1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2020 - 2023 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#if canImport(Darwin)
import Darwin
#elseif os(Android)
import Android
#elseif canImport(Glibc)
import Glibc
#elseif canImport(Musl)
import Musl
#elseif os(Windows)
import CRT
#elseif os(WASI)
import WASILibc
#endif
// MARK: - BinaryInteger + Numeric string representation
extension BinaryInteger {
/// Formats `self` in "Numeric string" format (https://speleotrove.com/decimal/daconvs.html)
/// which is the required input form for certain ICU functions (e.g. `unum_formatDecimal`).
///
/// This produces output that (at time of writing) looks identical to the `description` for
/// many `BinaryInteger` types, such as the built-in integer types. However, the format of
/// `description` is not specifically defined by `BinaryInteger` (or anywhere else, really),
/// and as such cannot be relied upon. Thus this purpose-built method, instead.
///
package var numericStringRepresentation: String {
numericStringRepresentationForBinaryInteger(words: self.words, isSigned: Self.isSigned)
}
}
/// Formats `words` in "Numeric string" format (https://speleotrove.com/decimal/daconvs.html)
/// which is the required input form for certain ICU functions (e.g. `unum_formatDecimal`).
///
/// - Parameters:
/// - words: The binary integer's words (least-significant word first).
/// - isSigned: The binary integer's signedness. If true, `words` must be in two's complement form.
///
internal func numericStringRepresentationForBinaryInteger(words: some Collection<UInt>, isSigned: Bool) -> String {
// Copies the words and then passes them to a non-generic, mutating, word-based algorithm.
withUnsafeTemporaryAllocation(of: UInt.self, capacity: words.count) {
let initializedEndIndex = $0.initialize(fromContentsOf: words)
let initialized = UnsafeMutableBufferPointer(rebasing: $0[..<initializedEndIndex])
defer {
initialized.deinitialize()
}
return numericStringRepresentationForMutableBinaryInteger(words: initialized, isSigned: isSigned)
}
}
/// Formats `words` in "Numeric string" format (https://speleotrove.com/decimal/daconvs.html)
/// which is the required input form for certain ICU functions (e.g. `unum_formatDecimal`).
///
/// - Parameters:
/// - words: The binary integer's mutable words.
/// - isSigned: The binary integer's signedness.
///
/// This method consumes the `words` such that the buffer is filled with zeros when it returns.
///
private func numericStringRepresentationForMutableBinaryInteger(words: UnsafeMutableBufferPointer<UInt>, isSigned: Bool) -> String {
// We reinterpret the words as an unsigned binary integer.
var magnitude = /* consume */ words
// Note that negative values are in two's complement form.
let isLessThanZero = isSigned && Int(bitPattern: magnitude.last ?? .zero) < .zero
// The **unsigned** magnitude is formed when the words represent a negative value.
if isLessThanZero {
formTwosComplementForBinaryInteger(words: magnitude)
}
let capacity = maxDecimalDigitCountForUnsignedInteger(bitWidth: magnitude.count * UInt.bitWidth) + (isLessThanZero ? 1 : 0)
return withUnsafeTemporaryAllocation(of: UInt8.self, capacity: capacity) {
// We rebase $0 because capacity <= $0.count.
let ascii = UnsafeMutableBufferPointer(start: $0.baseAddress, count: capacity)
// Set initial ASCII zeros (see later steps).
ascii.initialize(repeating: UInt8(ascii: "0"))
// Deferred deinitialization of initialized memory.
defer {
ascii.deinitialize()
}
// We get decimal digits in chunks as we divide the magnitude by pow(10,radix.exponent).
// We then extract the decimal digits from each chunk by repeatedly dividing them by 10.
let radix: (exponent: Int, power: UInt) = maxDecimalExponentAndPowerForUnsignedIntegerWord()
var chunkIndex = ascii.endIndex // The index of the current iteration's chunk.
var writeIndex = ascii.endIndex // The index of the last character we encoded.
dividing: while true {
// Mutating division prevents unnecessary big integer allocations.
var chunk = formQuotientWithRemainderForUnsignedInteger(words: magnitude, dividingBy: radix.power)
// We trim the magnitude's most significant zeros for flexible-width performance and to end the loop.
magnitude = .init(rebasing: magnitude[..<magnitude[...].reversed().drop(while:{ $0 == .zero }).startIndex.base])
// We write the chunk's decimal digits to the buffer. Note that chunk < radix.power.
repeat {
let digit: UInt
(chunk,digit) = chunk.quotientAndRemainder(dividingBy: 10)
precondition(writeIndex > ascii.startIndex, "the buffer must accommodate the magnitude's decimal digits")
ascii.formIndex(before: &writeIndex)
ascii[writeIndex] = UInt8(ascii: "0") &+ UInt8(truncatingIfNeeded: digit)
} while chunk != .zero
// We break the loop when every decimal digit has been encoded.
if magnitude.isEmpty { break }
// The resulting index is always in bounds because we form it after checking if there are digits left.
chunkIndex = ascii.index(chunkIndex, offsetBy: -radix.exponent)
// Set the next iterations's index in case this one ended in zeros. Note that zeros are pre-initialized.
writeIndex = chunkIndex
}
// Add a minus sign to negative values.
if isLessThanZero {
precondition(writeIndex > ascii.startIndex, "must add 1 to the buffer's capacity for integers less than zero")
ascii.formIndex(before: &writeIndex)
ascii[writeIndex] = UInt8(ascii: "-")
}
// We copy the sequence from the last character we encoded.
let result = UnsafeBufferPointer(rebasing: ascii[writeIndex...])
return String(unsafeUninitializedCapacity: result.count) { _ = $0.initialize(fromContentsOf: result); return result.count }
}
}
/// Returns an upper bound for the [number of decimal digits][algorithm] needed
/// to represent an unsigned integer with the given `bitWidth`.
///
/// [algorithm]: https://www.exploringbinary.com/number-of-decimal-digits-in-a-binary-integer
///
/// - Parameter bitWidth: An unsigned binary integer's bit width. It must be non-negative.
///
/// - Returns: Some integer greater than or equal to `1`.
///
private func maxDecimalDigitCountForUnsignedInteger(bitWidth: Int) -> Int {
// - Int.init(some BinaryFloatingPoint) rounds to zero.
// - Double.init(exactly:) and UInt.init(_:) for correctness.
// - log10(2.0) is: 1.0021010002000002002101⌈01...⌉ * 2^(-2).
// - It's an upper bound, so Double/nextUp for peace of mind.
return Int(Double(exactly: UInt(bitWidth))! * log10(2.0).nextUp) + 1
}
/// Returns the largest `exponent` and `power` in `pow(10, exponent) <= UInt.max + 1`.
///
/// The `exponent` is also the maximum number of decimal digits needed to represent a binary integer
/// in the range of `0 ..< power`. Another method is used to estimate the total number of digits, however.
/// This is so that binary integers can be rabased and encoded in the same loop.
///
/// ```
/// 32-bit: (exponent: 9, power: 1000000000)
/// 64-bit: (exponent: 19, power: 10000000000000000000)
/// ```
///
/// - Note: The optimizer should inline this as a constant.
///
/// - Note: Dividing an integer by `power` yields the first `exponent` number of decimal digits in the
/// remainder. The quotient is the integer with its first `exponent` number of decimal digits removed.
///
private func maxDecimalExponentAndPowerForUnsignedIntegerWord() -> (exponent: Int, power: UInt) {
var exponent: Int = 1, power: UInt = 10
while true {
let next = power.multipliedReportingOverflow(by: 10)
if next.overflow { break }
exponent += 1
power = next.partialValue
}
return (exponent: exponent, power: power)
}
/// Forms the `two's complement` of a binary integer.
///
/// - Parameter words: A binary integer's mutable words.
///
private func formTwosComplementForBinaryInteger(words: UnsafeMutableBufferPointer<UInt>) {
var carry = true
for index in words.indices {
(words[index], carry) = (~words[index]).addingReportingOverflow(carry ? 1 : 0)
}
}
/// Forms the `quotient` of dividing the `dividend` by the `divisor`, then returns the `remainder`.
///
/// - Parameters:
/// - dividend: An unsigned binary integer's words. It becomes the `quotient` once this function returns.
/// - divisor: An unsigned binary integer's only word.
///
/// - Returns: The `remainder`, which is a value in the range of `0 ..< divisor`.
///
private func formQuotientWithRemainderForUnsignedInteger(words dividend: UnsafeMutableBufferPointer<UInt>, dividingBy divisor: UInt) -> UInt {
var remainder = UInt.zero
for index in dividend.indices.reversed() {
(dividend[index], remainder) = divisor.dividingFullWidth((high: remainder, low: dividend[index]))
}
return remainder
}
|