaptureTransform, rhs: CaptureTransform) -> Bool {
unsafeBitCast(lhs.closure, to: (Int, Int).self) ==
unsafeBitCast(rhs.closure, to: (Int, Int).self)
}
func hash(into hasher: inout Hasher) {
let (fn, ctx) = unsafeBitCast(closure, to: (Int, Int).self)
hasher.combine(fn)
hasher.combine(ctx)
}
var description: String {
"<transform argument_type=\(argumentType) result_type=\(resultType)>"
}
}
extension CaptureList.Builder {
mutating func addCaptures(
of node: DSLTree.Node, optionalNesting nesting: OptionalNesting, visibleInTypedOutput: Bool
) {
switch node {
case let .orderedChoice(children):
for child in children {
addCaptures(of: child, optionalNesting: nesting.addingOptional, visibleInTypedOutput: visibleInTypedOutput)
}
case let .concatenation(children):
for child in children {
addCaptures(of: child, optionalNesting: nesting, visibleInTypedOutput: visibleInTypedOutput)
}
case let .capture(name, _, child, transform):
captures.append(.init(
name: name,
type: transform?.resultType ?? child.wholeMatchType,
optionalDepth: nesting.depth, visibleInTypedOutput: visibleInTypedOutput, .fake))
addCaptures(of: child, optionalNesting: nesting, visibleInTypedOutput: visibleInTypedOutput)
case let .nonCapturingGroup(kind, child):
assert(!kind.ast.isCapturing)
addCaptures(of: child, optionalNesting: nesting, visibleInTypedOutput: visibleInTypedOutput)
case let .ignoreCapturesInTypedOutput(child):
addCaptures(of: child, optionalNesting: nesting, visibleInTypedOutput: false)
case let .conditional(cond, trueBranch, falseBranch):
switch cond.ast {
case .group(let g):
addCaptures(of: .group(g), optionalNesting: nesting, visibleInTypedOutput: visibleInTypedOutput)
default:
break
}
addCaptures(of: trueBranch, optionalNesting: nesting.addingOptional, visibleInTypedOutput: visibleInTypedOutput)
addCaptures(of: falseBranch, optionalNesting: nesting.addingOptional, visibleInTypedOutput: visibleInTypedOutput)
case let .quantification(amount, _, child):
var optNesting = nesting
if amount.ast.bounds.atLeast == 0 {
optNesting = optNesting.addingOptional
}
addCaptures(of: child, optionalNesting: optNesting, visibleInTypedOutput: visibleInTypedOutput)
case let .absentFunction(abs):
switch abs.ast.kind {
case .expression(_, _, let child):
addCaptures(of: child, optionalNesting: nesting, visibleInTypedOutput: visibleInTypedOutput)
case .clearer, .repeater, .stopper:
break
#if RESILIENT_LIBRARIES
@unknown default:
fatalError()
#endif
}
case let .convertedRegexLiteral(n, _):
// We disable nesting for converted AST trees, as literals do not nest
// captures. This includes literals nested in a DSL.
return addCaptures(of: n, optionalNesting: nesting.disablingNesting, visibleInTypedOutput: visibleInTypedOutput)
case .matcher:
break
case .customCharacterClass, .atom, .trivia, .empty,
.quotedLiteral, .consumer, .characterPredicate:
break
}
}
static func build(_ dsl: DSLTree) -> CaptureList {
var builder = Self()
builder.captures.append(
.init(type: dsl.root.wholeMatchType, optionalDepth: 0, visibleInTypedOutput: true, .fake))
builder.addCaptures(of: dsl.root, optionalNesting: .init(canNest: true), visibleInTypedOutput: true)
return builder.captures
}
}
extension DSLTree.Node {
/// Returns true if the node is output-forwarding, i.e. not defining its own
/// output but forwarding its only child's output.
var isOutputForwarding: Bool {
switch self {
case .nonCapturingGroup, .ignoreCapturesInTypedOutput:
return true
case .orderedChoice, .concatenation, .capture,
.conditional, .quantification, .customCharacterClass, .atom,
.trivia, .empty, .quotedLiteral, .absentFunction,
.convertedRegexLiteral, .consumer,
.characterPredicate, .matcher:
return false
}
}
/// Returns the output-defining node, peering through any output-forwarding
/// nodes.
var outputDefiningNode: Self {
if isOutputForwarding {
assert(children.count == 1)
return children[0].outputDefiningNode
}
return self
}
/// Returns the type of the whole match, i.e. `.0` element type of the output.
var wholeMatchType: Any.Type {
if case .matcher(let type, _) = outputDefiningNode {
return type
}
return Substring.self
}
}
extension DSLTree.Node {
/// Implementation for `canOnlyMatchAtStart`, which maintains the option
/// state.
///
/// For a given specific node, this method can return one of three values:
///
/// - `true`: This node is guaranteed to match only at the start of a subject.
/// - `false`: This node can match anywhere in the subject.
/// - `nil`: This node is inconclusive about where it can match.
///
/// In particular, non-required groups and option-setting groups are
/// inconclusive about where they can match.
private func _canOnlyMatchAtStartImpl(_ options: inout MatchingOptions) -> Bool? {
switch self {
// Defining cases
case .atom(.assertion(.startOfSubject)):
return true
case .atom(.assertion(.caretAnchor)):
return !options.anchorsMatchNewlines
// Changing options doesn't determine `true`/`false`.
case .atom(.changeMatchingOptions(let sequence)):
options.apply(sequence.ast)
return nil
// Any other atom or consuming node returns `false`.
case .atom, .customCharacterClass, .quotedLiteral:
return false
// Trivia/empty have no effect.
case .trivia, .empty:
return nil
// In an alternation, all of its children must match only at start.
case .orderedChoice(let children):
return children.allSatisfy { $0._canOnlyMatchAtStartImpl(&options) == true }
// In a concatenation, the first definitive child provides the answer.
case .concatenation(let children):
for child in children {
if let result = child._canOnlyMatchAtStartImpl(&options) {
return result
}
}
return false
// Groups (and other parent nodes) defer to the child.
case .nonCapturingGroup(let kind, let child):
options.beginScope()
defer { options.endScope() }
if case .changeMatchingOptions(let sequence) = kind.ast {
options.apply(sequence)
}
return child._canOnlyMatchAtStartImpl(&options)
case .capture(_, _, let child, _):
options.beginScope()
defer { options.endScope() }
return child._canOnlyMatchAtStartImpl(&options)
case .ignoreCapturesInTypedOutput(let child),
.convertedRegexLiteral(let child, _):
return child._canOnlyMatchAtStartImpl(&options)
// A quantification that doesn't require its child to exist can still
// allow a start-only match. (e.g. `/(foo)?^bar/`)
case .quantification(let amount, _, let child):
return amount.requiresAtLeastOne
? child._canOnlyMatchAtStartImpl(&options)
: nil
// For conditional nodes, both sides must require matching at start.
case .conditional(_, let child1, let child2):
return child1._canOnlyMatchAtStartImpl(&options) == true
&& child2._canOnlyMatchAtStartImpl(&options) == true
// Extended behavior isn't known, so we return `false` for safety.
case .consumer, .matcher, .characterPredicate, .absentFunction:
return false
}
}
/// Returns a Boolean value indicating whether the regex with this node as
/// the root can _only_ match at the start of a subject.
///
/// For example, these regexes can only match at the start of a subject:
///
/// - `/^foo/`
/// - `/(^foo|^bar)/` (both sides of the alternation start with `^`)
///
/// These can match other places in a subject:
///
/// - `/(^foo)?bar/` (`^` is in an optional group)
/// - `/(^foo|bar)/` (only one side of the alternation starts with `^`)
/// - `/(?m)^foo/` (`^` means "the start of a line" due to `(?m)`)
internal func canOnlyMatchAtStart() -> Bool {
var options = MatchingOptions()
return _canOnlyMatchAtStartImpl(&options) ?? false
}
}
// MARK: AST wrapper types
//
// These wrapper types are required because even @_spi-marked public APIs can't
// include symbols from implementation-only dependencies.
extension DSLTree {
var captureList: CaptureList { .Builder.build(self) }
/// Presents a wrapped version of `DSLTree.Node` that can provide an internal
/// `_TreeNode` conformance.
struct _Tree: _TreeNode {
var node: DSLTree.Node
init(_ node: DSLTree.Node) {
self.node = node
}
var children: [_Tree]? {
switch node {
case let .orderedChoice(v): return v.map(_Tree.init)
case let .concatenation(v): return v.map(_Tree.init)
case let .convertedRegexLiteral(n, _):
// Treat this transparently
return _Tree(n).children
case let .capture(_, _, n, _): return [_Tree(n)]
case let .nonCapturingGroup(_, n): return [_Tree(n)]
case let .quantification(_, _, n): return [_Tree(n)]
case let .ignoreCapturesInTypedOutput(n): return [_Tree(n)]
case let .conditional(_, t, f): return [_Tree(t), _Tree(f)]
case .trivia, .empty, .quotedLiteral,
.consumer, .matcher, .characterPredicate,
.customCharacterClass, .atom:
return []
case let .absentFunction(abs):
return abs.ast.children.map(\.dslTreeNode).map(_Tree.init)
}
}
}
@_spi(RegexBuilder)
public enum _AST {
@_spi(RegexBuilder)
public struct GroupKind {
internal var ast: AST.Group.Kind
public static var atomicNonCapturing: Self {
.init(ast: .atomicNonCapturing)
}
public static var lookahead: Self {
.init(ast: .lookahead)
}
public static var negativeLookahead: Self {
.init(ast: .negativeLookahead)
}
}
@_spi(RegexBuilder)
public struct ConditionKind {
internal var ast: AST.Conditional.Condition.Kind
}
@_spi(RegexBuilder)
public struct QuantificationKind {
internal var ast: AST.Quantification.Kind
public static var eager: Self {
.init(ast: .eager)
}
public static var reluctant: Self {
.init(ast: .reluctant)
}
public static var possessive: Self {
.init(ast: .possessive)
}
}
@_spi(RegexBuilder)
public struct QuantificationAmount {
internal var ast: AST.Quantification.Amount
public static var zeroOrMore: Self {
.init(ast: .zeroOrMore)
}
public static var oneOrMore: Self {
.init(ast: .oneOrMore)
}
public static var zeroOrOne: Self {
.init(ast: .zeroOrOne)
}
public static func exactly(_ n: Int) -> Self {
.init(ast: .exactly(.init(n, at: .fake)))
}
public static func nOrMore(_ n: Int) -> Self {
.init(ast: .nOrMore(.init(n, at: .fake)))
}
public static func upToN(_ n: Int) -> Self {
.init(ast: .upToN(.init(n, at: .fake)))
}
public static func range(_ lower: Int, _ upper: Int) -> Self {
.init(ast: .range(.init(lower, at: .fake), .init(upper, at: .fake)))
}
internal var requiresAtLeastOne: Bool {
switch ast {
case .zeroOrOne, .zeroOrMore, .upToN:
return false
case .oneOrMore:
return true
case .exactly(let num), .nOrMore(let num), .range(let num, _):
return num.value.map { $0 > 0 } ?? false
#if RESILIENT_LIBRARIES
@unknown default:
fatalError()
#endif
}
}
}
@_spi(RegexBuilder)
public struct ASTNode {
internal var ast: AST.Node
}
@_spi(RegexBuilder)
public struct AbsentFunction {
internal var ast: AST.AbsentFunction
}
@_spi(RegexBuilder)
public struct Reference {
internal var ast: AST.Reference
}
@_spi(RegexBuilder)
public struct MatchingOptionSequence {
internal var ast: AST.MatchingOptionSequence
}
public struct Atom {
internal var ast: AST.Atom
}
}
}
extension DSLTree.Atom {
/// Returns a Boolean indicating whether the atom represents a pattern that's
/// matchable, e.g. a character or a scalar, not representing a change of
/// matching options or an assertion.
var isMatchable: Bool {
switch self {
case .changeMatchingOptions, .assertion:
return false
case .char, .scalar, .any, .anyNonNewline, .dot, .backreference,
.symbolicReference, .unconverted, .characterClass:
return true
}
}
}
extension DSLTree.Node {
// Individual public API functions are in the generated Variadics.swift file.
/// Generates a DSL tree node for a repeated range of the given node.
@available(SwiftStdlib 5.7, *)
static func repeating(
_ range: Range<Int>,
_ behavior: RegexRepetitionBehavior?,
_ node: DSLTree.Node
) -> DSLTree.Node {
// TODO: Throw these as errors
precondition(range.lowerBound >= 0, "Cannot specify a negative lower bound")
precondition(!range.isEmpty, "Cannot specify an empty range")
let kind: DSLTree.QuantificationKind = behavior
.map { .explicit($0.dslTreeKind) } ?? .default
// The upper bound needs adjusting down as
// `.quantification` expects a closed range.
let lower = range.lowerBound
let upperInclusive = range.upperBound - 1
// Unbounded cases
if range.upperBound == Int.max {
switch lower {
case 0: // 0...
return .quantification(.zeroOrMore, kind, node)
case 1: // 1...
return .quantification(.oneOrMore, kind, node)
default: // n...
return .quantification(.nOrMore(lower), kind, node)
}
}
if range.count == 1 {
// ..<1 or ...0 or any range with count == 1
// Note: `behavior` is ignored in this case
return .quantification(.exactly(lower), .default, node)
}
switch lower {
case 0: // 0..<n or 0...n or ..<n or ...n
return .quantification(.upToN(upperInclusive), kind, node)
default:
return .quantification(.range(lower, upperInclusive), kind, node)
}
}
}
|