1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
|
// © 2017 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
#include <_foundation_unicode/utypes.h>
#if !UCONFIG_NO_FORMATTING
#include "charstr.h"
#include "uassert.h"
#include <_foundation_unicode/numberformatter.h>
#include "number_types.h"
#include "number_decimalquantity.h"
#include "double-conversion.h"
#include "number_roundingutils.h"
#include "number_skeletons.h"
#include "number_decnum.h"
#include "putilimp.h"
#include "string_segment.h"
using namespace icu;
using namespace icu::number;
using namespace icu::number::impl;
using double_conversion::DoubleToStringConverter;
using icu::StringSegment;
void number::impl::parseIncrementOption(const StringSegment &segment,
Precision &outPrecision,
UErrorCode &status) {
// Need to do char <-> char16_t conversion...
U_ASSERT(U_SUCCESS(status));
CharString buffer;
SKELETON_UCHAR_TO_CHAR(buffer, segment.toTempUnicodeString(), 0, segment.length(), status);
// Utilize DecimalQuantity/decNumber to parse this for us.
DecimalQuantity dq;
UErrorCode localStatus = U_ZERO_ERROR;
dq.setToDecNumber({buffer.data(), buffer.length()}, localStatus);
if (U_FAILURE(localStatus) || dq.isNaN() || dq.isInfinite()) {
// throw new SkeletonSyntaxException("Invalid rounding increment", segment, e);
status = U_NUMBER_SKELETON_SYNTAX_ERROR;
return;
}
// Now we break apart the number into a mantissa and exponent (magnitude).
int32_t magnitude = dq.adjustToZeroScale();
// setToDecNumber drops trailing zeros, so we search for the '.' manually.
for (int32_t i=0; i<buffer.length(); i++) {
if (buffer[i] == '.') {
int32_t newMagnitude = i - buffer.length() + 1;
dq.adjustMagnitude(magnitude - newMagnitude);
magnitude = newMagnitude;
break;
}
}
outPrecision = Precision::incrementExact(dq.toLong(), magnitude);
}
namespace {
int32_t getRoundingMagnitudeFraction(int maxFrac) {
if (maxFrac == -1) {
return INT32_MIN;
}
return -maxFrac;
}
int32_t getRoundingMagnitudeSignificant(const DecimalQuantity &value, int maxSig) {
if (maxSig == -1) {
return INT32_MIN;
}
int magnitude = value.isZeroish() ? 0 : value.getMagnitude();
return magnitude - maxSig + 1;
}
int32_t getDisplayMagnitudeFraction(int minFrac) {
if (minFrac == 0) {
return INT32_MAX;
}
return -minFrac;
}
int32_t getDisplayMagnitudeSignificant(const DecimalQuantity &value, int minSig) {
int magnitude = value.isZeroish() ? 0 : value.getMagnitude();
return magnitude - minSig + 1;
}
}
MultiplierProducer::~MultiplierProducer() = default;
Precision Precision::unlimited() {
return Precision(RND_NONE, {});
}
FractionPrecision Precision::integer() {
return constructFraction(0, 0);
}
FractionPrecision Precision::fixedFraction(int32_t minMaxFractionPlaces) {
if (minMaxFractionPlaces >= 0 && minMaxFractionPlaces <= kMaxIntFracSig) {
return constructFraction(minMaxFractionPlaces, minMaxFractionPlaces);
} else {
return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
}
}
FractionPrecision Precision::minFraction(int32_t minFractionPlaces) {
if (minFractionPlaces >= 0 && minFractionPlaces <= kMaxIntFracSig) {
return constructFraction(minFractionPlaces, -1);
} else {
return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
}
}
FractionPrecision Precision::maxFraction(int32_t maxFractionPlaces) {
if (maxFractionPlaces >= 0 && maxFractionPlaces <= kMaxIntFracSig) {
return constructFraction(0, maxFractionPlaces);
} else {
return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
}
}
FractionPrecision Precision::minMaxFraction(int32_t minFractionPlaces, int32_t maxFractionPlaces) {
if (minFractionPlaces >= 0 && maxFractionPlaces <= kMaxIntFracSig &&
minFractionPlaces <= maxFractionPlaces) {
return constructFraction(minFractionPlaces, maxFractionPlaces);
} else {
return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
}
}
Precision Precision::fixedSignificantDigits(int32_t minMaxSignificantDigits) {
if (minMaxSignificantDigits >= 1 && minMaxSignificantDigits <= kMaxIntFracSig) {
return constructSignificant(minMaxSignificantDigits, minMaxSignificantDigits);
} else {
return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
}
}
Precision Precision::minSignificantDigits(int32_t minSignificantDigits) {
if (minSignificantDigits >= 1 && minSignificantDigits <= kMaxIntFracSig) {
return constructSignificant(minSignificantDigits, -1);
} else {
return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
}
}
Precision Precision::maxSignificantDigits(int32_t maxSignificantDigits) {
if (maxSignificantDigits >= 1 && maxSignificantDigits <= kMaxIntFracSig) {
return constructSignificant(1, maxSignificantDigits);
} else {
return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
}
}
Precision Precision::minMaxSignificantDigits(int32_t minSignificantDigits, int32_t maxSignificantDigits) {
if (minSignificantDigits >= 1 && maxSignificantDigits <= kMaxIntFracSig &&
minSignificantDigits <= maxSignificantDigits) {
return constructSignificant(minSignificantDigits, maxSignificantDigits);
} else {
return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
}
}
Precision Precision::trailingZeroDisplay(UNumberTrailingZeroDisplay trailingZeroDisplay) const {
Precision result(*this); // copy constructor
result.fTrailingZeroDisplay = trailingZeroDisplay;
return result;
}
IncrementPrecision Precision::increment(double roundingIncrement) {
if (roundingIncrement > 0.0) {
DecimalQuantity dq;
dq.setToDouble(roundingIncrement);
dq.roundToInfinity();
int32_t magnitude = dq.adjustToZeroScale();
return constructIncrement(dq.toLong(), magnitude);
} else {
return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
}
}
IncrementPrecision Precision::incrementExact(uint64_t mantissa, int16_t magnitude) {
if (mantissa > 0.0) {
return constructIncrement(mantissa, magnitude);
} else {
return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
}
}
CurrencyPrecision Precision::currency(UCurrencyUsage currencyUsage) {
return constructCurrency(currencyUsage);
}
Precision FractionPrecision::withSignificantDigits(
int32_t minSignificantDigits,
int32_t maxSignificantDigits,
UNumberRoundingPriority priority) const {
if (fType == RND_ERROR) { return *this; } // no-op in error state
if (minSignificantDigits >= 1 &&
maxSignificantDigits >= minSignificantDigits &&
maxSignificantDigits <= kMaxIntFracSig) {
return constructFractionSignificant(
*this,
minSignificantDigits,
maxSignificantDigits,
priority,
false);
} else {
return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
}
}
Precision FractionPrecision::withMinDigits(int32_t minSignificantDigits) const {
if (fType == RND_ERROR) { return *this; } // no-op in error state
if (minSignificantDigits >= 1 && minSignificantDigits <= kMaxIntFracSig) {
return constructFractionSignificant(
*this,
1,
minSignificantDigits,
UNUM_ROUNDING_PRIORITY_RELAXED,
true);
} else {
return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
}
}
Precision FractionPrecision::withMaxDigits(int32_t maxSignificantDigits) const {
if (fType == RND_ERROR) { return *this; } // no-op in error state
if (maxSignificantDigits >= 1 && maxSignificantDigits <= kMaxIntFracSig) {
return constructFractionSignificant(*this,
1,
maxSignificantDigits,
UNUM_ROUNDING_PRIORITY_STRICT,
true);
} else {
return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
}
}
// Private method on base class
Precision Precision::withCurrency(const CurrencyUnit ¤cy, UErrorCode &status) const {
if (fType == RND_ERROR) { return *this; } // no-op in error state
U_ASSERT(fType == RND_CURRENCY);
const char16_t *isoCode = currency.getISOCurrency();
double increment = ucurr_getRoundingIncrementForUsage(isoCode, fUnion.currencyUsage, &status);
int32_t minMaxFrac = ucurr_getDefaultFractionDigitsForUsage(
isoCode, fUnion.currencyUsage, &status);
Precision retval = (increment != 0.0)
? Precision::increment(increment)
: static_cast<Precision>(Precision::fixedFraction(minMaxFrac));
retval.fTrailingZeroDisplay = fTrailingZeroDisplay;
return retval;
}
// Public method on CurrencyPrecision subclass
Precision CurrencyPrecision::withCurrency(const CurrencyUnit ¤cy) const {
UErrorCode localStatus = U_ZERO_ERROR;
Precision result = Precision::withCurrency(currency, localStatus);
if (U_FAILURE(localStatus)) {
return {localStatus};
}
return result;
}
Precision IncrementPrecision::withMinFraction(int32_t minFrac) const {
if (fType == RND_ERROR) { return *this; } // no-op in error state
if (minFrac >= 0 && minFrac <= kMaxIntFracSig) {
IncrementPrecision copy = *this;
copy.fUnion.increment.fMinFrac = minFrac;
return copy;
} else {
return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
}
}
FractionPrecision Precision::constructFraction(int32_t minFrac, int32_t maxFrac) {
FractionSignificantSettings settings;
settings.fMinFrac = static_cast<digits_t>(minFrac);
settings.fMaxFrac = static_cast<digits_t>(maxFrac);
settings.fMinSig = -1;
settings.fMaxSig = -1;
PrecisionUnion union_;
union_.fracSig = settings;
return {RND_FRACTION, union_};
}
Precision Precision::constructSignificant(int32_t minSig, int32_t maxSig) {
FractionSignificantSettings settings;
settings.fMinFrac = -1;
settings.fMaxFrac = -1;
settings.fMinSig = static_cast<digits_t>(minSig);
settings.fMaxSig = static_cast<digits_t>(maxSig);
PrecisionUnion union_;
union_.fracSig = settings;
return {RND_SIGNIFICANT, union_};
}
#if APPLE_ICU_CHANGES
// rdar://52538227 8e26bee05d.. New Precision type combining roundingIncr and sig digits; use when both are set
// rdar://70367682 #163 dab0491810.. Integrate open-source ICU 68.2 into Apple ICU sources
Precision Precision::constructIncrementSignificant(double increment, int32_t minSig, int32_t maxSig) { // Apple rdar://52538227
IncrementSignificantSettings settings;
settings.fIncrement = increment;
settings.fMinSig = static_cast<digits_t>(minSig);
settings.fMaxSig = static_cast<digits_t>(maxSig);
PrecisionUnion union_;
union_.incrSig = settings;
return {RND_INCREMENT_SIGNIFICANT, union_};
}
#endif // APPLE_ICU_CHANGES
Precision
Precision::constructFractionSignificant(
const FractionPrecision &base,
int32_t minSig,
int32_t maxSig,
UNumberRoundingPriority priority,
bool retain) {
FractionSignificantSettings settings = base.fUnion.fracSig;
settings.fMinSig = static_cast<digits_t>(minSig);
settings.fMaxSig = static_cast<digits_t>(maxSig);
settings.fPriority = priority;
settings.fRetain = retain;
PrecisionUnion union_;
union_.fracSig = settings;
return {RND_FRACTION_SIGNIFICANT, union_};
}
IncrementPrecision Precision::constructIncrement(uint64_t increment, digits_t magnitude) {
IncrementSettings settings;
// Note: For number formatting, fIncrement is used for RND_INCREMENT but not
// RND_INCREMENT_ONE or RND_INCREMENT_FIVE. However, fIncrement is used in all
// three when constructing a skeleton.
settings.fIncrement = increment;
settings.fIncrementMagnitude = magnitude;
settings.fMinFrac = magnitude > 0 ? 0 : -magnitude;
PrecisionUnion union_;
union_.increment = settings;
if (increment == 1) {
// NOTE: In C++, we must return the correct value type with the correct union.
// It would be invalid to return a RND_FRACTION here because the methods on the
// IncrementPrecision type assume that the union is backed by increment data.
return {RND_INCREMENT_ONE, union_};
} else if (increment == 5) {
return {RND_INCREMENT_FIVE, union_};
} else {
return {RND_INCREMENT, union_};
}
}
CurrencyPrecision Precision::constructCurrency(UCurrencyUsage usage) {
PrecisionUnion union_;
union_.currencyUsage = usage;
return {RND_CURRENCY, union_};
}
RoundingImpl::RoundingImpl(const Precision& precision, UNumberFormatRoundingMode roundingMode,
const CurrencyUnit& currency, UErrorCode& status)
: fPrecision(precision), fRoundingMode(roundingMode), fPassThrough(false) {
if (precision.fType == Precision::RND_CURRENCY) {
fPrecision = precision.withCurrency(currency, status);
}
}
RoundingImpl RoundingImpl::passThrough() {
return {};
}
bool RoundingImpl::isSignificantDigits() const {
return fPrecision.fType == Precision::RND_SIGNIFICANT;
}
int32_t
RoundingImpl::chooseMultiplierAndApply(impl::DecimalQuantity &input, const impl::MultiplierProducer &producer,
UErrorCode &status) {
// Do not call this method with zero, NaN, or infinity.
U_ASSERT(!input.isZeroish());
// Perform the first attempt at rounding.
int magnitude = input.getMagnitude();
int multiplier = producer.getMultiplier(magnitude);
input.adjustMagnitude(multiplier);
apply(input, status);
// If the number rounded to zero, exit.
if (input.isZeroish() || U_FAILURE(status)) {
return multiplier;
}
// If the new magnitude after rounding is the same as it was before rounding, then we are done.
// This case applies to most numbers.
if (input.getMagnitude() == magnitude + multiplier) {
return multiplier;
}
// If the above case DIDN'T apply, then we have a case like 99.9 -> 100 or 999.9 -> 1000:
// The number rounded up to the next magnitude. Check if the multiplier changes; if it doesn't,
// we do not need to make any more adjustments.
int _multiplier = producer.getMultiplier(magnitude + 1);
if (multiplier == _multiplier) {
return multiplier;
}
// We have a case like 999.9 -> 1000, where the correct output is "1K", not "1000".
// Fix the magnitude and re-apply the rounding strategy.
input.adjustMagnitude(_multiplier - multiplier);
apply(input, status);
return _multiplier;
}
/** This is the method that contains the actual rounding logic. */
void RoundingImpl::apply(impl::DecimalQuantity &value, UErrorCode& status) const {
if (U_FAILURE(status)) {
return;
}
if (fPassThrough) {
return;
}
int32_t resolvedMinFraction = 0;
switch (fPrecision.fType) {
case Precision::RND_BOGUS:
case Precision::RND_ERROR:
// Errors should be caught before the apply() method is called
status = U_INTERNAL_PROGRAM_ERROR;
break;
case Precision::RND_NONE:
value.roundToInfinity();
break;
case Precision::RND_FRACTION:
value.roundToMagnitude(
getRoundingMagnitudeFraction(fPrecision.fUnion.fracSig.fMaxFrac),
fRoundingMode,
status);
resolvedMinFraction =
uprv_max(0, -getDisplayMagnitudeFraction(fPrecision.fUnion.fracSig.fMinFrac));
break;
case Precision::RND_SIGNIFICANT:
value.roundToMagnitude(
getRoundingMagnitudeSignificant(value, fPrecision.fUnion.fracSig.fMaxSig),
fRoundingMode,
status);
resolvedMinFraction =
uprv_max(0, -getDisplayMagnitudeSignificant(value, fPrecision.fUnion.fracSig.fMinSig));
// Make sure that digits are displayed on zero.
if (value.isZeroish() && fPrecision.fUnion.fracSig.fMinSig > 0) {
value.setMinInteger(1);
}
break;
case Precision::RND_FRACTION_SIGNIFICANT: {
// From ECMA-402:
/*
Let sResult be ToRawPrecision(...).
Let fResult be ToRawFixed(...).
If intlObj.[[RoundingType]] is morePrecision, then
If sResult.[[RoundingMagnitude]] ≤ fResult.[[RoundingMagnitude]], then
Let result be sResult.
Else,
Let result be fResult.
Else,
Assert: intlObj.[[RoundingType]] is lessPrecision.
If sResult.[[RoundingMagnitude]] ≤ fResult.[[RoundingMagnitude]], then
Let result be fResult.
Else,
Let result be sResult.
*/
int32_t roundingMag1 = getRoundingMagnitudeFraction(fPrecision.fUnion.fracSig.fMaxFrac);
int32_t roundingMag2 = getRoundingMagnitudeSignificant(value, fPrecision.fUnion.fracSig.fMaxSig);
int32_t roundingMag;
if (fPrecision.fUnion.fracSig.fPriority == UNUM_ROUNDING_PRIORITY_RELAXED) {
roundingMag = uprv_min(roundingMag1, roundingMag2);
} else {
roundingMag = uprv_max(roundingMag1, roundingMag2);
}
if (!value.isZeroish()) {
int32_t upperMag = value.getMagnitude();
value.roundToMagnitude(roundingMag, fRoundingMode, status);
if (!value.isZeroish() && value.getMagnitude() != upperMag && roundingMag1 == roundingMag2) {
// roundingMag2 needs to be the magnitude after rounding
roundingMag2 += 1;
}
}
int32_t displayMag1 = getDisplayMagnitudeFraction(fPrecision.fUnion.fracSig.fMinFrac);
int32_t displayMag2 = getDisplayMagnitudeSignificant(value, fPrecision.fUnion.fracSig.fMinSig);
int32_t displayMag;
if (fPrecision.fUnion.fracSig.fRetain) {
// withMinDigits + withMaxDigits
displayMag = uprv_min(displayMag1, displayMag2);
} else if (fPrecision.fUnion.fracSig.fPriority == UNUM_ROUNDING_PRIORITY_RELAXED) {
if (roundingMag2 <= roundingMag1) {
displayMag = displayMag2;
} else {
displayMag = displayMag1;
}
} else {
U_ASSERT(fPrecision.fUnion.fracSig.fPriority == UNUM_ROUNDING_PRIORITY_STRICT);
if (roundingMag2 <= roundingMag1) {
displayMag = displayMag1;
} else {
displayMag = displayMag2;
}
}
resolvedMinFraction = uprv_max(0, -displayMag);
break;
}
case Precision::RND_INCREMENT:
value.roundToIncrement(
fPrecision.fUnion.increment.fIncrement,
fPrecision.fUnion.increment.fIncrementMagnitude,
fRoundingMode,
status);
resolvedMinFraction = fPrecision.fUnion.increment.fMinFrac;
break;
case Precision::RND_INCREMENT_ONE:
value.roundToMagnitude(
fPrecision.fUnion.increment.fIncrementMagnitude,
fRoundingMode,
status);
resolvedMinFraction = fPrecision.fUnion.increment.fMinFrac;
break;
case Precision::RND_INCREMENT_FIVE:
value.roundToNickel(
fPrecision.fUnion.increment.fIncrementMagnitude,
fRoundingMode,
status);
resolvedMinFraction = fPrecision.fUnion.increment.fMinFrac;
break;
case Precision::RND_CURRENCY:
// Call .withCurrency() before .apply()!
UPRV_UNREACHABLE_EXIT;
#if APPLE_ICU_CHANGES
// rdar://52538227 8e26bee05d.. New Precision type combining roundingIncr and sig digits; use when both are set
// rdar://57899428 #48 ce5040ead2.. Integrate open-source ICU 66 preview + Apple locale adds
// rdar://97937093 #nn sub-TLF: Integrate ICU 72
case Precision::RND_INCREMENT_SIGNIFICANT:
// First round to increment (after converting it to uint64_t + magnitude)
{
DecimalQuantity dq;
dq.setToDouble(fPrecision.fUnion.incrSig.fIncrement);
dq.roundToInfinity();
int32_t magnitude = dq.adjustToZeroScale();
value.roundToIncrement(
dq.toLong(), magnitude,
fRoundingMode,
status);
}
// Then round to significant digits
value.roundToMagnitude(
getRoundingMagnitudeSignificant(value, fPrecision.fUnion.incrSig.fMaxSig),
fRoundingMode,
status);
value.setMinFraction(
uprv_max(0, -getDisplayMagnitudeSignificant(value, fPrecision.fUnion.incrSig.fMinSig)));
// Make sure that digits are displayed on zero.
if (value.isZeroish() && fPrecision.fUnion.incrSig.fMinSig > 0) {
value.setMinInteger(1);
}
break;
#endif // APPLE_ICU_CHANGES
default:
UPRV_UNREACHABLE_EXIT;
}
if (fPrecision.fTrailingZeroDisplay == UNUM_TRAILING_ZERO_AUTO ||
// PLURAL_OPERAND_T returns fraction digits as an integer
value.getPluralOperand(PLURAL_OPERAND_T) != 0) {
value.setMinFraction(resolvedMinFraction);
}
}
void RoundingImpl::apply(impl::DecimalQuantity &value, int32_t minInt, UErrorCode /*status*/) {
// This method is intended for the one specific purpose of helping print "00.000E0".
// Question: Is it useful to look at trailingZeroDisplay here?
U_ASSERT(isSignificantDigits());
U_ASSERT(value.isZeroish());
value.setMinFraction(fPrecision.fUnion.fracSig.fMinSig - minInt);
}
#endif /* #if !UCONFIG_NO_FORMATTING */
|