1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
|
// © 2017 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
#include <_foundation_unicode/utypes.h>
#if !UCONFIG_NO_FORMATTING
#ifndef __NUMBER_DECIMALQUANTITY_H__
#define __NUMBER_DECIMALQUANTITY_H__
#include <cstdint>
#include <_foundation_unicode/umachine.h>
#include "standardplural.h"
#include "plurrule_impl.h"
#include "number_types.h"
U_NAMESPACE_BEGIN namespace number {
namespace impl {
// Forward-declare (maybe don't want number_utils.h included here):
class DecNum;
/**
* A class for representing a number to be processed by the decimal formatting pipeline. Includes
* methods for rounding, plural rules, and decimal digit extraction.
*
* <p>By design, this is NOT IMMUTABLE and NOT THREAD SAFE. It is intended to be an intermediate
* object holding state during a pass through the decimal formatting pipeline.
*
* <p>Represents numbers and digit display properties using Binary Coded Decimal (BCD).
*
* <p>Java has multiple implementations for testing, but C++ has only one implementation.
*/
class U_I18N_API DecimalQuantity : public IFixedDecimal, public UMemory {
public:
/** Copy constructor. */
DecimalQuantity(const DecimalQuantity &other);
/** Move constructor. */
DecimalQuantity(DecimalQuantity &&src) noexcept;
DecimalQuantity();
~DecimalQuantity() override;
/**
* Sets this instance to be equal to another instance.
*
* @param other The instance to copy from.
*/
DecimalQuantity &operator=(const DecimalQuantity &other);
/** Move assignment */
DecimalQuantity &operator=(DecimalQuantity&& src) noexcept;
/**
* Sets the minimum integer digits that this {@link DecimalQuantity} should generate.
* This method does not perform rounding.
*
* @param minInt The minimum number of integer digits.
*/
void setMinInteger(int32_t minInt);
/**
* Sets the minimum fraction digits that this {@link DecimalQuantity} should generate.
* This method does not perform rounding.
*
* @param minFrac The minimum number of fraction digits.
*/
void setMinFraction(int32_t minFrac);
/**
* Truncates digits from the upper magnitude of the number in order to satisfy the
* specified maximum number of integer digits.
*
* @param maxInt The maximum number of integer digits.
*/
void applyMaxInteger(int32_t maxInt);
/**
* Rounds the number to a specified interval, such as 0.05.
*
* <p>If rounding to a power of ten, use the more efficient {@link #roundToMagnitude} instead.
*
* @param increment The increment to which to round.
* @param magnitude The power of 10 to which to round.
* @param roundingMode The {@link RoundingMode} to use if rounding is necessary.
*/
void roundToIncrement(
uint64_t increment,
digits_t magnitude,
RoundingMode roundingMode,
UErrorCode& status);
/** Removes all fraction digits. */
void truncate();
/**
* Rounds the number to the nearest multiple of 5 at the specified magnitude.
* For example, when magnitude == -2, this performs rounding to the nearest 0.05.
*
* @param magnitude The magnitude at which the digit should become either 0 or 5.
* @param roundingMode Rounding strategy.
*/
void roundToNickel(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status);
/**
* Rounds the number to a specified magnitude (power of ten).
*
* @param roundingMagnitude The power of ten to which to round. For example, a value of -2 will
* round to 2 decimal places.
* @param roundingMode The {@link RoundingMode} to use if rounding is necessary.
*/
void roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status);
/**
* Rounds the number to an infinite number of decimal points. This has no effect except for
* forcing the double in {@link DecimalQuantity_AbstractBCD} to adopt its exact representation.
*/
void roundToInfinity();
/**
* Multiply the internal value. Uses decNumber.
*
* @param multiplicand The value by which to multiply.
*/
void multiplyBy(const DecNum& multiplicand, UErrorCode& status);
/**
* Divide the internal value. Uses decNumber.
*
* @param multiplicand The value by which to multiply.
*/
void divideBy(const DecNum& divisor, UErrorCode& status);
/** Flips the sign from positive to negative and back. */
void negate();
/**
* Scales the number by a power of ten. For example, if the value is currently "1234.56", calling
* this method with delta=-3 will change the value to "1.23456".
*
* @param delta The number of magnitudes of ten to change by.
* @return true if integer overflow occurred; false otherwise.
*/
bool adjustMagnitude(int32_t delta);
/**
* Scales the number such that the least significant nonzero digit is at magnitude 0.
*
* @return The previous magnitude of the least significant digit.
*/
int32_t adjustToZeroScale();
/**
* @return The power of ten corresponding to the most significant nonzero digit.
* The number must not be zero.
*/
int32_t getMagnitude() const;
/**
* @return The value of the (suppressed) exponent after the number has been
* put into a notation with exponents (ex: compact, scientific). Ex: given
* the number 1000 as "1K" / "1E3", the return value will be 3 (positive).
*/
int32_t getExponent() const;
/**
* Adjusts the value for the (suppressed) exponent stored when using
* notation with exponents (ex: compact, scientific).
*
* <p>Adjusting the exponent is decoupled from {@link #adjustMagnitude} in
* order to allow flexibility for {@link StandardPlural} to be selected in
* formatting (ex: for compact notation) either with or without the exponent
* applied in the value of the number.
* @param delta
* The value to adjust the exponent by.
*/
void adjustExponent(int32_t delta);
/**
* Resets the DecimalQuantity to the value before adjustMagnitude and adjustExponent.
*/
void resetExponent();
/**
* @return Whether the value represented by this {@link DecimalQuantity} is
* zero, infinity, or NaN.
*/
bool isZeroish() const;
/** @return Whether the value represented by this {@link DecimalQuantity} is less than zero. */
bool isNegative() const;
/** @return The appropriate value from the Signum enum. */
Signum signum() const;
/** @return Whether the value represented by this {@link DecimalQuantity} is infinite. */
bool isInfinite() const override;
/** @return Whether the value represented by this {@link DecimalQuantity} is not a number. */
bool isNaN() const override;
/**
* Note: this method incorporates the value of {@code exponent}
* (for cases such as compact notation) to return the proper long value
* represented by the result.
* @param truncateIfOverflow if false and the number does NOT fit, fails with an assertion error.
*/
int64_t toLong(bool truncateIfOverflow = false) const;
/**
* Note: this method incorporates the value of {@code exponent}
* (for cases such as compact notation) to return the proper long value
* represented by the result.
*/
uint64_t toFractionLong(bool includeTrailingZeros) const;
/**
* Returns whether or not a Long can fully represent the value stored in this DecimalQuantity.
* @param ignoreFraction if true, silently ignore digits after the decimal place.
*/
bool fitsInLong(bool ignoreFraction = false) const;
/** @return The value contained in this {@link DecimalQuantity} approximated as a double. */
double toDouble() const;
/** Computes a DecNum representation of this DecimalQuantity, saving it to the output parameter. */
DecNum& toDecNum(DecNum& output, UErrorCode& status) const;
DecimalQuantity &setToInt(int32_t n);
DecimalQuantity &setToLong(int64_t n);
DecimalQuantity &setToDouble(double n);
/**
* Produces a DecimalQuantity that was parsed from a string by the decNumber
* C Library.
*
* decNumber is similar to BigDecimal in Java, and supports parsing strings
* such as "123.456621E+40".
*/
DecimalQuantity &setToDecNumber(StringPiece n, UErrorCode& status);
/** Internal method if the caller already has a DecNum. */
DecimalQuantity &setToDecNum(const DecNum& n, UErrorCode& status);
/** Returns a DecimalQuantity after parsing the input string. */
static DecimalQuantity fromExponentString(UnicodeString n, UErrorCode& status);
/**
* Appends a digit, optionally with one or more leading zeros, to the end of the value represented
* by this DecimalQuantity.
*
* <p>The primary use of this method is to construct numbers during a parsing loop. It allows
* parsing to take advantage of the digit list infrastructure primarily designed for formatting.
*
* @param value The digit to append.
* @param leadingZeros The number of zeros to append before the digit. For example, if the value
* in this instance starts as 12.3, and you append a 4 with 1 leading zero, the value becomes
* 12.304.
* @param appendAsInteger If true, increase the magnitude of existing digits to make room for the
* new digit. If false, append to the end like a fraction digit. If true, there must not be
* any fraction digits already in the number.
* @internal
* @deprecated This API is ICU internal only.
*/
void appendDigit(int8_t value, int32_t leadingZeros, bool appendAsInteger);
double getPluralOperand(PluralOperand operand) const override;
bool hasIntegerValue() const override;
/**
* Gets the digit at the specified magnitude. For example, if the represented number is 12.3,
* getDigit(-1) returns 3, since 3 is the digit corresponding to 10^-1.
*
* @param magnitude The magnitude of the digit.
* @return The digit at the specified magnitude.
*/
int8_t getDigit(int32_t magnitude) const;
/**
* Gets the largest power of ten that needs to be displayed. The value returned by this function
* will be bounded between minInt and maxInt.
*
* @return The highest-magnitude digit to be displayed.
*/
int32_t getUpperDisplayMagnitude() const;
/**
* Gets the smallest power of ten that needs to be displayed. The value returned by this function
* will be bounded between -minFrac and -maxFrac.
*
* @return The lowest-magnitude digit to be displayed.
*/
int32_t getLowerDisplayMagnitude() const;
int32_t fractionCount() const;
int32_t fractionCountWithoutTrailingZeros() const;
void clear();
/** This method is for internal testing only. */
uint64_t getPositionFingerprint() const;
// /**
// * If the given {@link FieldPosition} is a {@link UFieldPosition}, populates it with the fraction
// * length and fraction long value. If the argument is not a {@link UFieldPosition}, nothing
// * happens.
// *
// * @param fp The {@link UFieldPosition} to populate.
// */
// void populateUFieldPosition(FieldPosition fp);
/**
* Checks whether the bytes stored in this instance are all valid. For internal unit testing only.
*
* @return An error message if this instance is invalid, or null if this instance is healthy.
*/
const char16_t* checkHealth() const;
UnicodeString toString() const;
/** Returns the string in standard exponential notation. */
UnicodeString toScientificString() const;
/** Returns the string without exponential notation. Slightly slower than toScientificString(). */
UnicodeString toPlainString() const;
/** Returns the string using ASCII digits and using exponential notation for non-zero
exponents, following the UTS 35 specification for plural rule samples. */
UnicodeString toExponentString() const;
/** Visible for testing */
inline bool isUsingBytes() { return usingBytes; }
/** Visible for testing */
inline bool isExplicitExactDouble() { return explicitExactDouble; }
bool operator==(const DecimalQuantity& other) const;
inline bool operator!=(const DecimalQuantity& other) const {
return !(*this == other);
}
/**
* Bogus flag for when a DecimalQuantity is stored on the stack.
*/
bool bogus = false;
private:
/**
* The power of ten corresponding to the least significant digit in the BCD. For example, if this
* object represents the number "3.14", the BCD will be "0x314" and the scale will be -2.
*
* <p>Note that in {@link java.math.BigDecimal}, the scale is defined differently: the number of
* digits after the decimal place, which is the negative of our definition of scale.
*/
int32_t scale;
/**
* The number of digits in the BCD. For example, "1007" has BCD "0x1007" and precision 4. The
* maximum precision is 16 since a long can hold only 16 digits.
*
* <p>This value must be re-calculated whenever the value in bcd changes by using {@link
* #computePrecisionAndCompact()}.
*/
int32_t precision;
/**
* A bitmask of properties relating to the number represented by this object.
*
* @see #NEGATIVE_FLAG
* @see #INFINITY_FLAG
* @see #NAN_FLAG
*/
int8_t flags;
// The following three fields relate to the double-to-ascii fast path algorithm.
// When a double is given to DecimalQuantityBCD, it is converted to using a fast algorithm. The
// fast algorithm guarantees correctness to only the first ~12 digits of the double. The process
// of rounding the number ensures that the converted digits are correct, falling back to a slow-
// path algorithm if required. Therefore, if a DecimalQuantity is constructed from a double, it
// is *required* that roundToMagnitude(), roundToIncrement(), or roundToInfinity() is called. If
// you don't round, assertions will fail in certain other methods if you try calling them.
/**
* Whether the value in the BCD comes from the double fast path without having been rounded to
* ensure correctness
*/
UBool isApproximate;
/**
* The original number provided by the user and which is represented in BCD. Used when we need to
* re-compute the BCD for an exact double representation.
*/
double origDouble;
/**
* The change in magnitude relative to the original double. Used when we need to re-compute the
* BCD for an exact double representation.
*/
int32_t origDelta;
// Positions to keep track of leading and trailing zeros.
// lReqPos is the magnitude of the first required leading zero.
// rReqPos is the magnitude of the last required trailing zero.
int32_t lReqPos = 0;
int32_t rReqPos = 0;
// The value of the (suppressed) exponent after the number has been put into
// a notation with exponents (ex: compact, scientific).
int32_t exponent = 0;
/**
* The BCD of the 16 digits of the number represented by this object. Every 4 bits of the long map
* to one digit. For example, the number "12345" in BCD is "0x12345".
*
* <p>Whenever bcd changes internally, {@link #compact()} must be called, except in special cases
* like setting the digit to zero.
*/
union {
struct {
int8_t *ptr;
int32_t len;
} bcdBytes;
uint64_t bcdLong;
} fBCD;
bool usingBytes = false;
/**
* Whether this {@link DecimalQuantity} has been explicitly converted to an exact double. true if
* backed by a double that was explicitly converted via convertToAccurateDouble; false otherwise.
* Used for testing.
*/
bool explicitExactDouble = false;
void roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, bool nickel, UErrorCode& status);
/**
* Returns a single digit from the BCD list. No internal state is changed by calling this method.
*
* @param position The position of the digit to pop, counted in BCD units from the least
* significant digit. If outside the range supported by the implementation, zero is returned.
* @return The digit at the specified location.
*/
int8_t getDigitPos(int32_t position) const;
/**
* Sets the digit in the BCD list. This method only sets the digit; it is the caller's
* responsibility to call {@link #compact} after setting the digit, and to ensure
* that the precision field is updated to reflect the correct number of digits if a
* nonzero digit is added to the decimal.
*
* @param position The position of the digit to pop, counted in BCD units from the least
* significant digit. If outside the range supported by the implementation, an AssertionError
* is thrown.
* @param value The digit to set at the specified location.
*/
void setDigitPos(int32_t position, int8_t value);
/**
* Adds zeros to the end of the BCD list. This will result in an invalid BCD representation; it is
* the caller's responsibility to do further manipulation and then call {@link #compact}.
*
* @param numDigits The number of zeros to add.
*/
void shiftLeft(int32_t numDigits);
/**
* Directly removes digits from the end of the BCD list.
* Updates the scale and precision.
*
* CAUTION: it is the caller's responsibility to call {@link #compact} after this method.
*/
void shiftRight(int32_t numDigits);
/**
* Directly removes digits from the front of the BCD list.
* Updates precision.
*
* CAUTION: it is the caller's responsibility to call {@link #compact} after this method.
*/
void popFromLeft(int32_t numDigits);
/**
* Sets the internal representation to zero. Clears any values stored in scale, precision,
* hasDouble, origDouble, origDelta, exponent, and BCD data.
*/
void setBcdToZero();
/**
* Sets the internal BCD state to represent the value in the given int. The int is guaranteed to
* be either positive. The internal state is guaranteed to be empty when this method is called.
*
* @param n The value to consume.
*/
void readIntToBcd(int32_t n);
/**
* Sets the internal BCD state to represent the value in the given long. The long is guaranteed to
* be either positive. The internal state is guaranteed to be empty when this method is called.
*
* @param n The value to consume.
*/
void readLongToBcd(int64_t n);
void readDecNumberToBcd(const DecNum& dn);
void readDoubleConversionToBcd(const char* buffer, int32_t length, int32_t point);
void copyFieldsFrom(const DecimalQuantity& other);
void copyBcdFrom(const DecimalQuantity &other);
void moveBcdFrom(DecimalQuantity& src);
/**
* Removes trailing zeros from the BCD (adjusting the scale as required) and then computes the
* precision. The precision is the number of digits in the number up through the greatest nonzero
* digit.
*
* <p>This method must always be called when bcd changes in order for assumptions to be correct in
* methods like {@link #fractionCount()}.
*/
void compact();
void _setToInt(int32_t n);
void _setToLong(int64_t n);
void _setToDoubleFast(double n);
void _setToDecNum(const DecNum& dn, UErrorCode& status);
static int32_t getVisibleFractionCount(UnicodeString value);
void convertToAccurateDouble();
/** Ensure that a byte array of at least 40 digits is allocated. */
void ensureCapacity();
void ensureCapacity(int32_t capacity);
/** Switches the internal storage mechanism between the 64-bit long and the byte array. */
void switchStorage();
};
} // namespace impl
} // namespace number
U_NAMESPACE_END
#endif //__NUMBER_DECIMALQUANTITY_H__
#endif /* #if !UCONFIG_NO_FORMATTING */
|