1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
|
// © 2021 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
#include <complex>
#include <utility>
#include <_foundation_unicode/utypes.h>
#if !UCONFIG_NO_BREAK_ITERATION
#include "brkeng.h"
#include "charstr.h"
#include "cmemory.h"
#include "lstmbe.h"
#include "putilimp.h"
#include "uassert.h"
#include "ubrkimpl.h"
#include "uresimp.h"
#include "uvectr32.h"
#include "uvector.h"
#include <_foundation_unicode/brkiter.h>
#include <_foundation_unicode/resbund.h>
#include <_foundation_unicode/ubrk.h>
#include <_foundation_unicode/uniset.h>
#include <_foundation_unicode/ustring.h>
#include <_foundation_unicode/utf.h>
U_NAMESPACE_BEGIN
// Uncomment the following #define to debug.
// #define LSTM_DEBUG 1
// #define LSTM_VECTORIZER_DEBUG 1
/**
* Interface for reading 1D array.
*/
class ReadArray1D {
public:
virtual ~ReadArray1D();
virtual int32_t d1() const = 0;
virtual float get(int32_t i) const = 0;
#ifdef LSTM_DEBUG
void print() const {
printf("\n[");
for (int32_t i = 0; i < d1(); i++) {
printf("%0.8e ", get(i));
if (i % 4 == 3) printf("\n");
}
printf("]\n");
}
#endif
};
ReadArray1D::~ReadArray1D()
{
}
/**
* Interface for reading 2D array.
*/
class ReadArray2D {
public:
virtual ~ReadArray2D();
virtual int32_t d1() const = 0;
virtual int32_t d2() const = 0;
virtual float get(int32_t i, int32_t j) const = 0;
};
ReadArray2D::~ReadArray2D()
{
}
/**
* A class to index a float array as a 1D Array without owning the pointer or
* copy the data.
*/
class ConstArray1D : public ReadArray1D {
public:
ConstArray1D() : data_(nullptr), d1_(0) {}
ConstArray1D(const float* data, int32_t d1) : data_(data), d1_(d1) {}
virtual ~ConstArray1D();
// Init the object, the object does not own the data nor copy.
// It is designed to directly use data from memory mapped resources.
void init(const int32_t* data, int32_t d1) {
U_ASSERT(IEEE_754 == 1);
data_ = reinterpret_cast<const float*>(data);
d1_ = d1;
}
// ReadArray1D methods.
virtual int32_t d1() const override { return d1_; }
virtual float get(int32_t i) const override {
U_ASSERT(i < d1_);
return data_[i];
}
private:
const float* data_;
int32_t d1_;
};
ConstArray1D::~ConstArray1D()
{
}
/**
* A class to index a float array as a 2D Array without owning the pointer or
* copy the data.
*/
class ConstArray2D : public ReadArray2D {
public:
ConstArray2D() : data_(nullptr), d1_(0), d2_(0) {}
ConstArray2D(const float* data, int32_t d1, int32_t d2)
: data_(data), d1_(d1), d2_(d2) {}
virtual ~ConstArray2D();
// Init the object, the object does not own the data nor copy.
// It is designed to directly use data from memory mapped resources.
void init(const int32_t* data, int32_t d1, int32_t d2) {
U_ASSERT(IEEE_754 == 1);
data_ = reinterpret_cast<const float*>(data);
d1_ = d1;
d2_ = d2;
}
// ReadArray2D methods.
inline int32_t d1() const override { return d1_; }
inline int32_t d2() const override { return d2_; }
float get(int32_t i, int32_t j) const override {
U_ASSERT(i < d1_);
U_ASSERT(j < d2_);
return data_[i * d2_ + j];
}
// Expose the ith row as a ConstArray1D
inline ConstArray1D row(int32_t i) const {
U_ASSERT(i < d1_);
return ConstArray1D(data_ + i * d2_, d2_);
}
private:
const float* data_;
int32_t d1_;
int32_t d2_;
};
ConstArray2D::~ConstArray2D()
{
}
/**
* A class to allocate data as a writable 1D array.
* This is the main class implement matrix operation.
*/
class Array1D : public ReadArray1D {
public:
Array1D() : memory_(nullptr), data_(nullptr), d1_(0) {}
Array1D(int32_t d1, UErrorCode &status)
: memory_(uprv_malloc(d1 * sizeof(float))),
data_((float*)memory_), d1_(d1) {
if (U_SUCCESS(status)) {
if (memory_ == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
clear();
}
}
virtual ~Array1D();
// A special constructor which does not own the memory but writeable
// as a slice of an array.
Array1D(float* data, int32_t d1)
: memory_(nullptr), data_(data), d1_(d1) {}
// ReadArray1D methods.
virtual int32_t d1() const override { return d1_; }
virtual float get(int32_t i) const override {
U_ASSERT(i < d1_);
return data_[i];
}
// Return the index which point to the max data in the array.
inline int32_t maxIndex() const {
int32_t index = 0;
float max = data_[0];
for (int32_t i = 1; i < d1_; i++) {
if (data_[i] > max) {
max = data_[i];
index = i;
}
}
return index;
}
// Slice part of the array to a new one.
inline Array1D slice(int32_t from, int32_t size) const {
U_ASSERT(from >= 0);
U_ASSERT(from < d1_);
U_ASSERT(from + size <= d1_);
return Array1D(data_ + from, size);
}
// Add dot product of a 1D array and a 2D array into this one.
inline Array1D& addDotProduct(const ReadArray1D& a, const ReadArray2D& b) {
U_ASSERT(a.d1() == b.d1());
U_ASSERT(b.d2() == d1());
for (int32_t i = 0; i < d1(); i++) {
for (int32_t j = 0; j < a.d1(); j++) {
data_[i] += a.get(j) * b.get(j, i);
}
}
return *this;
}
// Hadamard Product the values of another array of the same size into this one.
inline Array1D& hadamardProduct(const ReadArray1D& a) {
U_ASSERT(a.d1() == d1());
for (int32_t i = 0; i < d1(); i++) {
data_[i] *= a.get(i);
}
return *this;
}
// Add the Hadamard Product of two arrays of the same size into this one.
inline Array1D& addHadamardProduct(const ReadArray1D& a, const ReadArray1D& b) {
U_ASSERT(a.d1() == d1());
U_ASSERT(b.d1() == d1());
for (int32_t i = 0; i < d1(); i++) {
data_[i] += a.get(i) * b.get(i);
}
return *this;
}
// Add the values of another array of the same size into this one.
inline Array1D& add(const ReadArray1D& a) {
U_ASSERT(a.d1() == d1());
for (int32_t i = 0; i < d1(); i++) {
data_[i] += a.get(i);
}
return *this;
}
// Assign the values of another array of the same size into this one.
inline Array1D& assign(const ReadArray1D& a) {
U_ASSERT(a.d1() == d1());
for (int32_t i = 0; i < d1(); i++) {
data_[i] = a.get(i);
}
return *this;
}
// Apply tanh to all the elements in the array.
inline Array1D& tanh() {
return tanh(*this);
}
// Apply tanh of a and store into this array.
inline Array1D& tanh(const Array1D& a) {
U_ASSERT(a.d1() == d1());
for (int32_t i = 0; i < d1_; i++) {
data_[i] = std::tanh(a.get(i));
}
return *this;
}
// Apply sigmoid to all the elements in the array.
inline Array1D& sigmoid() {
for (int32_t i = 0; i < d1_; i++) {
data_[i] = 1.0f/(1.0f + expf(-data_[i]));
}
return *this;
}
inline Array1D& clear() {
uprv_memset(data_, 0, d1_ * sizeof(float));
return *this;
}
private:
void* memory_;
float* data_;
int32_t d1_;
};
Array1D::~Array1D()
{
uprv_free(memory_);
}
class Array2D : public ReadArray2D {
public:
Array2D() : memory_(nullptr), data_(nullptr), d1_(0), d2_(0) {}
Array2D(int32_t d1, int32_t d2, UErrorCode &status)
: memory_(uprv_malloc(d1 * d2 * sizeof(float))),
data_((float*)memory_), d1_(d1), d2_(d2) {
if (U_SUCCESS(status)) {
if (memory_ == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
clear();
}
}
virtual ~Array2D();
// ReadArray2D methods.
virtual int32_t d1() const override { return d1_; }
virtual int32_t d2() const override { return d2_; }
virtual float get(int32_t i, int32_t j) const override {
U_ASSERT(i < d1_);
U_ASSERT(j < d2_);
return data_[i * d2_ + j];
}
inline Array1D row(int32_t i) const {
U_ASSERT(i < d1_);
return Array1D(data_ + i * d2_, d2_);
}
inline Array2D& clear() {
uprv_memset(data_, 0, d1_ * d2_ * sizeof(float));
return *this;
}
private:
void* memory_;
float* data_;
int32_t d1_;
int32_t d2_;
};
Array2D::~Array2D()
{
uprv_free(memory_);
}
typedef enum {
BEGIN,
INSIDE,
END,
SINGLE
} LSTMClass;
typedef enum {
UNKNOWN,
CODE_POINTS,
GRAPHEME_CLUSTER,
} EmbeddingType;
struct LSTMData : public UMemory {
LSTMData(UResourceBundle* rb, UErrorCode &status);
~LSTMData();
UHashtable* fDict;
EmbeddingType fType;
const char16_t* fName;
ConstArray2D fEmbedding;
ConstArray2D fForwardW;
ConstArray2D fForwardU;
ConstArray1D fForwardB;
ConstArray2D fBackwardW;
ConstArray2D fBackwardU;
ConstArray1D fBackwardB;
ConstArray2D fOutputW;
ConstArray1D fOutputB;
private:
UResourceBundle* fBundle;
};
LSTMData::LSTMData(UResourceBundle* rb, UErrorCode &status)
: fDict(nullptr), fType(UNKNOWN), fName(nullptr),
fBundle(rb)
{
if (U_FAILURE(status)) {
return;
}
if (IEEE_754 != 1) {
status = U_UNSUPPORTED_ERROR;
return;
}
LocalUResourceBundlePointer embeddings_res(
ures_getByKey(rb, "embeddings", nullptr, &status));
int32_t embedding_size = ures_getInt(embeddings_res.getAlias(), &status);
LocalUResourceBundlePointer hunits_res(
ures_getByKey(rb, "hunits", nullptr, &status));
if (U_FAILURE(status)) return;
int32_t hunits = ures_getInt(hunits_res.getAlias(), &status);
const char16_t* type = ures_getStringByKey(rb, "type", nullptr, &status);
if (U_FAILURE(status)) return;
if (u_strCompare(type, -1, u"codepoints", -1, false) == 0) {
fType = CODE_POINTS;
} else if (u_strCompare(type, -1, u"graphclust", -1, false) == 0) {
fType = GRAPHEME_CLUSTER;
}
fName = ures_getStringByKey(rb, "model", nullptr, &status);
LocalUResourceBundlePointer dataRes(ures_getByKey(rb, "data", nullptr, &status));
if (U_FAILURE(status)) return;
int32_t data_len = 0;
const int32_t* data = ures_getIntVector(dataRes.getAlias(), &data_len, &status);
fDict = uhash_open(uhash_hashUChars, uhash_compareUChars, nullptr, &status);
StackUResourceBundle stackTempBundle;
ResourceDataValue value;
ures_getValueWithFallback(rb, "dict", stackTempBundle.getAlias(), value, status);
ResourceArray stringArray = value.getArray(status);
int32_t num_index = stringArray.getSize();
if (U_FAILURE(status)) { return; }
// put dict into hash
int32_t stringLength;
for (int32_t idx = 0; idx < num_index; idx++) {
stringArray.getValue(idx, value);
const char16_t* str = value.getString(stringLength, status);
uhash_putiAllowZero(fDict, (void*)str, idx, &status);
if (U_FAILURE(status)) return;
#ifdef LSTM_VECTORIZER_DEBUG
printf("Assign [");
while (*str != 0x0000) {
printf("U+%04x ", *str);
str++;
}
printf("] map to %d\n", idx-1);
#endif
}
int32_t mat1_size = (num_index + 1) * embedding_size;
int32_t mat2_size = embedding_size * 4 * hunits;
int32_t mat3_size = hunits * 4 * hunits;
int32_t mat4_size = 4 * hunits;
int32_t mat5_size = mat2_size;
int32_t mat6_size = mat3_size;
int32_t mat7_size = mat4_size;
int32_t mat8_size = 2 * hunits * 4;
#if U_DEBUG
int32_t mat9_size = 4;
U_ASSERT(data_len == mat1_size + mat2_size + mat3_size + mat4_size + mat5_size +
mat6_size + mat7_size + mat8_size + mat9_size);
#endif
fEmbedding.init(data, (num_index + 1), embedding_size);
data += mat1_size;
fForwardW.init(data, embedding_size, 4 * hunits);
data += mat2_size;
fForwardU.init(data, hunits, 4 * hunits);
data += mat3_size;
fForwardB.init(data, 4 * hunits);
data += mat4_size;
fBackwardW.init(data, embedding_size, 4 * hunits);
data += mat5_size;
fBackwardU.init(data, hunits, 4 * hunits);
data += mat6_size;
fBackwardB.init(data, 4 * hunits);
data += mat7_size;
fOutputW.init(data, 2 * hunits, 4);
data += mat8_size;
fOutputB.init(data, 4);
}
LSTMData::~LSTMData() {
uhash_close(fDict);
ures_close(fBundle);
}
class Vectorizer : public UMemory {
public:
Vectorizer(UHashtable* dict) : fDict(dict) {}
virtual ~Vectorizer();
virtual void vectorize(UText *text, int32_t startPos, int32_t endPos,
UVector32 &offsets, UVector32 &indices,
UErrorCode &status) const = 0;
protected:
int32_t stringToIndex(const char16_t* str) const {
UBool found = false;
int32_t ret = uhash_getiAndFound(fDict, (const void*)str, &found);
if (!found) {
ret = fDict->count;
}
#ifdef LSTM_VECTORIZER_DEBUG
printf("[");
while (*str != 0x0000) {
printf("U+%04x ", *str);
str++;
}
printf("] map to %d\n", ret);
#endif
return ret;
}
private:
UHashtable* fDict;
};
Vectorizer::~Vectorizer()
{
}
class CodePointsVectorizer : public Vectorizer {
public:
CodePointsVectorizer(UHashtable* dict) : Vectorizer(dict) {}
virtual ~CodePointsVectorizer();
virtual void vectorize(UText *text, int32_t startPos, int32_t endPos,
UVector32 &offsets, UVector32 &indices,
UErrorCode &status) const override;
};
CodePointsVectorizer::~CodePointsVectorizer()
{
}
void CodePointsVectorizer::vectorize(
UText *text, int32_t startPos, int32_t endPos,
UVector32 &offsets, UVector32 &indices, UErrorCode &status) const
{
if (offsets.ensureCapacity(endPos - startPos, status) &&
indices.ensureCapacity(endPos - startPos, status)) {
if (U_FAILURE(status)) return;
utext_setNativeIndex(text, startPos);
int32_t current;
char16_t str[2] = {0, 0};
while (U_SUCCESS(status) &&
(current = (int32_t)utext_getNativeIndex(text)) < endPos) {
// Since the LSTMBreakEngine is currently only accept chars in BMP,
// we can ignore the possibility of hitting supplementary code
// point.
str[0] = (char16_t) utext_next32(text);
U_ASSERT(!U_IS_SURROGATE(str[0]));
offsets.addElement(current, status);
indices.addElement(stringToIndex(str), status);
}
}
}
class GraphemeClusterVectorizer : public Vectorizer {
public:
GraphemeClusterVectorizer(UHashtable* dict)
: Vectorizer(dict)
{
}
virtual ~GraphemeClusterVectorizer();
virtual void vectorize(UText *text, int32_t startPos, int32_t endPos,
UVector32 &offsets, UVector32 &indices,
UErrorCode &status) const override;
};
GraphemeClusterVectorizer::~GraphemeClusterVectorizer()
{
}
constexpr int32_t MAX_GRAPHEME_CLSTER_LENGTH = 10;
void GraphemeClusterVectorizer::vectorize(
UText *text, int32_t startPos, int32_t endPos,
UVector32 &offsets, UVector32 &indices, UErrorCode &status) const
{
if (U_FAILURE(status)) return;
if (!offsets.ensureCapacity(endPos - startPos, status) ||
!indices.ensureCapacity(endPos - startPos, status)) {
return;
}
if (U_FAILURE(status)) return;
LocalPointer<BreakIterator> graphemeIter(BreakIterator::createCharacterInstance(Locale(), status));
if (U_FAILURE(status)) return;
graphemeIter->setText(text, status);
if (U_FAILURE(status)) return;
if (startPos != 0) {
graphemeIter->preceding(startPos);
}
int32_t last = startPos;
int32_t current = startPos;
char16_t str[MAX_GRAPHEME_CLSTER_LENGTH];
while ((current = graphemeIter->next()) != BreakIterator::DONE) {
if (current >= endPos) {
break;
}
if (current > startPos) {
utext_extract(text, last, current, str, MAX_GRAPHEME_CLSTER_LENGTH, &status);
if (U_FAILURE(status)) return;
offsets.addElement(last, status);
indices.addElement(stringToIndex(str), status);
if (U_FAILURE(status)) return;
}
last = current;
}
if (U_FAILURE(status) || last >= endPos) {
return;
}
utext_extract(text, last, endPos, str, MAX_GRAPHEME_CLSTER_LENGTH, &status);
if (U_SUCCESS(status)) {
offsets.addElement(last, status);
indices.addElement(stringToIndex(str), status);
}
}
// Computing LSTM as stated in
// https://en.wikipedia.org/wiki/Long_short-term_memory#LSTM_with_a_forget_gate
// ifco is temp array allocate outside which does not need to be
// input/output value but could avoid unnecessary memory alloc/free if passing
// in.
void compute(
int32_t hunits,
const ReadArray2D& W, const ReadArray2D& U, const ReadArray1D& b,
const ReadArray1D& x, Array1D& h, Array1D& c,
Array1D& ifco)
{
// ifco = x * W + h * U + b
ifco.assign(b)
.addDotProduct(x, W)
.addDotProduct(h, U);
ifco.slice(0*hunits, hunits).sigmoid(); // i: sigmod
ifco.slice(1*hunits, hunits).sigmoid(); // f: sigmoid
ifco.slice(2*hunits, hunits).tanh(); // c_: tanh
ifco.slice(3*hunits, hunits).sigmoid(); // o: sigmod
c.hadamardProduct(ifco.slice(hunits, hunits))
.addHadamardProduct(ifco.slice(0, hunits), ifco.slice(2*hunits, hunits));
h.tanh(c)
.hadamardProduct(ifco.slice(3*hunits, hunits));
}
// Minimum word size
static const int32_t MIN_WORD = 2;
// Minimum number of characters for two words
static const int32_t MIN_WORD_SPAN = MIN_WORD * 2;
int32_t
LSTMBreakEngine::divideUpDictionaryRange( UText *text,
int32_t startPos,
int32_t endPos,
UVector32 &foundBreaks,
UBool /* isPhraseBreaking */,
UErrorCode& status) const {
if (U_FAILURE(status)) return 0;
int32_t beginFoundBreakSize = foundBreaks.size();
utext_setNativeIndex(text, startPos);
utext_moveIndex32(text, MIN_WORD_SPAN);
if (utext_getNativeIndex(text) >= endPos) {
return 0; // Not enough characters for two words
}
utext_setNativeIndex(text, startPos);
UVector32 offsets(status);
UVector32 indices(status);
if (U_FAILURE(status)) return 0;
fVectorizer->vectorize(text, startPos, endPos, offsets, indices, status);
if (U_FAILURE(status)) return 0;
int32_t* offsetsBuf = offsets.getBuffer();
int32_t* indicesBuf = indices.getBuffer();
int32_t input_seq_len = indices.size();
int32_t hunits = fData->fForwardU.d1();
// ----- Begin of all the Array memory allocation needed for this function
// Allocate temp array used inside compute()
Array1D ifco(4 * hunits, status);
Array1D c(hunits, status);
Array1D logp(4, status);
// TODO: limit size of hBackward. If input_seq_len is too big, we could
// run out of memory.
// Backward LSTM
Array2D hBackward(input_seq_len, hunits, status);
// Allocate fbRow and slice the internal array in two.
Array1D fbRow(2 * hunits, status);
// ----- End of all the Array memory allocation needed for this function
if (U_FAILURE(status)) return 0;
// To save the needed memory usage, the following is different from the
// Python or ICU4X implementation. We first perform the Backward LSTM
// and then merge the iteration of the forward LSTM and the output layer
// together because we only neetdto remember the h[t-1] for Forward LSTM.
for (int32_t i = input_seq_len - 1; i >= 0; i--) {
Array1D hRow = hBackward.row(i);
if (i != input_seq_len - 1) {
hRow.assign(hBackward.row(i+1));
}
#ifdef LSTM_DEBUG
printf("hRow %d\n", i);
hRow.print();
printf("indicesBuf[%d] = %d\n", i, indicesBuf[i]);
printf("fData->fEmbedding.row(indicesBuf[%d]):\n", i);
fData->fEmbedding.row(indicesBuf[i]).print();
#endif // LSTM_DEBUG
compute(hunits,
fData->fBackwardW, fData->fBackwardU, fData->fBackwardB,
fData->fEmbedding.row(indicesBuf[i]),
hRow, c, ifco);
}
Array1D forwardRow = fbRow.slice(0, hunits); // point to first half of data in fbRow.
Array1D backwardRow = fbRow.slice(hunits, hunits); // point to second half of data n fbRow.
// The following iteration merge the forward LSTM and the output layer
// together.
c.clear(); // reuse c since it is the same size.
for (int32_t i = 0; i < input_seq_len; i++) {
#ifdef LSTM_DEBUG
printf("forwardRow %d\n", i);
forwardRow.print();
#endif // LSTM_DEBUG
// Forward LSTM
// Calculate the result into forwardRow, which point to the data in the first half
// of fbRow.
compute(hunits,
fData->fForwardW, fData->fForwardU, fData->fForwardB,
fData->fEmbedding.row(indicesBuf[i]),
forwardRow, c, ifco);
// assign the data from hBackward.row(i) to second half of fbRowa.
backwardRow.assign(hBackward.row(i));
logp.assign(fData->fOutputB).addDotProduct(fbRow, fData->fOutputW);
#ifdef LSTM_DEBUG
printf("backwardRow %d\n", i);
backwardRow.print();
printf("logp %d\n", i);
logp.print();
#endif // LSTM_DEBUG
// current = argmax(logp)
LSTMClass current = (LSTMClass)logp.maxIndex();
// BIES logic.
if (current == BEGIN || current == SINGLE) {
if (i != 0) {
foundBreaks.addElement(offsetsBuf[i], status);
if (U_FAILURE(status)) return 0;
}
}
}
return foundBreaks.size() - beginFoundBreakSize;
}
Vectorizer* createVectorizer(const LSTMData* data, UErrorCode &status) {
if (U_FAILURE(status)) {
return nullptr;
}
switch (data->fType) {
case CODE_POINTS:
return new CodePointsVectorizer(data->fDict);
break;
case GRAPHEME_CLUSTER:
return new GraphemeClusterVectorizer(data->fDict);
break;
default:
break;
}
UPRV_UNREACHABLE_EXIT;
}
LSTMBreakEngine::LSTMBreakEngine(const LSTMData* data, const UnicodeSet& set, UErrorCode &status)
: DictionaryBreakEngine(), fData(data), fVectorizer(createVectorizer(fData, status))
{
if (U_FAILURE(status)) {
fData = nullptr; // If failure, we should not delete fData in destructor because the caller will do so.
return;
}
setCharacters(set);
}
LSTMBreakEngine::~LSTMBreakEngine() {
delete fData;
delete fVectorizer;
}
const char16_t* LSTMBreakEngine::name() const {
return fData->fName;
}
UnicodeString defaultLSTM(UScriptCode script, UErrorCode& status) {
// open root from brkitr tree.
UResourceBundle *b = ures_open(U_ICUDATA_BRKITR, "", &status);
b = ures_getByKeyWithFallback(b, "lstm", b, &status);
UnicodeString result = ures_getUnicodeStringByKey(b, uscript_getShortName(script), &status);
ures_close(b);
return result;
}
U_CAPI const LSTMData* U_EXPORT2 CreateLSTMDataForScript(UScriptCode script, UErrorCode& status)
{
if (script != USCRIPT_KHMER && script != USCRIPT_LAO && script != USCRIPT_MYANMAR && script != USCRIPT_THAI) {
return nullptr;
}
UnicodeString name = defaultLSTM(script, status);
if (U_FAILURE(status)) return nullptr;
CharString namebuf;
namebuf.appendInvariantChars(name, status).truncate(namebuf.lastIndexOf('.'));
LocalUResourceBundlePointer rb(
ures_openDirect(U_ICUDATA_BRKITR, namebuf.data(), &status));
if (U_FAILURE(status)) return nullptr;
return CreateLSTMData(rb.orphan(), status);
}
U_CAPI const LSTMData* U_EXPORT2 CreateLSTMData(UResourceBundle* rb, UErrorCode& status)
{
return new LSTMData(rb, status);
}
U_CAPI const LanguageBreakEngine* U_EXPORT2
CreateLSTMBreakEngine(UScriptCode script, const LSTMData* data, UErrorCode& status)
{
UnicodeString unicodeSetString;
switch(script) {
case USCRIPT_THAI:
unicodeSetString = UnicodeString(u"[[:Thai:]&[:LineBreak=SA:]]");
break;
case USCRIPT_MYANMAR:
unicodeSetString = UnicodeString(u"[[:Mymr:]&[:LineBreak=SA:]]");
break;
default:
delete data;
return nullptr;
}
UnicodeSet unicodeSet;
unicodeSet.applyPattern(unicodeSetString, status);
const LanguageBreakEngine* engine = new LSTMBreakEngine(data, unicodeSet, status);
if (U_FAILURE(status) || engine == nullptr) {
if (engine != nullptr) {
delete engine;
} else {
status = U_MEMORY_ALLOCATION_ERROR;
}
return nullptr;
}
return engine;
}
U_CAPI void U_EXPORT2 DeleteLSTMData(const LSTMData* data)
{
delete data;
}
U_CAPI const char16_t* U_EXPORT2 LSTMDataName(const LSTMData* data)
{
return data->fName;
}
U_NAMESPACE_END
#endif /* #if !UCONFIG_NO_BREAK_ITERATION */
|