1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
|
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
*******************************************************************************
* Copyright (C) 2013-2014, International Business Machines
* Corporation and others. All Rights Reserved.
*******************************************************************************
* collationbuilder.cpp
*
* (replaced the former ucol_bld.cpp)
*
* created on: 2013may06
* created by: Markus W. Scherer
*/
#ifdef DEBUG_COLLATION_BUILDER
#include <stdio.h>
#endif
#include <_foundation_unicode/utypes.h>
#if !UCONFIG_NO_COLLATION
#include <_foundation_unicode/caniter.h>
#include <_foundation_unicode/normalizer2.h>
#include <_foundation_unicode/tblcoll.h>
#include <_foundation_unicode/parseerr.h>
#include <_foundation_unicode/uchar.h>
#include <_foundation_unicode/ucol.h>
#include <_foundation_unicode/unistr.h>
#include <_foundation_unicode/usetiter.h>
#include <_foundation_unicode/utf16.h>
#include <_foundation_unicode/uversion.h>
#include "cmemory.h"
#include "collation.h"
#include "collationbuilder.h"
#include "collationdata.h"
#include "collationdatabuilder.h"
#include "collationfastlatin.h"
#include "collationroot.h"
#include "collationrootelements.h"
#include "collationruleparser.h"
#include "collationsettings.h"
#include "collationtailoring.h"
#include "collationweights.h"
#include "normalizer2impl.h"
#include "uassert.h"
#include "ucol_imp.h"
#include "utf16collationiterator.h"
U_NAMESPACE_BEGIN
namespace {
class BundleImporter : public CollationRuleParser::Importer {
public:
BundleImporter() {}
virtual ~BundleImporter();
virtual void getRules(
const char *localeID, const char *collationType,
UnicodeString &rules,
const char *&errorReason, UErrorCode &errorCode) override;
};
BundleImporter::~BundleImporter() {}
void
BundleImporter::getRules(
const char *localeID, const char *collationType,
UnicodeString &rules,
const char *& /*errorReason*/, UErrorCode &errorCode) {
CollationLoader::loadRules(localeID, collationType, rules, errorCode);
}
} // namespace
// RuleBasedCollator implementation ---------------------------------------- ***
// These methods are here, rather than in rulebasedcollator.cpp,
// for modularization:
// Most code using Collator does not need to build a Collator from rules.
// By moving these constructors and helper methods to a separate file,
// most code will not have a static dependency on the builder code.
RuleBasedCollator::RuleBasedCollator()
: data(nullptr),
settings(nullptr),
tailoring(nullptr),
cacheEntry(nullptr),
validLocale(""),
explicitlySetAttributes(0),
actualLocaleIsSameAsValid(false) {
}
RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules, UErrorCode &errorCode)
: data(nullptr),
settings(nullptr),
tailoring(nullptr),
cacheEntry(nullptr),
validLocale(""),
explicitlySetAttributes(0),
actualLocaleIsSameAsValid(false) {
internalBuildTailoring(rules, UCOL_DEFAULT, UCOL_DEFAULT, nullptr, nullptr, errorCode);
}
RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules, ECollationStrength strength,
UErrorCode &errorCode)
: data(nullptr),
settings(nullptr),
tailoring(nullptr),
cacheEntry(nullptr),
validLocale(""),
explicitlySetAttributes(0),
actualLocaleIsSameAsValid(false) {
internalBuildTailoring(rules, strength, UCOL_DEFAULT, nullptr, nullptr, errorCode);
}
RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules,
UColAttributeValue decompositionMode,
UErrorCode &errorCode)
: data(nullptr),
settings(nullptr),
tailoring(nullptr),
cacheEntry(nullptr),
validLocale(""),
explicitlySetAttributes(0),
actualLocaleIsSameAsValid(false) {
internalBuildTailoring(rules, UCOL_DEFAULT, decompositionMode, nullptr, nullptr, errorCode);
}
RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules,
ECollationStrength strength,
UColAttributeValue decompositionMode,
UErrorCode &errorCode)
: data(nullptr),
settings(nullptr),
tailoring(nullptr),
cacheEntry(nullptr),
validLocale(""),
explicitlySetAttributes(0),
actualLocaleIsSameAsValid(false) {
internalBuildTailoring(rules, strength, decompositionMode, nullptr, nullptr, errorCode);
}
RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules,
UParseError &parseError, UnicodeString &reason,
UErrorCode &errorCode)
: data(nullptr),
settings(nullptr),
tailoring(nullptr),
cacheEntry(nullptr),
validLocale(""),
explicitlySetAttributes(0),
actualLocaleIsSameAsValid(false) {
internalBuildTailoring(rules, UCOL_DEFAULT, UCOL_DEFAULT, &parseError, &reason, errorCode);
}
void
RuleBasedCollator::internalBuildTailoring(const UnicodeString &rules,
int32_t strength,
UColAttributeValue decompositionMode,
UParseError *outParseError, UnicodeString *outReason,
UErrorCode &errorCode) {
const CollationTailoring *base = CollationRoot::getRoot(errorCode);
if(U_FAILURE(errorCode)) { return; }
if(outReason != nullptr) { outReason->remove(); }
CollationBuilder builder(base, errorCode);
UVersionInfo noVersion = { 0, 0, 0, 0 };
BundleImporter importer;
LocalPointer<CollationTailoring> t(builder.parseAndBuild(rules, noVersion,
&importer,
outParseError, errorCode));
if(U_FAILURE(errorCode)) {
const char *reason = builder.getErrorReason();
if(reason != nullptr && outReason != nullptr) {
*outReason = UnicodeString(reason, -1, US_INV);
}
return;
}
t->actualLocale.setToBogus();
adoptTailoring(t.orphan(), errorCode);
// Set attributes after building the collator,
// to keep the default settings consistent with the rule string.
if(strength != UCOL_DEFAULT) {
setAttribute(UCOL_STRENGTH, (UColAttributeValue)strength, errorCode);
}
if(decompositionMode != UCOL_DEFAULT) {
setAttribute(UCOL_NORMALIZATION_MODE, decompositionMode, errorCode);
}
}
// CollationBuilder implementation ----------------------------------------- ***
CollationBuilder::CollationBuilder(const CollationTailoring *b, UBool icu4xMode, UErrorCode &errorCode)
: nfd(*Normalizer2::getNFDInstance(errorCode)),
fcd(*Normalizer2Factory::getFCDInstance(errorCode)),
nfcImpl(*Normalizer2Factory::getNFCImpl(errorCode)),
base(b),
baseData(b->data),
rootElements(b->data->rootElements, b->data->rootElementsLength),
variableTop(0),
dataBuilder(new CollationDataBuilder(icu4xMode, errorCode)), fastLatinEnabled(true),
icu4xMode(icu4xMode),
errorReason(nullptr),
cesLength(0),
rootPrimaryIndexes(errorCode), nodes(errorCode) {
nfcImpl.ensureCanonIterData(errorCode);
if(U_FAILURE(errorCode)) {
errorReason = "CollationBuilder fields initialization failed";
return;
}
if(dataBuilder == nullptr) {
errorCode = U_MEMORY_ALLOCATION_ERROR;
return;
}
dataBuilder->initForTailoring(baseData, errorCode);
if(U_FAILURE(errorCode)) {
errorReason = "CollationBuilder initialization failed";
}
}
CollationBuilder::CollationBuilder(const CollationTailoring *b, UErrorCode &errorCode)
: CollationBuilder(b, false, errorCode)
{}
CollationBuilder::~CollationBuilder() {
delete dataBuilder;
}
CollationTailoring *
CollationBuilder::parseAndBuild(const UnicodeString &ruleString,
const UVersionInfo rulesVersion,
CollationRuleParser::Importer *importer,
UParseError *outParseError,
UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return nullptr; }
if(baseData->rootElements == nullptr) {
errorCode = U_MISSING_RESOURCE_ERROR;
errorReason = "missing root elements data, tailoring not supported";
return nullptr;
}
LocalPointer<CollationTailoring> tailoring(new CollationTailoring(base->settings));
if(tailoring.isNull() || tailoring->isBogus()) {
errorCode = U_MEMORY_ALLOCATION_ERROR;
return nullptr;
}
CollationRuleParser parser(baseData, errorCode);
if(U_FAILURE(errorCode)) { return nullptr; }
// Note: This always bases &[last variable] and &[first regular]
// on the root collator's maxVariable/variableTop.
// If we wanted this to change after [maxVariable x], then we would keep
// the tailoring.settings pointer here and read its variableTop when we need it.
// See http://unicode.org/cldr/trac/ticket/6070
variableTop = base->settings->variableTop;
parser.setSink(this);
parser.setImporter(importer);
CollationSettings &ownedSettings = *SharedObject::copyOnWrite(tailoring->settings);
parser.parse(ruleString, ownedSettings, outParseError, errorCode);
errorReason = parser.getErrorReason();
if(U_FAILURE(errorCode)) { return nullptr; }
if(dataBuilder->hasMappings()) {
makeTailoredCEs(errorCode);
if (!icu4xMode) {
closeOverComposites(errorCode);
}
finalizeCEs(errorCode);
if (!icu4xMode) {
// Copy all of ASCII, and Latin-1 letters, into each tailoring.
optimizeSet.add(0, 0x7f);
optimizeSet.add(0xc0, 0xff);
// Hangul is decomposed on the fly during collation,
// and the tailoring data is always built with HANGUL_TAG specials.
optimizeSet.remove(Hangul::HANGUL_BASE, Hangul::HANGUL_END);
dataBuilder->optimize(optimizeSet, errorCode);
}
tailoring->ensureOwnedData(errorCode);
if(U_FAILURE(errorCode)) { return nullptr; }
if(fastLatinEnabled) { dataBuilder->enableFastLatin(); }
dataBuilder->build(*tailoring->ownedData, errorCode);
tailoring->builder = dataBuilder;
dataBuilder = nullptr;
} else {
tailoring->data = baseData;
}
if(U_FAILURE(errorCode)) { return nullptr; }
ownedSettings.fastLatinOptions = CollationFastLatin::getOptions(
tailoring->data, ownedSettings,
ownedSettings.fastLatinPrimaries, UPRV_LENGTHOF(ownedSettings.fastLatinPrimaries));
tailoring->rules = ruleString;
tailoring->rules.getTerminatedBuffer(); // ensure NUL-termination
tailoring->setVersion(base->version, rulesVersion);
return tailoring.orphan();
}
void
CollationBuilder::addReset(int32_t strength, const UnicodeString &str,
const char *&parserErrorReason, UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return; }
U_ASSERT(!str.isEmpty());
if(str.charAt(0) == CollationRuleParser::POS_LEAD) {
ces[0] = getSpecialResetPosition(str, parserErrorReason, errorCode);
cesLength = 1;
if(U_FAILURE(errorCode)) { return; }
U_ASSERT((ces[0] & Collation::CASE_AND_QUATERNARY_MASK) == 0);
} else {
// normal reset to a character or string
UnicodeString nfdString = nfd.normalize(str, errorCode);
if(U_FAILURE(errorCode)) {
parserErrorReason = "normalizing the reset position";
return;
}
cesLength = dataBuilder->getCEs(nfdString, ces, 0);
if(cesLength > Collation::MAX_EXPANSION_LENGTH) {
errorCode = U_ILLEGAL_ARGUMENT_ERROR;
parserErrorReason = "reset position maps to too many collation elements (more than 31)";
return;
}
}
if(strength == UCOL_IDENTICAL) { return; } // simple reset-at-position
// &[before strength]position
U_ASSERT(UCOL_PRIMARY <= strength && strength <= UCOL_TERTIARY);
int32_t index = findOrInsertNodeForCEs(strength, parserErrorReason, errorCode);
if(U_FAILURE(errorCode)) { return; }
int64_t node = nodes.elementAti(index);
// If the index is for a "weaker" node,
// then skip backwards over this and further "weaker" nodes.
while(strengthFromNode(node) > strength) {
index = previousIndexFromNode(node);
node = nodes.elementAti(index);
}
// Find or insert a node whose index we will put into a temporary CE.
if(strengthFromNode(node) == strength && isTailoredNode(node)) {
// Reset to just before this same-strength tailored node.
index = previousIndexFromNode(node);
} else if(strength == UCOL_PRIMARY) {
// root primary node (has no previous index)
uint32_t p = weight32FromNode(node);
if(p == 0) {
errorCode = U_UNSUPPORTED_ERROR;
parserErrorReason = "reset primary-before ignorable not possible";
return;
}
if(p <= rootElements.getFirstPrimary()) {
// There is no primary gap between ignorables and the space-first-primary.
errorCode = U_UNSUPPORTED_ERROR;
parserErrorReason = "reset primary-before first non-ignorable not supported";
return;
}
if(p == Collation::FIRST_TRAILING_PRIMARY) {
// We do not support tailoring to an unassigned-implicit CE.
errorCode = U_UNSUPPORTED_ERROR;
parserErrorReason = "reset primary-before [first trailing] not supported";
return;
}
p = rootElements.getPrimaryBefore(p, baseData->isCompressiblePrimary(p));
index = findOrInsertNodeForPrimary(p, errorCode);
// Go to the last node in this list:
// Tailor after the last node between adjacent root nodes.
for(;;) {
node = nodes.elementAti(index);
int32_t nextIndex = nextIndexFromNode(node);
if(nextIndex == 0) { break; }
index = nextIndex;
}
} else {
// &[before 2] or &[before 3]
index = findCommonNode(index, UCOL_SECONDARY);
if(strength >= UCOL_TERTIARY) {
index = findCommonNode(index, UCOL_TERTIARY);
}
// findCommonNode() stayed on the stronger node or moved to
// an explicit common-weight node of the reset-before strength.
node = nodes.elementAti(index);
if(strengthFromNode(node) == strength) {
// Found a same-strength node with an explicit weight.
uint32_t weight16 = weight16FromNode(node);
if(weight16 == 0) {
errorCode = U_UNSUPPORTED_ERROR;
if(strength == UCOL_SECONDARY) {
parserErrorReason = "reset secondary-before secondary ignorable not possible";
} else {
parserErrorReason = "reset tertiary-before completely ignorable not possible";
}
return;
}
U_ASSERT(weight16 > Collation::BEFORE_WEIGHT16);
// Reset to just before this node.
// Insert the preceding same-level explicit weight if it is not there already.
// Which explicit weight immediately precedes this one?
weight16 = getWeight16Before(index, node, strength);
// Does this preceding weight have a node?
uint32_t previousWeight16;
int32_t previousIndex = previousIndexFromNode(node);
for(int32_t i = previousIndex;; i = previousIndexFromNode(node)) {
node = nodes.elementAti(i);
int32_t previousStrength = strengthFromNode(node);
if(previousStrength < strength) {
U_ASSERT(weight16 >= Collation::COMMON_WEIGHT16 || i == previousIndex);
// Either the reset element has an above-common weight and
// the parent node provides the implied common weight,
// or the reset element has a weight<=common in the node
// right after the parent, and we need to insert the preceding weight.
previousWeight16 = Collation::COMMON_WEIGHT16;
break;
} else if(previousStrength == strength && !isTailoredNode(node)) {
previousWeight16 = weight16FromNode(node);
break;
}
// Skip weaker nodes and same-level tailored nodes.
}
if(previousWeight16 == weight16) {
// The preceding weight has a node,
// maybe with following weaker or tailored nodes.
// Reset to the last of them.
index = previousIndex;
} else {
// Insert a node with the preceding weight, reset to that.
node = nodeFromWeight16(weight16) | nodeFromStrength(strength);
index = insertNodeBetween(previousIndex, index, node, errorCode);
}
} else {
// Found a stronger node with implied strength-common weight.
uint32_t weight16 = getWeight16Before(index, node, strength);
index = findOrInsertWeakNode(index, weight16, strength, errorCode);
}
// Strength of the temporary CE = strength of its reset position.
// Code above raises an error if the before-strength is stronger.
strength = ceStrength(ces[cesLength - 1]);
}
if(U_FAILURE(errorCode)) {
parserErrorReason = "inserting reset position for &[before n]";
return;
}
ces[cesLength - 1] = tempCEFromIndexAndStrength(index, strength);
}
uint32_t
CollationBuilder::getWeight16Before(int32_t index, int64_t node, int32_t level) {
U_ASSERT(strengthFromNode(node) < level || !isTailoredNode(node));
// Collect the root CE weights if this node is for a root CE.
// If it is not, then return the low non-primary boundary for a tailored CE.
uint32_t t;
if(strengthFromNode(node) == UCOL_TERTIARY) {
t = weight16FromNode(node);
} else {
t = Collation::COMMON_WEIGHT16; // Stronger node with implied common weight.
}
while(strengthFromNode(node) > UCOL_SECONDARY) {
index = previousIndexFromNode(node);
node = nodes.elementAti(index);
}
if(isTailoredNode(node)) {
return Collation::BEFORE_WEIGHT16;
}
uint32_t s;
if(strengthFromNode(node) == UCOL_SECONDARY) {
s = weight16FromNode(node);
} else {
s = Collation::COMMON_WEIGHT16; // Stronger node with implied common weight.
}
while(strengthFromNode(node) > UCOL_PRIMARY) {
index = previousIndexFromNode(node);
node = nodes.elementAti(index);
}
if(isTailoredNode(node)) {
return Collation::BEFORE_WEIGHT16;
}
// [p, s, t] is a root CE. Return the preceding weight for the requested level.
uint32_t p = weight32FromNode(node);
uint32_t weight16;
if(level == UCOL_SECONDARY) {
weight16 = rootElements.getSecondaryBefore(p, s);
} else {
weight16 = rootElements.getTertiaryBefore(p, s, t);
U_ASSERT((weight16 & ~Collation::ONLY_TERTIARY_MASK) == 0);
}
return weight16;
}
int64_t
CollationBuilder::getSpecialResetPosition(const UnicodeString &str,
const char *&parserErrorReason, UErrorCode &errorCode) {
U_ASSERT(str.length() == 2);
int64_t ce;
int32_t strength = UCOL_PRIMARY;
UBool isBoundary = false;
UChar32 pos = str.charAt(1) - CollationRuleParser::POS_BASE;
U_ASSERT(0 <= pos && pos <= CollationRuleParser::LAST_TRAILING);
switch(pos) {
case CollationRuleParser::FIRST_TERTIARY_IGNORABLE:
// Quaternary CEs are not supported.
// Non-zero quaternary weights are possible only on tertiary or stronger CEs.
return 0;
case CollationRuleParser::LAST_TERTIARY_IGNORABLE:
return 0;
case CollationRuleParser::FIRST_SECONDARY_IGNORABLE: {
// Look for a tailored tertiary node after [0, 0, 0].
int32_t index = findOrInsertNodeForRootCE(0, UCOL_TERTIARY, errorCode);
if(U_FAILURE(errorCode)) { return 0; }
int64_t node = nodes.elementAti(index);
if((index = nextIndexFromNode(node)) != 0) {
node = nodes.elementAti(index);
U_ASSERT(strengthFromNode(node) <= UCOL_TERTIARY);
if(isTailoredNode(node) && strengthFromNode(node) == UCOL_TERTIARY) {
return tempCEFromIndexAndStrength(index, UCOL_TERTIARY);
}
}
return rootElements.getFirstTertiaryCE();
// No need to look for nodeHasAnyBefore() on a tertiary node.
}
case CollationRuleParser::LAST_SECONDARY_IGNORABLE:
ce = rootElements.getLastTertiaryCE();
strength = UCOL_TERTIARY;
break;
case CollationRuleParser::FIRST_PRIMARY_IGNORABLE: {
// Look for a tailored secondary node after [0, 0, *].
int32_t index = findOrInsertNodeForRootCE(0, UCOL_SECONDARY, errorCode);
if(U_FAILURE(errorCode)) { return 0; }
int64_t node = nodes.elementAti(index);
while((index = nextIndexFromNode(node)) != 0) {
node = nodes.elementAti(index);
strength = strengthFromNode(node);
if(strength < UCOL_SECONDARY) { break; }
if(strength == UCOL_SECONDARY) {
if(isTailoredNode(node)) {
if(nodeHasBefore3(node)) {
index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
U_ASSERT(isTailoredNode(nodes.elementAti(index)));
}
return tempCEFromIndexAndStrength(index, UCOL_SECONDARY);
} else {
break;
}
}
}
ce = rootElements.getFirstSecondaryCE();
strength = UCOL_SECONDARY;
break;
}
case CollationRuleParser::LAST_PRIMARY_IGNORABLE:
ce = rootElements.getLastSecondaryCE();
strength = UCOL_SECONDARY;
break;
case CollationRuleParser::FIRST_VARIABLE:
ce = rootElements.getFirstPrimaryCE();
isBoundary = true; // FractionalUCA.txt: FDD1 00A0, SPACE first primary
break;
case CollationRuleParser::LAST_VARIABLE:
ce = rootElements.lastCEWithPrimaryBefore(variableTop + 1);
break;
case CollationRuleParser::FIRST_REGULAR:
ce = rootElements.firstCEWithPrimaryAtLeast(variableTop + 1);
isBoundary = true; // FractionalUCA.txt: FDD1 263A, SYMBOL first primary
break;
case CollationRuleParser::LAST_REGULAR:
// Use the Hani-first-primary rather than the actual last "regular" CE before it,
// for backward compatibility with behavior before the introduction of
// script-first-primary CEs in the root collator.
ce = rootElements.firstCEWithPrimaryAtLeast(
baseData->getFirstPrimaryForGroup(USCRIPT_HAN));
break;
case CollationRuleParser::FIRST_IMPLICIT:
ce = baseData->getSingleCE(0x4e00, errorCode);
break;
case CollationRuleParser::LAST_IMPLICIT:
// We do not support tailoring to an unassigned-implicit CE.
errorCode = U_UNSUPPORTED_ERROR;
parserErrorReason = "reset to [last implicit] not supported";
return 0;
case CollationRuleParser::FIRST_TRAILING:
ce = Collation::makeCE(Collation::FIRST_TRAILING_PRIMARY);
isBoundary = true; // trailing first primary (there is no mapping for it)
break;
case CollationRuleParser::LAST_TRAILING:
errorCode = U_ILLEGAL_ARGUMENT_ERROR;
parserErrorReason = "LDML forbids tailoring to U+FFFF";
return 0;
default:
UPRV_UNREACHABLE_EXIT;
}
int32_t index = findOrInsertNodeForRootCE(ce, strength, errorCode);
if(U_FAILURE(errorCode)) { return 0; }
int64_t node = nodes.elementAti(index);
if((pos & 1) == 0) {
// even pos = [first xyz]
if(!nodeHasAnyBefore(node) && isBoundary) {
// A <group> first primary boundary is artificially added to FractionalUCA.txt.
// It is reachable via its special contraction, but is not normally used.
// Find the first character tailored after the boundary CE,
// or the first real root CE after it.
if((index = nextIndexFromNode(node)) != 0) {
// If there is a following node, then it must be tailored
// because there are no root CEs with a boundary primary
// and non-common secondary/tertiary weights.
node = nodes.elementAti(index);
U_ASSERT(isTailoredNode(node));
ce = tempCEFromIndexAndStrength(index, strength);
} else {
U_ASSERT(strength == UCOL_PRIMARY);
uint32_t p = (uint32_t)(ce >> 32);
int32_t pIndex = rootElements.findPrimary(p);
UBool isCompressible = baseData->isCompressiblePrimary(p);
p = rootElements.getPrimaryAfter(p, pIndex, isCompressible);
ce = Collation::makeCE(p);
index = findOrInsertNodeForRootCE(ce, UCOL_PRIMARY, errorCode);
if(U_FAILURE(errorCode)) { return 0; }
node = nodes.elementAti(index);
}
}
if(nodeHasAnyBefore(node)) {
// Get the first node that was tailored before this one at a weaker strength.
if(nodeHasBefore2(node)) {
index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
node = nodes.elementAti(index);
}
if(nodeHasBefore3(node)) {
index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
}
U_ASSERT(isTailoredNode(nodes.elementAti(index)));
ce = tempCEFromIndexAndStrength(index, strength);
}
} else {
// odd pos = [last xyz]
// Find the last node that was tailored after the [last xyz]
// at a strength no greater than the position's strength.
for(;;) {
int32_t nextIndex = nextIndexFromNode(node);
if(nextIndex == 0) { break; }
int64_t nextNode = nodes.elementAti(nextIndex);
if(strengthFromNode(nextNode) < strength) { break; }
index = nextIndex;
node = nextNode;
}
// Do not make a temporary CE for a root node.
// This last node might be the node for the root CE itself,
// or a node with a common secondary or tertiary weight.
if(isTailoredNode(node)) {
ce = tempCEFromIndexAndStrength(index, strength);
}
}
return ce;
}
void
CollationBuilder::addRelation(int32_t strength, const UnicodeString &prefix,
const UnicodeString &str, const UnicodeString &extension,
const char *&parserErrorReason, UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return; }
UnicodeString nfdPrefix;
if(!prefix.isEmpty()) {
nfd.normalize(prefix, nfdPrefix, errorCode);
if(U_FAILURE(errorCode)) {
parserErrorReason = "normalizing the relation prefix";
return;
}
}
UnicodeString nfdString = nfd.normalize(str, errorCode);
if(U_FAILURE(errorCode)) {
parserErrorReason = "normalizing the relation string";
return;
}
// The runtime code decomposes Hangul syllables on the fly,
// with recursive processing but without making the Jamo pieces visible for matching.
// It does not work with certain types of contextual mappings.
int32_t nfdLength = nfdString.length();
if(nfdLength >= 2) {
char16_t c = nfdString.charAt(0);
if(Hangul::isJamoL(c) || Hangul::isJamoV(c)) {
// While handling a Hangul syllable, contractions starting with Jamo L or V
// would not see the following Jamo of that syllable.
errorCode = U_UNSUPPORTED_ERROR;
parserErrorReason = "contractions starting with conjoining Jamo L or V not supported";
return;
}
c = nfdString.charAt(nfdLength - 1);
if(Hangul::isJamoL(c) ||
(Hangul::isJamoV(c) && Hangul::isJamoL(nfdString.charAt(nfdLength - 2)))) {
// A contraction ending with Jamo L or L+V would require
// generating Hangul syllables in addTailComposites() (588 for a Jamo L),
// or decomposing a following Hangul syllable on the fly, during contraction matching.
errorCode = U_UNSUPPORTED_ERROR;
parserErrorReason = "contractions ending with conjoining Jamo L or L+V not supported";
return;
}
// A Hangul syllable completely inside a contraction is ok.
}
// Note: If there is a prefix, then the parser checked that
// both the prefix and the string begin with NFC boundaries (not Jamo V or T).
// Therefore: prefix.isEmpty() || !isJamoVOrT(nfdString.charAt(0))
// (While handling a Hangul syllable, prefixes on Jamo V or T
// would not see the previous Jamo of that syllable.)
if(strength != UCOL_IDENTICAL) {
// Find the node index after which we insert the new tailored node.
int32_t index = findOrInsertNodeForCEs(strength, parserErrorReason, errorCode);
U_ASSERT(cesLength > 0);
int64_t ce = ces[cesLength - 1];
if(strength == UCOL_PRIMARY && !isTempCE(ce) && (uint32_t)(ce >> 32) == 0) {
// There is no primary gap between ignorables and the space-first-primary.
errorCode = U_UNSUPPORTED_ERROR;
parserErrorReason = "tailoring primary after ignorables not supported";
return;
}
if(strength == UCOL_QUATERNARY && ce == 0) {
// The CE data structure does not support non-zero quaternary weights
// on tertiary ignorables.
errorCode = U_UNSUPPORTED_ERROR;
parserErrorReason = "tailoring quaternary after tertiary ignorables not supported";
return;
}
// Insert the new tailored node.
index = insertTailoredNodeAfter(index, strength, errorCode);
if(U_FAILURE(errorCode)) {
parserErrorReason = "modifying collation elements";
return;
}
// Strength of the temporary CE:
// The new relation may yield a stronger CE but not a weaker one.
int32_t tempStrength = ceStrength(ce);
if(strength < tempStrength) { tempStrength = strength; }
ces[cesLength - 1] = tempCEFromIndexAndStrength(index, tempStrength);
}
setCaseBits(nfdString, parserErrorReason, errorCode);
if(U_FAILURE(errorCode)) { return; }
int32_t cesLengthBeforeExtension = cesLength;
if(!extension.isEmpty()) {
UnicodeString nfdExtension = nfd.normalize(extension, errorCode);
if(U_FAILURE(errorCode)) {
parserErrorReason = "normalizing the relation extension";
return;
}
cesLength = dataBuilder->getCEs(nfdExtension, ces, cesLength);
if(cesLength > Collation::MAX_EXPANSION_LENGTH) {
errorCode = U_ILLEGAL_ARGUMENT_ERROR;
parserErrorReason =
"extension string adds too many collation elements (more than 31 total)";
return;
}
}
uint32_t ce32 = Collation::UNASSIGNED_CE32;
if(!icu4xMode && (prefix != nfdPrefix || str != nfdString) &&
!ignorePrefix(prefix, errorCode) && !ignoreString(str, errorCode)) {
// Map from the original input to the CEs.
// We do this in case the canonical closure is incomplete,
// so that it is possible to explicitly provide the missing mappings.
ce32 = addIfDifferent(prefix, str, ces, cesLength, ce32, errorCode);
}
if (!icu4xMode) {
addWithClosure(nfdPrefix, nfdString, ces, cesLength, ce32, errorCode);
} else {
addIfDifferent(nfdPrefix, nfdString, ces, cesLength, ce32, errorCode);
}
if(U_FAILURE(errorCode)) {
parserErrorReason = "writing collation elements";
return;
}
cesLength = cesLengthBeforeExtension;
}
int32_t
CollationBuilder::findOrInsertNodeForCEs(int32_t strength, const char *&parserErrorReason,
UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return 0; }
U_ASSERT(UCOL_PRIMARY <= strength && strength <= UCOL_QUATERNARY);
// Find the last CE that is at least as "strong" as the requested difference.
// Note: Stronger is smaller (UCOL_PRIMARY=0).
int64_t ce;
for(;; --cesLength) {
if(cesLength == 0) {
ce = ces[0] = 0;
cesLength = 1;
break;
} else {
ce = ces[cesLength - 1];
}
if(ceStrength(ce) <= strength) { break; }
}
if(isTempCE(ce)) {
// No need to findCommonNode() here for lower levels
// because insertTailoredNodeAfter() will do that anyway.
return indexFromTempCE(ce);
}
// root CE
if((uint8_t)(ce >> 56) == Collation::UNASSIGNED_IMPLICIT_BYTE) {
errorCode = U_UNSUPPORTED_ERROR;
parserErrorReason = "tailoring relative to an unassigned code point not supported";
return 0;
}
return findOrInsertNodeForRootCE(ce, strength, errorCode);
}
int32_t
CollationBuilder::findOrInsertNodeForRootCE(int64_t ce, int32_t strength, UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return 0; }
U_ASSERT((uint8_t)(ce >> 56) != Collation::UNASSIGNED_IMPLICIT_BYTE);
// Find or insert the node for each of the root CE's weights,
// down to the requested level/strength.
// Root CEs must have common=zero quaternary weights (for which we never insert any nodes).
U_ASSERT((ce & 0xc0) == 0);
int32_t index = findOrInsertNodeForPrimary((uint32_t)(ce >> 32), errorCode);
if(strength >= UCOL_SECONDARY) {
uint32_t lower32 = (uint32_t)ce;
index = findOrInsertWeakNode(index, lower32 >> 16, UCOL_SECONDARY, errorCode);
if(strength >= UCOL_TERTIARY) {
index = findOrInsertWeakNode(index, lower32 & Collation::ONLY_TERTIARY_MASK,
UCOL_TERTIARY, errorCode);
}
}
return index;
}
namespace {
/**
* Like Java Collections.binarySearch(List, key, Comparator).
*
* @return the index>=0 where the item was found,
* or the index<0 for inserting the string at ~index in sorted order
* (index into rootPrimaryIndexes)
*/
int32_t
binarySearchForRootPrimaryNode(const int32_t *rootPrimaryIndexes, int32_t length,
const int64_t *nodes, uint32_t p) {
if(length == 0) { return ~0; }
int32_t start = 0;
int32_t limit = length;
for (;;) {
int32_t i = (start + limit) / 2;
int64_t node = nodes[rootPrimaryIndexes[i]];
uint32_t nodePrimary = (uint32_t)(node >> 32); // weight32FromNode(node)
if (p == nodePrimary) {
return i;
} else if (p < nodePrimary) {
if (i == start) {
return ~start; // insert s before i
}
limit = i;
} else {
if (i == start) {
return ~(start + 1); // insert s after i
}
start = i;
}
}
}
} // namespace
int32_t
CollationBuilder::findOrInsertNodeForPrimary(uint32_t p, UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return 0; }
int32_t rootIndex = binarySearchForRootPrimaryNode(
rootPrimaryIndexes.getBuffer(), rootPrimaryIndexes.size(), nodes.getBuffer(), p);
if(rootIndex >= 0) {
return rootPrimaryIndexes.elementAti(rootIndex);
} else {
// Start a new list of nodes with this primary.
int32_t index = nodes.size();
nodes.addElement(nodeFromWeight32(p), errorCode);
rootPrimaryIndexes.insertElementAt(index, ~rootIndex, errorCode);
return index;
}
}
int32_t
CollationBuilder::findOrInsertWeakNode(int32_t index, uint32_t weight16, int32_t level, UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return 0; }
U_ASSERT(0 <= index && index < nodes.size());
U_ASSERT(UCOL_SECONDARY <= level && level <= UCOL_TERTIARY);
if(weight16 == Collation::COMMON_WEIGHT16) {
return findCommonNode(index, level);
}
// If this will be the first below-common weight for the parent node,
// then we will also need to insert a common weight after it.
int64_t node = nodes.elementAti(index);
U_ASSERT(strengthFromNode(node) < level); // parent node is stronger
if(weight16 != 0 && weight16 < Collation::COMMON_WEIGHT16) {
int32_t hasThisLevelBefore = level == UCOL_SECONDARY ? HAS_BEFORE2 : HAS_BEFORE3;
if((node & hasThisLevelBefore) == 0) {
// The parent node has an implied level-common weight.
int64_t commonNode =
nodeFromWeight16(Collation::COMMON_WEIGHT16) | nodeFromStrength(level);
if(level == UCOL_SECONDARY) {
// Move the HAS_BEFORE3 flag from the parent node
// to the new secondary common node.
commonNode |= node & HAS_BEFORE3;
node &= ~(int64_t)HAS_BEFORE3;
}
nodes.setElementAt(node | hasThisLevelBefore, index);
// Insert below-common-weight node.
int32_t nextIndex = nextIndexFromNode(node);
node = nodeFromWeight16(weight16) | nodeFromStrength(level);
index = insertNodeBetween(index, nextIndex, node, errorCode);
// Insert common-weight node.
insertNodeBetween(index, nextIndex, commonNode, errorCode);
// Return index of below-common-weight node.
return index;
}
}
// Find the root CE's weight for this level.
// Postpone insertion if not found:
// Insert the new root node before the next stronger node,
// or before the next root node with the same strength and a larger weight.
int32_t nextIndex;
while((nextIndex = nextIndexFromNode(node)) != 0) {
node = nodes.elementAti(nextIndex);
int32_t nextStrength = strengthFromNode(node);
if(nextStrength <= level) {
// Insert before a stronger node.
if(nextStrength < level) { break; }
// nextStrength == level
if(!isTailoredNode(node)) {
uint32_t nextWeight16 = weight16FromNode(node);
if(nextWeight16 == weight16) {
// Found the node for the root CE up to this level.
return nextIndex;
}
// Insert before a node with a larger same-strength weight.
if(nextWeight16 > weight16) { break; }
}
}
// Skip the next node.
index = nextIndex;
}
node = nodeFromWeight16(weight16) | nodeFromStrength(level);
return insertNodeBetween(index, nextIndex, node, errorCode);
}
int32_t
CollationBuilder::insertTailoredNodeAfter(int32_t index, int32_t strength, UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return 0; }
U_ASSERT(0 <= index && index < nodes.size());
if(strength >= UCOL_SECONDARY) {
index = findCommonNode(index, UCOL_SECONDARY);
if(strength >= UCOL_TERTIARY) {
index = findCommonNode(index, UCOL_TERTIARY);
}
}
// Postpone insertion:
// Insert the new node before the next one with a strength at least as strong.
int64_t node = nodes.elementAti(index);
int32_t nextIndex;
while((nextIndex = nextIndexFromNode(node)) != 0) {
node = nodes.elementAti(nextIndex);
if(strengthFromNode(node) <= strength) { break; }
// Skip the next node which has a weaker (larger) strength than the new one.
index = nextIndex;
}
node = IS_TAILORED | nodeFromStrength(strength);
return insertNodeBetween(index, nextIndex, node, errorCode);
}
int32_t
CollationBuilder::insertNodeBetween(int32_t index, int32_t nextIndex, int64_t node,
UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return 0; }
U_ASSERT(previousIndexFromNode(node) == 0);
U_ASSERT(nextIndexFromNode(node) == 0);
U_ASSERT(nextIndexFromNode(nodes.elementAti(index)) == nextIndex);
// Append the new node and link it to the existing nodes.
int32_t newIndex = nodes.size();
node |= nodeFromPreviousIndex(index) | nodeFromNextIndex(nextIndex);
nodes.addElement(node, errorCode);
if(U_FAILURE(errorCode)) { return 0; }
// nodes[index].nextIndex = newIndex
node = nodes.elementAti(index);
nodes.setElementAt(changeNodeNextIndex(node, newIndex), index);
// nodes[nextIndex].previousIndex = newIndex
if(nextIndex != 0) {
node = nodes.elementAti(nextIndex);
nodes.setElementAt(changeNodePreviousIndex(node, newIndex), nextIndex);
}
return newIndex;
}
int32_t
CollationBuilder::findCommonNode(int32_t index, int32_t strength) const {
U_ASSERT(UCOL_SECONDARY <= strength && strength <= UCOL_TERTIARY);
int64_t node = nodes.elementAti(index);
if(strengthFromNode(node) >= strength) {
// The current node is no stronger.
return index;
}
if(strength == UCOL_SECONDARY ? !nodeHasBefore2(node) : !nodeHasBefore3(node)) {
// The current node implies the strength-common weight.
return index;
}
index = nextIndexFromNode(node);
node = nodes.elementAti(index);
U_ASSERT(!isTailoredNode(node) && strengthFromNode(node) == strength &&
weight16FromNode(node) < Collation::COMMON_WEIGHT16);
// Skip to the explicit common node.
do {
index = nextIndexFromNode(node);
node = nodes.elementAti(index);
U_ASSERT(strengthFromNode(node) >= strength);
} while(isTailoredNode(node) || strengthFromNode(node) > strength ||
weight16FromNode(node) < Collation::COMMON_WEIGHT16);
U_ASSERT(weight16FromNode(node) == Collation::COMMON_WEIGHT16);
return index;
}
void
CollationBuilder::setCaseBits(const UnicodeString &nfdString,
const char *&parserErrorReason, UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return; }
int32_t numTailoredPrimaries = 0;
for(int32_t i = 0; i < cesLength; ++i) {
if(ceStrength(ces[i]) == UCOL_PRIMARY) { ++numTailoredPrimaries; }
}
// We should not be able to get too many case bits because
// cesLength<=31==MAX_EXPANSION_LENGTH.
// 31 pairs of case bits fit into an int64_t without setting its sign bit.
U_ASSERT(numTailoredPrimaries <= 31);
int64_t cases = 0;
if(numTailoredPrimaries > 0) {
const char16_t *s = nfdString.getBuffer();
UTF16CollationIterator baseCEs(baseData, false, s, s, s + nfdString.length());
int32_t baseCEsLength = baseCEs.fetchCEs(errorCode) - 1;
if(U_FAILURE(errorCode)) {
parserErrorReason = "fetching root CEs for tailored string";
return;
}
U_ASSERT(baseCEsLength >= 0 && baseCEs.getCE(baseCEsLength) == Collation::NO_CE);
uint32_t lastCase = 0;
int32_t numBasePrimaries = 0;
for(int32_t i = 0; i < baseCEsLength; ++i) {
int64_t ce = baseCEs.getCE(i);
if((ce >> 32) != 0) {
++numBasePrimaries;
uint32_t c = ((uint32_t)ce >> 14) & 3;
U_ASSERT(c == 0 || c == 2); // lowercase or uppercase, no mixed case in any base CE
if(numBasePrimaries < numTailoredPrimaries) {
cases |= (int64_t)c << ((numBasePrimaries - 1) * 2);
} else if(numBasePrimaries == numTailoredPrimaries) {
lastCase = c;
} else if(c != lastCase) {
// There are more base primary CEs than tailored primaries.
// Set mixed case if the case bits of the remainder differ.
lastCase = 1;
// Nothing more can change.
break;
}
}
}
if(numBasePrimaries >= numTailoredPrimaries) {
cases |= (int64_t)lastCase << ((numTailoredPrimaries - 1) * 2);
}
}
for(int32_t i = 0; i < cesLength; ++i) {
int64_t ce = ces[i] & INT64_C(0xffffffffffff3fff); // clear old case bits
int32_t strength = ceStrength(ce);
if(strength == UCOL_PRIMARY) {
ce |= (cases & 3) << 14;
cases >>= 2;
} else if(strength == UCOL_TERTIARY) {
// Tertiary CEs must have uppercase bits.
// See the LDML spec, and comments in class CollationCompare.
ce |= 0x8000;
}
// Tertiary ignorable CEs must have 0 case bits.
// We set 0 case bits for secondary CEs too
// since currently only U+0345 is cased and maps to a secondary CE,
// and it is lowercase. Other secondaries are uncased.
// See [[:Cased:]&[:uca1=:]] where uca1 queries the root primary weight.
ces[i] = ce;
}
}
void
CollationBuilder::suppressContractions(const UnicodeSet &set, const char *&parserErrorReason,
UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return; }
dataBuilder->suppressContractions(set, errorCode);
if(U_FAILURE(errorCode)) {
parserErrorReason = "application of [suppressContractions [set]] failed";
}
}
void
CollationBuilder::optimize(const UnicodeSet &set, const char *& /* parserErrorReason */,
UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return; }
optimizeSet.addAll(set);
}
uint32_t
CollationBuilder::addWithClosure(const UnicodeString &nfdPrefix, const UnicodeString &nfdString,
const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32,
UErrorCode &errorCode) {
// Map from the NFD input to the CEs.
ce32 = addIfDifferent(nfdPrefix, nfdString, newCEs, newCEsLength, ce32, errorCode);
ce32 = addOnlyClosure(nfdPrefix, nfdString, newCEs, newCEsLength, ce32, errorCode);
addTailComposites(nfdPrefix, nfdString, errorCode);
return ce32;
}
// ICU-22517
// This constant defines a limit for the addOnlyClosure to return
// error, to avoid taking a long time for canonical closure expansion.
// Please let us know if you have a reasonable use case that needed
// for a practical Collation rule that needs to increase this limit.
// This value is needed for compiling a rule with eight Hangul syllables such as
// "&a=b쫊쫊쫊쫊쫊쫊쫊쫊" without error, which should be more than realistic
// usage.
static constexpr int32_t kClosureLoopLimit = 6560;
uint32_t
CollationBuilder::addOnlyClosure(const UnicodeString &nfdPrefix, const UnicodeString &nfdString,
const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32,
UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return ce32; }
int32_t loop = 0;
// Map from canonically equivalent input to the CEs. (But not from the all-NFD input.)
if(nfdPrefix.isEmpty()) {
CanonicalIterator stringIter(nfdString, errorCode);
if(U_FAILURE(errorCode)) { return ce32; }
UnicodeString prefix;
for(;;) {
UnicodeString str = stringIter.next();
if(str.isBogus()) { break; }
if(ignoreString(str, errorCode) || str == nfdString) { continue; }
if (loop++ > kClosureLoopLimit) {
// To avoid hang as in ICU-22517, return with error.
errorCode = U_INPUT_TOO_LONG_ERROR;
return ce32;
}
ce32 = addIfDifferent(prefix, str, newCEs, newCEsLength, ce32, errorCode);
if(U_FAILURE(errorCode)) { return ce32; }
}
} else {
CanonicalIterator prefixIter(nfdPrefix, errorCode);
CanonicalIterator stringIter(nfdString, errorCode);
if(U_FAILURE(errorCode)) { return ce32; }
for(;;) {
UnicodeString prefix = prefixIter.next();
if(prefix.isBogus()) { break; }
if(ignorePrefix(prefix, errorCode)) { continue; }
UBool samePrefix = prefix == nfdPrefix;
for(;;) {
UnicodeString str = stringIter.next();
if(str.isBogus()) { break; }
if(ignoreString(str, errorCode) || (samePrefix && str == nfdString)) { continue; }
if (loop++ > kClosureLoopLimit) {
// To avoid hang as in ICU-22517, return with error.
errorCode = U_INPUT_TOO_LONG_ERROR;
return ce32;
}
ce32 = addIfDifferent(prefix, str, newCEs, newCEsLength, ce32, errorCode);
if(U_FAILURE(errorCode)) { return ce32; }
}
stringIter.reset();
}
}
return ce32;
}
void
CollationBuilder::addTailComposites(const UnicodeString &nfdPrefix, const UnicodeString &nfdString,
UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return; }
// Look for the last starter in the NFD string.
UChar32 lastStarter;
int32_t indexAfterLastStarter = nfdString.length();
for(;;) {
if(indexAfterLastStarter == 0) { return; } // no starter at all
lastStarter = nfdString.char32At(indexAfterLastStarter - 1);
if(nfd.getCombiningClass(lastStarter) == 0) { break; }
indexAfterLastStarter -= U16_LENGTH(lastStarter);
}
// No closure to Hangul syllables since we decompose them on the fly.
if(Hangul::isJamoL(lastStarter)) { return; }
// Are there any composites whose decomposition starts with the lastStarter?
// Note: Normalizer2Impl does not currently return start sets for NFC_QC=Maybe characters.
// We might find some more equivalent mappings here if it did.
UnicodeSet composites;
if(!nfcImpl.getCanonStartSet(lastStarter, composites)) { return; }
UnicodeString decomp;
UnicodeString newNFDString, newString;
int64_t newCEs[Collation::MAX_EXPANSION_LENGTH];
UnicodeSetIterator iter(composites);
while(iter.next()) {
U_ASSERT(!iter.isString());
UChar32 composite = iter.getCodepoint();
nfd.getDecomposition(composite, decomp);
if(!mergeCompositeIntoString(nfdString, indexAfterLastStarter, composite, decomp,
newNFDString, newString, errorCode)) {
continue;
}
int32_t newCEsLength = dataBuilder->getCEs(nfdPrefix, newNFDString, newCEs, 0);
if(newCEsLength > Collation::MAX_EXPANSION_LENGTH) {
// Ignore mappings that we cannot store.
continue;
}
// Note: It is possible that the newCEs do not make use of the mapping
// for which we are adding the tail composites, in which case we might be adding
// unnecessary mappings.
// For example, when we add tail composites for ae^ (^=combining circumflex),
// UCA discontiguous-contraction matching does not find any matches
// for ae_^ (_=any combining diacritic below) *unless* there is also
// a contraction mapping for ae.
// Thus, if there is no ae contraction, then the ae^ mapping is ignored
// while fetching the newCEs for ae_^.
// TODO: Try to detect this effectively.
// (Alternatively, print a warning when prefix contractions are missing.)
// We do not need an explicit mapping for the NFD strings.
// It is fine if the NFD input collates like this via a sequence of mappings.
// It also saves a little bit of space, and may reduce the set of characters with contractions.
uint32_t ce32 = addIfDifferent(nfdPrefix, newString,
newCEs, newCEsLength, Collation::UNASSIGNED_CE32, errorCode);
if(ce32 != Collation::UNASSIGNED_CE32) {
// was different, was added
addOnlyClosure(nfdPrefix, newNFDString, newCEs, newCEsLength, ce32, errorCode);
}
}
}
UBool
CollationBuilder::mergeCompositeIntoString(const UnicodeString &nfdString,
int32_t indexAfterLastStarter,
UChar32 composite, const UnicodeString &decomp,
UnicodeString &newNFDString, UnicodeString &newString,
UErrorCode &errorCode) const {
if(U_FAILURE(errorCode)) { return false; }
U_ASSERT(nfdString.char32At(indexAfterLastStarter - 1) == decomp.char32At(0));
int32_t lastStarterLength = decomp.moveIndex32(0, 1);
if(lastStarterLength == decomp.length()) {
// Singleton decompositions should be found by addWithClosure()
// and the CanonicalIterator, so we can ignore them here.
return false;
}
if(nfdString.compare(indexAfterLastStarter, 0x7fffffff,
decomp, lastStarterLength, 0x7fffffff) == 0) {
// same strings, nothing new to be found here
return false;
}
// Make new FCD strings that combine a composite, or its decomposition,
// into the nfdString's last starter and the combining marks following it.
// Make an NFD version, and a version with the composite.
newNFDString.setTo(nfdString, 0, indexAfterLastStarter);
newString.setTo(nfdString, 0, indexAfterLastStarter - lastStarterLength).append(composite);
// The following is related to discontiguous contraction matching,
// but builds only FCD strings (or else returns false).
int32_t sourceIndex = indexAfterLastStarter;
int32_t decompIndex = lastStarterLength;
// Small optimization: We keep the source character across loop iterations
// because we do not always consume it,
// and then need not fetch it again nor look up its combining class again.
UChar32 sourceChar = U_SENTINEL;
// The cc variables need to be declared before the loop so that at the end
// they are set to the last combining classes seen.
uint8_t sourceCC = 0;
uint8_t decompCC = 0;
for(;;) {
if(sourceChar < 0) {
if(sourceIndex >= nfdString.length()) { break; }
sourceChar = nfdString.char32At(sourceIndex);
sourceCC = nfd.getCombiningClass(sourceChar);
U_ASSERT(sourceCC != 0);
}
// We consume a decomposition character in each iteration.
if(decompIndex >= decomp.length()) { break; }
UChar32 decompChar = decomp.char32At(decompIndex);
decompCC = nfd.getCombiningClass(decompChar);
// Compare the two characters and their combining classes.
if(decompCC == 0) {
// Unable to merge because the source contains a non-zero combining mark
// but the composite's decomposition contains another starter.
// The strings would not be equivalent.
return false;
} else if(sourceCC < decompCC) {
// Composite + sourceChar would not be FCD.
return false;
} else if(decompCC < sourceCC) {
newNFDString.append(decompChar);
decompIndex += U16_LENGTH(decompChar);
} else if(decompChar != sourceChar) {
// Blocked because same combining class.
return false;
} else { // match: decompChar == sourceChar
newNFDString.append(decompChar);
decompIndex += U16_LENGTH(decompChar);
sourceIndex += U16_LENGTH(decompChar);
sourceChar = U_SENTINEL;
}
}
// We are at the end of at least one of the two inputs.
if(sourceChar >= 0) { // more characters from nfdString but not from decomp
if(sourceCC < decompCC) {
// Appending the next source character to the composite would not be FCD.
return false;
}
newNFDString.append(nfdString, sourceIndex, 0x7fffffff);
newString.append(nfdString, sourceIndex, 0x7fffffff);
} else if(decompIndex < decomp.length()) { // more characters from decomp, not from nfdString
newNFDString.append(decomp, decompIndex, 0x7fffffff);
}
U_ASSERT(nfd.isNormalized(newNFDString, errorCode));
U_ASSERT(fcd.isNormalized(newString, errorCode));
U_ASSERT(nfd.normalize(newString, errorCode) == newNFDString); // canonically equivalent
return true;
}
UBool
CollationBuilder::ignorePrefix(const UnicodeString &s, UErrorCode &errorCode) const {
// Do not map non-FCD prefixes.
return !isFCD(s, errorCode);
}
UBool
CollationBuilder::ignoreString(const UnicodeString &s, UErrorCode &errorCode) const {
// Do not map non-FCD strings.
// Do not map strings that start with Hangul syllables: We decompose those on the fly.
return !isFCD(s, errorCode) || Hangul::isHangul(s.charAt(0));
}
UBool
CollationBuilder::isFCD(const UnicodeString &s, UErrorCode &errorCode) const {
return U_SUCCESS(errorCode) && fcd.isNormalized(s, errorCode);
}
void
CollationBuilder::closeOverComposites(UErrorCode &errorCode) {
UnicodeSet composites(UNICODE_STRING_SIMPLE("[:NFD_QC=N:]"), errorCode); // Java: static final
if(U_FAILURE(errorCode)) { return; }
// Hangul is decomposed on the fly during collation.
composites.remove(Hangul::HANGUL_BASE, Hangul::HANGUL_END);
UnicodeString prefix; // empty
UnicodeString nfdString;
UnicodeSetIterator iter(composites);
while(iter.next()) {
U_ASSERT(!iter.isString());
nfd.getDecomposition(iter.getCodepoint(), nfdString);
cesLength = dataBuilder->getCEs(nfdString, ces, 0);
if(cesLength > Collation::MAX_EXPANSION_LENGTH) {
// Too many CEs from the decomposition (unusual), ignore this composite.
// We could add a capacity parameter to getCEs() and reallocate if necessary.
// However, this can only really happen in contrived cases.
continue;
}
const UnicodeString &composite(iter.getString());
addIfDifferent(prefix, composite, ces, cesLength, Collation::UNASSIGNED_CE32, errorCode);
}
}
uint32_t
CollationBuilder::addIfDifferent(const UnicodeString &prefix, const UnicodeString &str,
const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32,
UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return ce32; }
int64_t oldCEs[Collation::MAX_EXPANSION_LENGTH];
int32_t oldCEsLength = dataBuilder->getCEs(prefix, str, oldCEs, 0);
if(!sameCEs(newCEs, newCEsLength, oldCEs, oldCEsLength)) {
if(ce32 == Collation::UNASSIGNED_CE32) {
ce32 = dataBuilder->encodeCEs(newCEs, newCEsLength, errorCode);
}
dataBuilder->addCE32(prefix, str, ce32, errorCode);
}
return ce32;
}
UBool
CollationBuilder::sameCEs(const int64_t ces1[], int32_t ces1Length,
const int64_t ces2[], int32_t ces2Length) {
if(ces1Length != ces2Length) {
return false;
}
U_ASSERT(ces1Length <= Collation::MAX_EXPANSION_LENGTH);
for(int32_t i = 0; i < ces1Length; ++i) {
if(ces1[i] != ces2[i]) { return false; }
}
return true;
}
#ifdef DEBUG_COLLATION_BUILDER
uint32_t
alignWeightRight(uint32_t w) {
if(w != 0) {
while((w & 0xff) == 0) { w >>= 8; }
}
return w;
}
#endif
void
CollationBuilder::makeTailoredCEs(UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return; }
CollationWeights primaries, secondaries, tertiaries;
int64_t *nodesArray = nodes.getBuffer();
#ifdef DEBUG_COLLATION_BUILDER
puts("\nCollationBuilder::makeTailoredCEs()");
#endif
for(int32_t rpi = 0; rpi < rootPrimaryIndexes.size(); ++rpi) {
int32_t i = rootPrimaryIndexes.elementAti(rpi);
int64_t node = nodesArray[i];
uint32_t p = weight32FromNode(node);
uint32_t s = p == 0 ? 0 : Collation::COMMON_WEIGHT16;
uint32_t t = s;
uint32_t q = 0;
UBool pIsTailored = false;
UBool sIsTailored = false;
UBool tIsTailored = false;
#ifdef DEBUG_COLLATION_BUILDER
printf("\nprimary %lx\n", (long)alignWeightRight(p));
#endif
int32_t pIndex = p == 0 ? 0 : rootElements.findPrimary(p);
int32_t nextIndex = nextIndexFromNode(node);
while(nextIndex != 0) {
i = nextIndex;
node = nodesArray[i];
nextIndex = nextIndexFromNode(node);
int32_t strength = strengthFromNode(node);
if(strength == UCOL_QUATERNARY) {
U_ASSERT(isTailoredNode(node));
#ifdef DEBUG_COLLATION_BUILDER
printf(" quat+ ");
#endif
if(q == 3) {
errorCode = U_BUFFER_OVERFLOW_ERROR;
errorReason = "quaternary tailoring gap too small";
return;
}
++q;
} else {
if(strength == UCOL_TERTIARY) {
if(isTailoredNode(node)) {
#ifdef DEBUG_COLLATION_BUILDER
printf(" ter+ ");
#endif
if(!tIsTailored) {
// First tailored tertiary node for [p, s].
int32_t tCount = countTailoredNodes(nodesArray, nextIndex,
UCOL_TERTIARY) + 1;
uint32_t tLimit;
if(t == 0) {
// Gap at the beginning of the tertiary CE range.
t = rootElements.getTertiaryBoundary() - 0x100;
tLimit = rootElements.getFirstTertiaryCE() & Collation::ONLY_TERTIARY_MASK;
} else if(!pIsTailored && !sIsTailored) {
// p and s are root weights.
tLimit = rootElements.getTertiaryAfter(pIndex, s, t);
} else if(t == Collation::BEFORE_WEIGHT16) {
tLimit = Collation::COMMON_WEIGHT16;
} else {
// [p, s] is tailored.
U_ASSERT(t == Collation::COMMON_WEIGHT16);
tLimit = rootElements.getTertiaryBoundary();
}
U_ASSERT(tLimit == 0x4000 || (tLimit & ~Collation::ONLY_TERTIARY_MASK) == 0);
tertiaries.initForTertiary();
if(!tertiaries.allocWeights(t, tLimit, tCount)) {
errorCode = U_BUFFER_OVERFLOW_ERROR;
errorReason = "tertiary tailoring gap too small";
return;
}
tIsTailored = true;
}
t = tertiaries.nextWeight();
U_ASSERT(t != 0xffffffff);
} else {
t = weight16FromNode(node);
tIsTailored = false;
#ifdef DEBUG_COLLATION_BUILDER
printf(" ter %lx\n", (long)alignWeightRight(t));
#endif
}
} else {
if(strength == UCOL_SECONDARY) {
if(isTailoredNode(node)) {
#ifdef DEBUG_COLLATION_BUILDER
printf(" sec+ ");
#endif
if(!sIsTailored) {
// First tailored secondary node for p.
int32_t sCount = countTailoredNodes(nodesArray, nextIndex,
UCOL_SECONDARY) + 1;
uint32_t sLimit;
if(s == 0) {
// Gap at the beginning of the secondary CE range.
s = rootElements.getSecondaryBoundary() - 0x100;
sLimit = rootElements.getFirstSecondaryCE() >> 16;
} else if(!pIsTailored) {
// p is a root primary.
sLimit = rootElements.getSecondaryAfter(pIndex, s);
} else if(s == Collation::BEFORE_WEIGHT16) {
sLimit = Collation::COMMON_WEIGHT16;
} else {
// p is a tailored primary.
U_ASSERT(s == Collation::COMMON_WEIGHT16);
sLimit = rootElements.getSecondaryBoundary();
}
if(s == Collation::COMMON_WEIGHT16) {
// Do not tailor into the getSortKey() range of
// compressed common secondaries.
s = rootElements.getLastCommonSecondary();
}
secondaries.initForSecondary();
if(!secondaries.allocWeights(s, sLimit, sCount)) {
errorCode = U_BUFFER_OVERFLOW_ERROR;
errorReason = "secondary tailoring gap too small";
#ifdef DEBUG_COLLATION_BUILDER
printf("!secondaries.allocWeights(%lx, %lx, sCount=%ld)\n",
(long)alignWeightRight(s), (long)alignWeightRight(sLimit),
(long)alignWeightRight(sCount));
#endif
return;
}
sIsTailored = true;
}
s = secondaries.nextWeight();
U_ASSERT(s != 0xffffffff);
} else {
s = weight16FromNode(node);
sIsTailored = false;
#ifdef DEBUG_COLLATION_BUILDER
printf(" sec %lx\n", (long)alignWeightRight(s));
#endif
}
} else /* UCOL_PRIMARY */ {
U_ASSERT(isTailoredNode(node));
#ifdef DEBUG_COLLATION_BUILDER
printf("pri+ ");
#endif
if(!pIsTailored) {
// First tailored primary node in this list.
int32_t pCount = countTailoredNodes(nodesArray, nextIndex,
UCOL_PRIMARY) + 1;
UBool isCompressible = baseData->isCompressiblePrimary(p);
uint32_t pLimit =
rootElements.getPrimaryAfter(p, pIndex, isCompressible);
primaries.initForPrimary(isCompressible);
if(!primaries.allocWeights(p, pLimit, pCount)) {
errorCode = U_BUFFER_OVERFLOW_ERROR; // TODO: introduce a more specific UErrorCode?
errorReason = "primary tailoring gap too small";
return;
}
pIsTailored = true;
}
p = primaries.nextWeight();
U_ASSERT(p != 0xffffffff);
s = Collation::COMMON_WEIGHT16;
sIsTailored = false;
}
t = s == 0 ? 0 : Collation::COMMON_WEIGHT16;
tIsTailored = false;
}
q = 0;
}
if(isTailoredNode(node)) {
nodesArray[i] = Collation::makeCE(p, s, t, q);
#ifdef DEBUG_COLLATION_BUILDER
printf("%016llx\n", (long long)nodesArray[i]);
#endif
}
}
}
}
int32_t
CollationBuilder::countTailoredNodes(const int64_t *nodesArray, int32_t i, int32_t strength) {
int32_t count = 0;
for(;;) {
if(i == 0) { break; }
int64_t node = nodesArray[i];
if(strengthFromNode(node) < strength) { break; }
if(strengthFromNode(node) == strength) {
if(isTailoredNode(node)) {
++count;
} else {
break;
}
}
i = nextIndexFromNode(node);
}
return count;
}
class CEFinalizer : public CollationDataBuilder::CEModifier {
public:
CEFinalizer(const int64_t *ces) : finalCEs(ces) {}
virtual ~CEFinalizer();
virtual int64_t modifyCE32(uint32_t ce32) const override {
U_ASSERT(!Collation::isSpecialCE32(ce32));
if(CollationBuilder::isTempCE32(ce32)) {
// retain case bits
return finalCEs[CollationBuilder::indexFromTempCE32(ce32)] | ((ce32 & 0xc0) << 8);
} else {
return Collation::NO_CE;
}
}
virtual int64_t modifyCE(int64_t ce) const override {
if(CollationBuilder::isTempCE(ce)) {
// retain case bits
return finalCEs[CollationBuilder::indexFromTempCE(ce)] | (ce & 0xc000);
} else {
return Collation::NO_CE;
}
}
private:
const int64_t *finalCEs;
};
CEFinalizer::~CEFinalizer() {}
void
CollationBuilder::finalizeCEs(UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return; }
LocalPointer<CollationDataBuilder> newBuilder(new CollationDataBuilder(icu4xMode, errorCode), errorCode);
if(U_FAILURE(errorCode)) {
return;
}
newBuilder->initForTailoring(baseData, errorCode);
CEFinalizer finalizer(nodes.getBuffer());
newBuilder->copyFrom(*dataBuilder, finalizer, errorCode);
if(U_FAILURE(errorCode)) { return; }
delete dataBuilder;
dataBuilder = newBuilder.orphan();
}
int32_t
CollationBuilder::ceStrength(int64_t ce) {
return
isTempCE(ce) ? strengthFromTempCE(ce) :
(ce & INT64_C(0xff00000000000000)) != 0 ? UCOL_PRIMARY :
((uint32_t)ce & 0xff000000) != 0 ? UCOL_SECONDARY :
ce != 0 ? UCOL_TERTIARY :
UCOL_IDENTICAL;
}
U_NAMESPACE_END
U_NAMESPACE_USE
U_CAPI UCollator * U_EXPORT2
ucol_openRules(const char16_t *rules, int32_t rulesLength,
UColAttributeValue normalizationMode, UCollationStrength strength,
UParseError *parseError, UErrorCode *pErrorCode) {
if(U_FAILURE(*pErrorCode)) { return nullptr; }
if(rules == nullptr && rulesLength != 0) {
*pErrorCode = U_ILLEGAL_ARGUMENT_ERROR;
return nullptr;
}
RuleBasedCollator *coll = new RuleBasedCollator();
if(coll == nullptr) {
*pErrorCode = U_MEMORY_ALLOCATION_ERROR;
return nullptr;
}
UnicodeString r((UBool)(rulesLength < 0), rules, rulesLength);
coll->internalBuildTailoring(r, strength, normalizationMode, parseError, nullptr, *pErrorCode);
if(U_FAILURE(*pErrorCode)) {
delete coll;
return nullptr;
}
return coll->toUCollator();
}
static const int32_t internalBufferSize = 512;
// The @internal ucol_getUnsafeSet() was moved here from ucol_sit.cpp
// because it calls UnicodeSet "builder" code that depends on all Unicode properties,
// and the rest of the collation "runtime" code only depends on normalization.
// This function is not related to the collation builder,
// but it did not seem worth moving it into its own .cpp file,
// nor rewriting it to use lower-level UnicodeSet and Normalizer2Impl methods.
U_CAPI int32_t U_EXPORT2
ucol_getUnsafeSet( const UCollator *coll,
USet *unsafe,
UErrorCode *status)
{
char16_t buffer[internalBufferSize];
int32_t len = 0;
uset_clear(unsafe);
// cccpattern = "[[:^tccc=0:][:^lccc=0:]]", unfortunately variant
static const char16_t cccpattern[25] = { 0x5b, 0x5b, 0x3a, 0x5e, 0x74, 0x63, 0x63, 0x63, 0x3d, 0x30, 0x3a, 0x5d,
0x5b, 0x3a, 0x5e, 0x6c, 0x63, 0x63, 0x63, 0x3d, 0x30, 0x3a, 0x5d, 0x5d, 0x00 };
// add chars that fail the fcd check
uset_applyPattern(unsafe, cccpattern, 24, USET_IGNORE_SPACE, status);
// add lead/trail surrogates
// (trail surrogates should need to be unsafe only if the caller tests for UTF-16 code *units*,
// not when testing code *points*)
uset_addRange(unsafe, 0xd800, 0xdfff);
USet *contractions = uset_open(0,0);
int32_t i = 0, j = 0;
ucol_getContractionsAndExpansions(coll, contractions, nullptr, false, status);
int32_t contsSize = uset_size(contractions);
UChar32 c = 0;
// Contraction set consists only of strings
// to get unsafe code points, we need to
// break the strings apart and add them to the unsafe set
for(i = 0; i < contsSize; i++) {
len = uset_getItem(contractions, i, nullptr, nullptr, buffer, internalBufferSize, status);
if(len > 0) {
j = 0;
while(j < len) {
U16_NEXT(buffer, j, len, c);
if(j < len) {
uset_add(unsafe, c);
}
}
}
}
uset_close(contractions);
return uset_size(unsafe);
}
#endif // !UCONFIG_NO_COLLATION
|