1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
|
// © 2018 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
//
// From the double-conversion library. Original license:
//
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ICU PATCH: ifdef around UCONFIG_NO_FORMATTING
#include <_foundation_unicode/utypes.h>
#if !UCONFIG_NO_FORMATTING
// ICU PATCH: Do not include std::locale.
#include <climits>
// #include <locale>
#include <cmath>
// ICU PATCH: Customize header file paths for ICU.
#include "double-conversion-string-to-double.h"
#include "double-conversion-ieee.h"
#include "double-conversion-strtod.h"
#include "double-conversion-utils.h"
// ICU PATCH: Wrap in ICU namespace
U_NAMESPACE_BEGIN
#ifdef _MSC_VER
# if _MSC_VER >= 1900
// Fix MSVC >= 2015 (_MSC_VER == 1900) warning
// C4244: 'argument': conversion from 'const uc16' to 'char', possible loss of data
// against Advance and friends, when instantiated with **it as char, not uc16.
__pragma(warning(disable: 4244))
# endif
# if _MSC_VER <= 1700 // VS2012, see IsDecimalDigitForRadix warning fix, below
# define VS2012_RADIXWARN
# endif
#endif
namespace double_conversion {
namespace {
inline char ToLower(char ch) {
#if 0 // do not include std::locale in ICU
static const std::ctype<char>& cType =
std::use_facet<std::ctype<char> >(std::locale::classic());
return cType.tolower(ch);
#else
(void)ch;
DOUBLE_CONVERSION_UNREACHABLE();
#endif
}
inline char Pass(char ch) {
return ch;
}
template <class Iterator, class Converter>
static inline bool ConsumeSubStringImpl(Iterator* current,
Iterator end,
const char* substring,
Converter converter) {
DOUBLE_CONVERSION_ASSERT(converter(**current) == *substring);
for (substring++; *substring != '\0'; substring++) {
++*current;
if (*current == end || converter(**current) != *substring) {
return false;
}
}
++*current;
return true;
}
// Consumes the given substring from the iterator.
// Returns false, if the substring does not match.
template <class Iterator>
static bool ConsumeSubString(Iterator* current,
Iterator end,
const char* substring,
bool allow_case_insensitivity) {
if (allow_case_insensitivity) {
return ConsumeSubStringImpl(current, end, substring, ToLower);
} else {
return ConsumeSubStringImpl(current, end, substring, Pass);
}
}
// Consumes first character of the str is equal to ch
inline bool ConsumeFirstCharacter(char ch,
const char* str,
bool case_insensitivity) {
return case_insensitivity ? ToLower(ch) == str[0] : ch == str[0];
}
} // namespace
// Maximum number of significant digits in decimal representation.
// The longest possible double in decimal representation is
// (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074
// (768 digits). If we parse a number whose first digits are equal to a
// mean of 2 adjacent doubles (that could have up to 769 digits) the result
// must be rounded to the bigger one unless the tail consists of zeros, so
// we don't need to preserve all the digits.
const int kMaxSignificantDigits = 772;
static const char kWhitespaceTable7[] = { 32, 13, 10, 9, 11, 12 };
static const int kWhitespaceTable7Length = DOUBLE_CONVERSION_ARRAY_SIZE(kWhitespaceTable7);
static const uc16 kWhitespaceTable16[] = {
160, 8232, 8233, 5760, 6158, 8192, 8193, 8194, 8195,
8196, 8197, 8198, 8199, 8200, 8201, 8202, 8239, 8287, 12288, 65279
};
static const int kWhitespaceTable16Length = DOUBLE_CONVERSION_ARRAY_SIZE(kWhitespaceTable16);
static bool isWhitespace(int x) {
if (x < 128) {
for (int i = 0; i < kWhitespaceTable7Length; i++) {
if (kWhitespaceTable7[i] == x) return true;
}
} else {
for (int i = 0; i < kWhitespaceTable16Length; i++) {
if (kWhitespaceTable16[i] == x) return true;
}
}
return false;
}
// Returns true if a nonspace found and false if the end has reached.
template <class Iterator>
static inline bool AdvanceToNonspace(Iterator* current, Iterator end) {
while (*current != end) {
if (!isWhitespace(**current)) return true;
++*current;
}
return false;
}
static bool isDigit(int x, int radix) {
return (x >= '0' && x <= '9' && x < '0' + radix)
|| (radix > 10 && x >= 'a' && x < 'a' + radix - 10)
|| (radix > 10 && x >= 'A' && x < 'A' + radix - 10);
}
static double SignedZero(bool sign) {
return sign ? -0.0 : 0.0;
}
// Returns true if 'c' is a decimal digit that is valid for the given radix.
//
// The function is small and could be inlined, but VS2012 emitted a warning
// because it constant-propagated the radix and concluded that the last
// condition was always true. Moving it into a separate function and
// suppressing optimisation keeps the compiler from warning.
#ifdef VS2012_RADIXWARN
#pragma optimize("",off)
static bool IsDecimalDigitForRadix(int c, int radix) {
return '0' <= c && c <= '9' && (c - '0') < radix;
}
#pragma optimize("",on)
#else
static bool inline IsDecimalDigitForRadix(int c, int radix) {
return '0' <= c && c <= '9' && (c - '0') < radix;
}
#endif
// Returns true if 'c' is a character digit that is valid for the given radix.
// The 'a_character' should be 'a' or 'A'.
//
// The function is small and could be inlined, but VS2012 emitted a warning
// because it constant-propagated the radix and concluded that the first
// condition was always false. By moving it into a separate function the
// compiler wouldn't warn anymore.
static bool IsCharacterDigitForRadix(int c, int radix, char a_character) {
return radix > 10 && c >= a_character && c < a_character + radix - 10;
}
// Returns true, when the iterator is equal to end.
template<class Iterator>
static bool Advance (Iterator* it, uc16 separator, int base, Iterator& end) {
if (separator == StringToDoubleConverter::kNoSeparator) {
++(*it);
return *it == end;
}
if (!isDigit(**it, base)) {
++(*it);
return *it == end;
}
++(*it);
if (*it == end) return true;
if (*it + 1 == end) return false;
if (**it == separator && isDigit(*(*it + 1), base)) {
++(*it);
}
return *it == end;
}
// Checks whether the string in the range start-end is a hex-float string.
// This function assumes that the leading '0x'/'0X' is already consumed.
//
// Hex float strings are of one of the following forms:
// - hex_digits+ 'p' ('+'|'-')? exponent_digits+
// - hex_digits* '.' hex_digits+ 'p' ('+'|'-')? exponent_digits+
// - hex_digits+ '.' 'p' ('+'|'-')? exponent_digits+
template<class Iterator>
static bool IsHexFloatString(Iterator start,
Iterator end,
uc16 separator,
bool allow_trailing_junk) {
DOUBLE_CONVERSION_ASSERT(start != end);
Iterator current = start;
bool saw_digit = false;
while (isDigit(*current, 16)) {
saw_digit = true;
if (Advance(¤t, separator, 16, end)) return false;
}
if (*current == '.') {
if (Advance(¤t, separator, 16, end)) return false;
while (isDigit(*current, 16)) {
saw_digit = true;
if (Advance(¤t, separator, 16, end)) return false;
}
}
if (!saw_digit) return false;
if (*current != 'p' && *current != 'P') return false;
if (Advance(¤t, separator, 16, end)) return false;
if (*current == '+' || *current == '-') {
if (Advance(¤t, separator, 16, end)) return false;
}
if (!isDigit(*current, 10)) return false;
if (Advance(¤t, separator, 16, end)) return true;
while (isDigit(*current, 10)) {
if (Advance(¤t, separator, 16, end)) return true;
}
return allow_trailing_junk || !AdvanceToNonspace(¤t, end);
}
// Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
//
// If parse_as_hex_float is true, then the string must be a valid
// hex-float.
template <int radix_log_2, class Iterator>
static double RadixStringToIeee(Iterator* current,
Iterator end,
bool sign,
uc16 separator,
bool parse_as_hex_float,
bool allow_trailing_junk,
double junk_string_value,
bool read_as_double,
bool* result_is_junk) {
DOUBLE_CONVERSION_ASSERT(*current != end);
DOUBLE_CONVERSION_ASSERT(!parse_as_hex_float ||
IsHexFloatString(*current, end, separator, allow_trailing_junk));
const int kDoubleSize = Double::kSignificandSize;
const int kSingleSize = Single::kSignificandSize;
const int kSignificandSize = read_as_double? kDoubleSize: kSingleSize;
*result_is_junk = true;
int64_t number = 0;
int exponent = 0;
const int radix = (1 << radix_log_2);
// Whether we have encountered a '.' and are parsing the decimal digits.
// Only relevant if parse_as_hex_float is true.
bool post_decimal = false;
// Skip leading 0s.
while (**current == '0') {
if (Advance(current, separator, radix, end)) {
*result_is_junk = false;
return SignedZero(sign);
}
}
while (true) {
int digit;
if (IsDecimalDigitForRadix(**current, radix)) {
digit = static_cast<char>(**current) - '0';
if (post_decimal) exponent -= radix_log_2;
} else if (IsCharacterDigitForRadix(**current, radix, 'a')) {
digit = static_cast<char>(**current) - 'a' + 10;
if (post_decimal) exponent -= radix_log_2;
} else if (IsCharacterDigitForRadix(**current, radix, 'A')) {
digit = static_cast<char>(**current) - 'A' + 10;
if (post_decimal) exponent -= radix_log_2;
} else if (parse_as_hex_float && **current == '.') {
post_decimal = true;
Advance(current, separator, radix, end);
DOUBLE_CONVERSION_ASSERT(*current != end);
continue;
} else if (parse_as_hex_float && (**current == 'p' || **current == 'P')) {
break;
} else {
if (allow_trailing_junk || !AdvanceToNonspace(current, end)) {
break;
} else {
return junk_string_value;
}
}
number = number * radix + digit;
int overflow = static_cast<int>(number >> kSignificandSize);
if (overflow != 0) {
// Overflow occurred. Need to determine which direction to round the
// result.
int overflow_bits_count = 1;
while (overflow > 1) {
overflow_bits_count++;
overflow >>= 1;
}
int dropped_bits_mask = ((1 << overflow_bits_count) - 1);
int dropped_bits = static_cast<int>(number) & dropped_bits_mask;
number >>= overflow_bits_count;
exponent += overflow_bits_count;
bool zero_tail = true;
for (;;) {
if (Advance(current, separator, radix, end)) break;
if (parse_as_hex_float && **current == '.') {
// Just run over the '.'. We are just trying to see whether there is
// a non-zero digit somewhere.
Advance(current, separator, radix, end);
DOUBLE_CONVERSION_ASSERT(*current != end);
post_decimal = true;
}
if (!isDigit(**current, radix)) break;
zero_tail = zero_tail && **current == '0';
if (!post_decimal) exponent += radix_log_2;
}
if (!parse_as_hex_float &&
!allow_trailing_junk &&
AdvanceToNonspace(current, end)) {
return junk_string_value;
}
int middle_value = (1 << (overflow_bits_count - 1));
if (dropped_bits > middle_value) {
number++; // Rounding up.
} else if (dropped_bits == middle_value) {
// Rounding to even to consistency with decimals: half-way case rounds
// up if significant part is odd and down otherwise.
if ((number & 1) != 0 || !zero_tail) {
number++; // Rounding up.
}
}
// Rounding up may cause overflow.
if ((number & ((int64_t)1 << kSignificandSize)) != 0) {
exponent++;
number >>= 1;
}
break;
}
if (Advance(current, separator, radix, end)) break;
}
DOUBLE_CONVERSION_ASSERT(number < ((int64_t)1 << kSignificandSize));
DOUBLE_CONVERSION_ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number);
*result_is_junk = false;
if (parse_as_hex_float) {
DOUBLE_CONVERSION_ASSERT(**current == 'p' || **current == 'P');
Advance(current, separator, radix, end);
DOUBLE_CONVERSION_ASSERT(*current != end);
bool is_negative = false;
if (**current == '+') {
Advance(current, separator, radix, end);
DOUBLE_CONVERSION_ASSERT(*current != end);
} else if (**current == '-') {
is_negative = true;
Advance(current, separator, radix, end);
DOUBLE_CONVERSION_ASSERT(*current != end);
}
int written_exponent = 0;
while (IsDecimalDigitForRadix(**current, 10)) {
// No need to read exponents if they are too big. That could potentially overflow
// the `written_exponent` variable.
if (abs(written_exponent) <= 100 * Double::kMaxExponent) {
written_exponent = 10 * written_exponent + **current - '0';
}
if (Advance(current, separator, radix, end)) break;
}
if (is_negative) written_exponent = -written_exponent;
exponent += written_exponent;
}
if (exponent == 0 || number == 0) {
if (sign) {
if (number == 0) return -0.0;
number = -number;
}
return static_cast<double>(number);
}
DOUBLE_CONVERSION_ASSERT(number != 0);
double result = Double(DiyFp(number, exponent)).value();
return sign ? -result : result;
}
template <class Iterator>
double StringToDoubleConverter::StringToIeee(
Iterator input,
int length,
bool read_as_double,
int* processed_characters_count) const {
Iterator current = input;
Iterator end = input + length;
*processed_characters_count = 0;
const bool allow_trailing_junk = (flags_ & ALLOW_TRAILING_JUNK) != 0;
const bool allow_leading_spaces = (flags_ & ALLOW_LEADING_SPACES) != 0;
const bool allow_trailing_spaces = (flags_ & ALLOW_TRAILING_SPACES) != 0;
const bool allow_spaces_after_sign = (flags_ & ALLOW_SPACES_AFTER_SIGN) != 0;
const bool allow_case_insensitivity = (flags_ & ALLOW_CASE_INSENSITIVITY) != 0;
// To make sure that iterator dereferencing is valid the following
// convention is used:
// 1. Each '++current' statement is followed by check for equality to 'end'.
// 2. If AdvanceToNonspace returned false then current == end.
// 3. If 'current' becomes equal to 'end' the function returns or goes to
// 'parsing_done'.
// 4. 'current' is not dereferenced after the 'parsing_done' label.
// 5. Code before 'parsing_done' may rely on 'current != end'.
if (current == end) return empty_string_value_;
if (allow_leading_spaces || allow_trailing_spaces) {
if (!AdvanceToNonspace(¤t, end)) {
*processed_characters_count = static_cast<int>(current - input);
return empty_string_value_;
}
if (!allow_leading_spaces && (input != current)) {
// No leading spaces allowed, but AdvanceToNonspace moved forward.
return junk_string_value_;
}
}
// Exponent will be adjusted if insignificant digits of the integer part
// or insignificant leading zeros of the fractional part are dropped.
int exponent = 0;
int significant_digits = 0;
int insignificant_digits = 0;
bool nonzero_digit_dropped = false;
bool sign = false;
if (*current == '+' || *current == '-') {
sign = (*current == '-');
++current;
Iterator next_non_space = current;
// Skip following spaces (if allowed).
if (!AdvanceToNonspace(&next_non_space, end)) return junk_string_value_;
if (!allow_spaces_after_sign && (current != next_non_space)) {
return junk_string_value_;
}
current = next_non_space;
}
if (infinity_symbol_ != DOUBLE_CONVERSION_NULLPTR) {
if (ConsumeFirstCharacter(*current, infinity_symbol_, allow_case_insensitivity)) {
if (!ConsumeSubString(¤t, end, infinity_symbol_, allow_case_insensitivity)) {
return junk_string_value_;
}
if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
return junk_string_value_;
}
if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) {
return junk_string_value_;
}
*processed_characters_count = static_cast<int>(current - input);
return sign ? -Double::Infinity() : Double::Infinity();
}
}
if (nan_symbol_ != DOUBLE_CONVERSION_NULLPTR) {
if (ConsumeFirstCharacter(*current, nan_symbol_, allow_case_insensitivity)) {
if (!ConsumeSubString(¤t, end, nan_symbol_, allow_case_insensitivity)) {
return junk_string_value_;
}
if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
return junk_string_value_;
}
if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) {
return junk_string_value_;
}
*processed_characters_count = static_cast<int>(current - input);
return sign ? -Double::NaN() : Double::NaN();
}
}
bool leading_zero = false;
if (*current == '0') {
if (Advance(¤t, separator_, 10, end)) {
*processed_characters_count = static_cast<int>(current - input);
return SignedZero(sign);
}
leading_zero = true;
// It could be hexadecimal value.
if (((flags_ & ALLOW_HEX) || (flags_ & ALLOW_HEX_FLOATS)) &&
(*current == 'x' || *current == 'X')) {
++current;
if (current == end) return junk_string_value_; // "0x"
bool parse_as_hex_float = (flags_ & ALLOW_HEX_FLOATS) &&
IsHexFloatString(current, end, separator_, allow_trailing_junk);
if (!parse_as_hex_float && !isDigit(*current, 16)) {
return junk_string_value_;
}
bool result_is_junk;
double result = RadixStringToIeee<4>(¤t,
end,
sign,
separator_,
parse_as_hex_float,
allow_trailing_junk,
junk_string_value_,
read_as_double,
&result_is_junk);
if (!result_is_junk) {
if (allow_trailing_spaces) AdvanceToNonspace(¤t, end);
*processed_characters_count = static_cast<int>(current - input);
}
return result;
}
// Ignore leading zeros in the integer part.
while (*current == '0') {
if (Advance(¤t, separator_, 10, end)) {
*processed_characters_count = static_cast<int>(current - input);
return SignedZero(sign);
}
}
}
bool octal = leading_zero && (flags_ & ALLOW_OCTALS) != 0;
// The longest form of simplified number is: "-<significant digits>.1eXXX\0".
const int kBufferSize = kMaxSignificantDigits + 10;
DOUBLE_CONVERSION_STACK_UNINITIALIZED char
buffer[kBufferSize]; // NOLINT: size is known at compile time.
int buffer_pos = 0;
// Copy significant digits of the integer part (if any) to the buffer.
while (*current >= '0' && *current <= '9') {
if (significant_digits < kMaxSignificantDigits) {
DOUBLE_CONVERSION_ASSERT(buffer_pos < kBufferSize);
buffer[buffer_pos++] = static_cast<char>(*current);
significant_digits++;
// Will later check if it's an octal in the buffer.
} else {
insignificant_digits++; // Move the digit into the exponential part.
nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
}
octal = octal && *current < '8';
if (Advance(¤t, separator_, 10, end)) goto parsing_done;
}
if (significant_digits == 0) {
octal = false;
}
if (*current == '.') {
if (octal && !allow_trailing_junk) return junk_string_value_;
if (octal) goto parsing_done;
if (Advance(¤t, separator_, 10, end)) {
if (significant_digits == 0 && !leading_zero) {
return junk_string_value_;
} else {
goto parsing_done;
}
}
if (significant_digits == 0) {
// octal = false;
// Integer part consists of 0 or is absent. Significant digits start after
// leading zeros (if any).
while (*current == '0') {
if (Advance(¤t, separator_, 10, end)) {
*processed_characters_count = static_cast<int>(current - input);
return SignedZero(sign);
}
exponent--; // Move this 0 into the exponent.
}
}
// There is a fractional part.
// We don't emit a '.', but adjust the exponent instead.
while (*current >= '0' && *current <= '9') {
if (significant_digits < kMaxSignificantDigits) {
DOUBLE_CONVERSION_ASSERT(buffer_pos < kBufferSize);
buffer[buffer_pos++] = static_cast<char>(*current);
significant_digits++;
exponent--;
} else {
// Ignore insignificant digits in the fractional part.
nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
}
if (Advance(¤t, separator_, 10, end)) goto parsing_done;
}
}
if (!leading_zero && exponent == 0 && significant_digits == 0) {
// If leading_zeros is true then the string contains zeros.
// If exponent < 0 then string was [+-]\.0*...
// If significant_digits != 0 the string is not equal to 0.
// Otherwise there are no digits in the string.
return junk_string_value_;
}
// Parse exponential part.
if (*current == 'e' || *current == 'E') {
if (octal && !allow_trailing_junk) return junk_string_value_;
if (octal) goto parsing_done;
Iterator junk_begin = current;
++current;
if (current == end) {
if (allow_trailing_junk) {
current = junk_begin;
goto parsing_done;
} else {
return junk_string_value_;
}
}
char exponen_sign = '+';
if (*current == '+' || *current == '-') {
exponen_sign = static_cast<char>(*current);
++current;
if (current == end) {
if (allow_trailing_junk) {
current = junk_begin;
goto parsing_done;
} else {
return junk_string_value_;
}
}
}
if (current == end || *current < '0' || *current > '9') {
if (allow_trailing_junk) {
current = junk_begin;
goto parsing_done;
} else {
return junk_string_value_;
}
}
const int max_exponent = INT_MAX / 2;
DOUBLE_CONVERSION_ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2);
int num = 0;
do {
// Check overflow.
int digit = *current - '0';
if (num >= max_exponent / 10
&& !(num == max_exponent / 10 && digit <= max_exponent % 10)) {
num = max_exponent;
} else {
num = num * 10 + digit;
}
++current;
} while (current != end && *current >= '0' && *current <= '9');
exponent += (exponen_sign == '-' ? -num : num);
}
if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
return junk_string_value_;
}
if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) {
return junk_string_value_;
}
if (allow_trailing_spaces) {
AdvanceToNonspace(¤t, end);
}
parsing_done:
exponent += insignificant_digits;
if (octal) {
double result;
bool result_is_junk;
char* start = buffer;
result = RadixStringToIeee<3>(&start,
buffer + buffer_pos,
sign,
separator_,
false, // Don't parse as hex_float.
allow_trailing_junk,
junk_string_value_,
read_as_double,
&result_is_junk);
DOUBLE_CONVERSION_ASSERT(!result_is_junk);
*processed_characters_count = static_cast<int>(current - input);
return result;
}
if (nonzero_digit_dropped) {
buffer[buffer_pos++] = '1';
exponent--;
}
DOUBLE_CONVERSION_ASSERT(buffer_pos < kBufferSize);
buffer[buffer_pos] = '\0';
// Code above ensures there are no leading zeros and the buffer has fewer than
// kMaxSignificantDecimalDigits characters. Trim trailing zeros.
Vector<const char> chars(buffer, buffer_pos);
chars = TrimTrailingZeros(chars);
exponent += buffer_pos - chars.length();
double converted;
if (read_as_double) {
converted = StrtodTrimmed(chars, exponent);
} else {
converted = StrtofTrimmed(chars, exponent);
}
*processed_characters_count = static_cast<int>(current - input);
return sign? -converted: converted;
}
double StringToDoubleConverter::StringToDouble(
const char* buffer,
int length,
int* processed_characters_count) const {
return StringToIeee(buffer, length, true, processed_characters_count);
}
double StringToDoubleConverter::StringToDouble(
const uc16* buffer,
int length,
int* processed_characters_count) const {
return StringToIeee(buffer, length, true, processed_characters_count);
}
float StringToDoubleConverter::StringToFloat(
const char* buffer,
int length,
int* processed_characters_count) const {
return static_cast<float>(StringToIeee(buffer, length, false,
processed_characters_count));
}
float StringToDoubleConverter::StringToFloat(
const uc16* buffer,
int length,
int* processed_characters_count) const {
return static_cast<float>(StringToIeee(buffer, length, false,
processed_characters_count));
}
template<>
double StringToDoubleConverter::StringTo<double>(
const char* buffer,
int length,
int* processed_characters_count) const {
return StringToDouble(buffer, length, processed_characters_count);
}
template<>
float StringToDoubleConverter::StringTo<float>(
const char* buffer,
int length,
int* processed_characters_count) const {
return StringToFloat(buffer, length, processed_characters_count);
}
template<>
double StringToDoubleConverter::StringTo<double>(
const uc16* buffer,
int length,
int* processed_characters_count) const {
return StringToDouble(buffer, length, processed_characters_count);
}
template<>
float StringToDoubleConverter::StringTo<float>(
const uc16* buffer,
int length,
int* processed_characters_count) const {
return StringToFloat(buffer, length, processed_characters_count);
}
} // namespace double_conversion
// ICU PATCH: Close ICU namespace
U_NAMESPACE_END
#endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING
|