1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
// © 2020 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
#include <_foundation_unicode/utypes.h>
#if !UCONFIG_NO_FORMATTING
#include <cmath>
#include "cmemory.h"
#include "number_decimalquantity.h"
#include "number_roundingutils.h"
#include "putilimp.h"
#include "uarrsort.h"
#include "uassert.h"
#include <_foundation_unicode/fmtable.h>
#include <_foundation_unicode/localpointer.h>
#include <_foundation_unicode/measunit.h>
#include <_foundation_unicode/measure.h>
#include "units_complexconverter.h"
#include "units_converter.h"
U_NAMESPACE_BEGIN
namespace units {
ComplexUnitsConverter::ComplexUnitsConverter(const MeasureUnitImpl &targetUnit,
const ConversionRates &ratesInfo, UErrorCode &status)
: units_(targetUnit.extractIndividualUnitsWithIndices(status)) {
if (U_FAILURE(status)) {
return;
}
U_ASSERT(units_.length() != 0);
// Just borrowing a pointer to the instance
MeasureUnitImpl *biggestUnit = &units_[0]->unitImpl;
for (int32_t i = 1; i < units_.length(); i++) {
if (UnitsConverter::compareTwoUnits(units_[i]->unitImpl, *biggestUnit, ratesInfo, status) > 0 &&
U_SUCCESS(status)) {
biggestUnit = &units_[i]->unitImpl;
}
if (U_FAILURE(status)) {
return;
}
}
this->init(*biggestUnit, ratesInfo, status);
}
ComplexUnitsConverter::ComplexUnitsConverter(StringPiece inputUnitIdentifier,
StringPiece outputUnitsIdentifier, UErrorCode &status) {
if (U_FAILURE(status)) {
return;
}
MeasureUnitImpl inputUnit = MeasureUnitImpl::forIdentifier(inputUnitIdentifier, status);
MeasureUnitImpl outputUnits = MeasureUnitImpl::forIdentifier(outputUnitsIdentifier, status);
this->units_ = outputUnits.extractIndividualUnitsWithIndices(status);
U_ASSERT(units_.length() != 0);
this->init(inputUnit, ConversionRates(status), status);
}
#if APPLE_ICU_CHANGES
// rdar://
// The following is needed for Apple embedded (here we use
// 16 significant digits, 18 would be 2.22044604925031308E-16;
// value found by running a macOS tool to print DBL_EPSILON
#ifndef DBL_EPSILON
#define DBL_EPSILON (2.220446049250313E-16)
#endif
#endif // APPLE_ICU_CHANGES
ComplexUnitsConverter::ComplexUnitsConverter(const MeasureUnitImpl &inputUnit,
const MeasureUnitImpl &outputUnits,
const ConversionRates &ratesInfo, UErrorCode &status)
: units_(outputUnits.extractIndividualUnitsWithIndices(status)) {
if (U_FAILURE(status)) {
return;
}
U_ASSERT(units_.length() != 0);
this->init(inputUnit, ratesInfo, status);
}
void ComplexUnitsConverter::init(const MeasureUnitImpl &inputUnit,
const ConversionRates &ratesInfo,
UErrorCode &status) {
// Sorts units in descending order. Therefore, we return -1 if
// the left is bigger than right and so on.
auto descendingCompareUnits = [](const void *context, const void *left, const void *right) {
UErrorCode status = U_ZERO_ERROR;
const auto *leftPointer = static_cast<const MeasureUnitImplWithIndex *const *>(left);
const auto *rightPointer = static_cast<const MeasureUnitImplWithIndex *const *>(right);
// Multiply by -1 to sort in descending order
return (-1) * UnitsConverter::compareTwoUnits((**leftPointer).unitImpl, //
(**rightPointer).unitImpl, //
*static_cast<const ConversionRates *>(context), //
status);
};
uprv_sortArray(units_.getAlias(), //
units_.length(), //
sizeof units_[0], /* NOTE: we have already asserted that the units_ is not empty.*/ //
descendingCompareUnits, //
&ratesInfo, //
false, //
&status //
);
// In case the `outputUnits` are `UMEASURE_UNIT_MIXED` such as `foot+inch`. In this case we need more
// converters to convert from the `inputUnit` to the first unit in the `outputUnits`. Then, a
// converter from the first unit in the `outputUnits` to the second unit and so on.
// For Example:
// - inputUnit is `meter`
// - outputUnits is `foot+inch`
// - Therefore, we need to have two converters:
// 1. a converter from `meter` to `foot`
// 2. a converter from `foot` to `inch`
// - Therefore, if the input is `2 meter`:
// 1. convert `meter` to `foot` --> 2 meter to 6.56168 feet
// 2. convert the residual of 6.56168 feet (0.56168) to inches, which will be (6.74016
// inches)
// 3. then, the final result will be (6 feet and 6.74016 inches)
for (int i = 0, n = units_.length(); i < n; i++) {
if (i == 0) { // first element
unitsConverters_.emplaceBackAndCheckErrorCode(status, inputUnit, units_[i]->unitImpl,
ratesInfo, status);
} else {
unitsConverters_.emplaceBackAndCheckErrorCode(status, units_[i - 1]->unitImpl,
units_[i]->unitImpl, ratesInfo, status);
}
if (U_FAILURE(status)) {
return;
}
}
}
UBool ComplexUnitsConverter::greaterThanOrEqual(double quantity, double limit) const {
U_ASSERT(unitsConverters_.length() > 0);
// First converter converts to the biggest quantity.
double newQuantity = unitsConverters_[0]->convert(quantity);
return newQuantity >= limit;
}
MaybeStackVector<Measure> ComplexUnitsConverter::convert(double quantity,
icu::number::impl::RoundingImpl *rounder,
UErrorCode &status) const {
// TODO: return an error for "foot-and-foot"?
MaybeStackVector<Measure> result;
int sign = 1;
if (quantity < 0 && unitsConverters_.length() > 1) {
quantity *= -1;
sign = -1;
}
// For N converters:
// - the first converter converts from the input unit to the largest unit,
// - the following N-2 converters convert to bigger units for which we want integers,
// - the Nth converter (index N-1) converts to the smallest unit, for which
// we keep a double.
MaybeStackArray<int64_t, 5> intValues(unitsConverters_.length() - 1, status);
if (U_FAILURE(status)) {
return result;
}
uprv_memset(intValues.getAlias(), 0, (unitsConverters_.length() - 1) * sizeof(int64_t));
for (int i = 0, n = unitsConverters_.length(); i < n; ++i) {
quantity = (*unitsConverters_[i]).convert(quantity);
if (i < n - 1) {
// If quantity is at the limits of double's precision from an
// integer value, we take that integer value.
int64_t flooredQuantity;
if (uprv_isNaN(quantity)) {
// With clang on Linux: floor does not support NaN, resulting in
// a giant negative number. For now, we produce "0 feet, NaN
// inches". TODO(icu-units#131): revisit desired output.
flooredQuantity = 0;
} else {
flooredQuantity = static_cast<int64_t>(floor(quantity * (1 + DBL_EPSILON)));
}
intValues[i] = flooredQuantity;
// Keep the residual of the quantity.
// For example: `3.6 feet`, keep only `0.6 feet`
double remainder = quantity - flooredQuantity;
if (remainder < 0) {
// Because we nudged flooredQuantity up by eps, remainder may be
// negative: we must treat such a remainder as zero.
quantity = 0;
} else {
quantity = remainder;
}
}
}
applyRounder(intValues, quantity, rounder, status);
// Initialize empty result. We use a MaybeStackArray directly so we can
// assign pointers - for this privilege we have to take care of cleanup.
MaybeStackArray<Measure *, 4> tmpResult(unitsConverters_.length(), status);
if (U_FAILURE(status)) {
return result;
}
// Package values into temporary Measure instances in tmpResult:
for (int i = 0, n = unitsConverters_.length(); i < n; ++i) {
if (i < n - 1) {
Formattable formattableQuantity(intValues[i] * sign);
// Measure takes ownership of the MeasureUnit*
MeasureUnit *type = new MeasureUnit(units_[i]->unitImpl.copy(status).build(status));
tmpResult[units_[i]->index] = new Measure(formattableQuantity, type, status);
} else { // LAST ELEMENT
Formattable formattableQuantity(quantity * sign);
// Measure takes ownership of the MeasureUnit*
MeasureUnit *type = new MeasureUnit(units_[i]->unitImpl.copy(status).build(status));
tmpResult[units_[i]->index] = new Measure(formattableQuantity, type, status);
}
}
// Transfer values into result and return:
for(int32_t i = 0, n = unitsConverters_.length(); i < n; ++i) {
U_ASSERT(tmpResult[i] != nullptr);
result.emplaceBackAndCheckErrorCode(status, *tmpResult[i]);
delete tmpResult[i];
}
return result;
}
void ComplexUnitsConverter::applyRounder(MaybeStackArray<int64_t, 5> &intValues, double &quantity,
icu::number::impl::RoundingImpl *rounder,
UErrorCode &status) const {
if (uprv_isInfinite(quantity) || uprv_isNaN(quantity)) {
// Inf and NaN can't be rounded, and calculating `carry` below is known
// to fail on Gentoo on HPPA and OpenSUSE on riscv64. Nothing to do.
return;
}
if (rounder == nullptr) {
// Nothing to do for the quantity.
return;
}
number::impl::DecimalQuantity decimalQuantity;
decimalQuantity.setToDouble(quantity);
rounder->apply(decimalQuantity, status);
if (U_FAILURE(status)) {
return;
}
quantity = decimalQuantity.toDouble();
int32_t lastIndex = unitsConverters_.length() - 1;
if (lastIndex == 0) {
// Only one element, no need to bubble up the carry
return;
}
// Check if there's a carry, and bubble it back up the resulting intValues.
int64_t carry = static_cast<int64_t>(floor(unitsConverters_[lastIndex]->convertInverse(quantity) * (1 + DBL_EPSILON)));
if (carry <= 0) {
return;
}
quantity -= unitsConverters_[lastIndex]->convert(static_cast<double>(carry));
intValues[lastIndex - 1] += carry;
// We don't use the first converter: that one is for the input unit
for (int32_t j = lastIndex - 1; j > 0; j--) {
carry = static_cast<int64_t>(floor(unitsConverters_[j]->convertInverse(static_cast<double>(intValues[j])) * (1 + DBL_EPSILON)));
if (carry <= 0) {
return;
}
intValues[j] -= static_cast<int64_t>(round(unitsConverters_[j]->convert(static_cast<double>(carry))));
intValues[j - 1] += carry;
}
}
} // namespace units
U_NAMESPACE_END
#endif /* #if !UCONFIG_NO_FORMATTING */
|