1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2022-2024 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import SwiftSyntax
import SwiftSyntaxMacros
internal import SwiftDiagnostics
internal import SwiftSyntaxBuilder
// A list of all functions supported by Predicate/Expression itself, any other functions called will be diagnosed as an error
// This allows for checking the function name, the number of arguments, and the argument labels, but the types of the arguments will need to be validated by the post-expansion type checking pass
// The closure specification is used to determine whether keypaths should be transformed/expanded into closures and whether dropping the final argument in favor of a trailing closure is allowed
private let _knownSupportedFunctions: Set<FunctionStructure> = [
FunctionStructure("contains", arguments: [.unlabeled]),
FunctionStructure("contains", arguments: [.closure(labeled: "where")]),
FunctionStructure("allSatisfy", arguments: [.closure(labeled: nil)]),
FunctionStructure("flatMap", arguments: [.closure(labeled: nil)]),
FunctionStructure("filter", arguments: [.closure(labeled: nil)]),
FunctionStructure("subscript", arguments: [.unlabeled]),
FunctionStructure("subscript", arguments: [.unlabeled, "default"]),
FunctionStructure("starts", arguments: ["with"]),
FunctionStructure("min", arguments: []),
FunctionStructure("max", arguments: []),
FunctionStructure("localizedStandardContains", arguments: [.unlabeled]),
FunctionStructure("localizedCompare", arguments: [.unlabeled]),
FunctionStructure("caseInsensitiveCompare", arguments: [.unlabeled])
]
private var knownSupportedFunctions: Set<FunctionStructure> {
#if FOUNDATION_FRAMEWORK
var result = _knownSupportedFunctions
result.insert(FunctionStructure("evaluate", arguments: [.pack(labeled: nil)]))
return result
#else
_knownSupportedFunctions
#endif
}
private let supportedFunctionSuggestions: [FunctionStructure : FunctionStructure] = [
FunctionStructure("hasPrefix", arguments: [.unlabeled]) : FunctionStructure("starts", arguments: ["with"]),
FunctionStructure("localizedCaseInsensitiveContains", arguments: [.unlabeled]) : FunctionStructure("localizedStandardContains", arguments: [.unlabeled]),
FunctionStructure("localizedCaseInsensitiveCompare", arguments: [.unlabeled]) : FunctionStructure("localizedCompare", arguments: [.unlabeled]),
FunctionStructure("localizedStandardCompare", arguments: [.unlabeled]) : FunctionStructure("localizedCompare", arguments: [.unlabeled])
]
extension Array where Element == FunctionStructure.Argument {
fileprivate func argumentsEqual(_ other: Self) -> Bool {
let currentPackIndex = self.firstIndex { $0.kind == .pack }
let otherPackIndex = other.firstIndex { $0.kind == .pack }
var full: [FunctionStructure.Argument]
var prefix: ArraySlice<FunctionStructure.Argument>
var suffix: ArraySlice<FunctionStructure.Argument>
switch (currentPackIndex, otherPackIndex) {
// If neither contains a pack or both contain a pack, just compare arguments as-is
case (nil, nil), (.some(_), .some(_)):
return self == other
// If one of them contains a pack, compare the prefix and suffix to allow the pack to lazily consume multiple arguments
case (let .some(idx), nil):
full = other
prefix = self[..<idx]
suffix = self[self.index(after: idx)...]
case (nil, let .some(idx)):
full = self
prefix = other[..<idx]
suffix = other[other.index(after: idx)...]
}
return full.starts(with: prefix) && full.reversed().starts(with: suffix.reversed())
}
fileprivate func expandingPackToMatchCount(_ otherCount: Int) -> Self {
let countDifference = otherCount - self.count
guard countDifference >= 0, let packIdx = self.firstIndex(where: { $0.kind == .pack }) else {
return self
}
var copy = self
copy[packIdx] = .init(label: copy[packIdx].label, kind: .standard)
if countDifference > 0 {
copy.insert(contentsOf: Array(repeating: .unlabeled, count: countDifference), at: packIdx + 1)
}
return copy
}
}
private struct FunctionStructure: Hashable {
struct Argument : Hashable, ExpressibleByStringLiteral {
enum Kind : Hashable {
case standard
case closure
case pack
}
let label: String?
let kind: Kind
init(stringLiteral: String) {
label = stringLiteral
kind = .standard
}
init(label: String?, kind: Kind) {
self.label = label
self.kind = kind
}
static func closure(labeled label: String?) -> Self {
Self(label: label, kind: .closure)
}
static var unlabeled: Self {
Self(label: nil, kind: .standard)
}
static func pack(labeled label: String?) -> Self {
Self(label: label, kind: .pack)
}
static func ==(lhs: Self, rhs: Self) -> Bool {
lhs.label == rhs.label
}
}
let name: String
let arguments: [Argument]
let hasTrailingClosure: Bool
var supportsTrailingClosure: Bool {
hasTrailingClosure || arguments.last?.kind == .closure
}
var signature: String {
let args = arguments.map { ($0.label ?? "_") + ":" }.joined()
return "\(name)(\(args))"
}
init(_ name: String, arguments: [Argument], trailingClosure: Bool = false) {
self.name = name
self.arguments = arguments
self.hasTrailingClosure = trailingClosure
}
func matches(_ other: FunctionStructure) -> Bool {
guard self.name == other.name else { return false }
switch (self.hasTrailingClosure, other.hasTrailingClosure) {
case (true, true), (false, false):
return self.arguments.argumentsEqual(other.arguments)
case (true, false):
guard let otherLast = other.arguments.last else { return false }
return self.arguments.argumentsEqual(other.arguments.dropLast()) && otherLast.kind == .closure
case (false, true):
guard let last = self.arguments.last else { return false }
return self.arguments.dropLast().argumentsEqual(other.arguments) && last.kind == .closure
}
}
func fixItChanges(transformingFrom source: FunctionCallExprSyntax) -> [FixIt.Change]? {
let sourceHasTrailingClosure = source.trailingClosure != nil
if sourceHasTrailingClosure {
guard supportsTrailingClosure else { return nil }
}
let sourceArgumentTotalCount = source.arguments.count + (sourceHasTrailingClosure ? 1 : 0)
let argumentTotalCount = self.arguments.count + (hasTrailingClosure ? 1 : 0)
guard argumentTotalCount == sourceArgumentTotalCount,
let calledExpr = source.calledExpression.as(MemberAccessExprSyntax.self) else {
return nil
}
var newFunctionCall = source
newFunctionCall.calledExpression = ExprSyntax(calledExpr.with(\.declName, DeclReferenceExprSyntax(baseName: .identifier(name))))
newFunctionCall.arguments = LabeledExprListSyntax(zip(source.arguments, arguments).map {
if let newLabel = $1.label {
return $0.with(\.label, .identifier(newLabel)).with(\.colon, .colonToken()).with(\.expression, $0.expression.with(\.leadingTrivia, [.spaces(1)]))
} else {
return $0.with(\.label, nil).with(\.colon, nil).with(\.trailingTrivia, []).with(\.expression, $0.expression.with(\.leadingTrivia, []))
}
})
newFunctionCall.leadingTrivia = []
newFunctionCall.trailingTrivia = []
if self.hasTrailingClosure && source.trailingClosure == nil, let newTrailingClosure = source.arguments.last?.expression.as(ClosureExprSyntax.self) {
newFunctionCall.trailingClosure = newTrailingClosure
}
return [.replace(oldNode: Syntax(source), newNode: Syntax(newFunctionCall))]
}
}
private func _knownMatchingFunction(_ structure: FunctionStructure) -> FunctionStructure? {
knownSupportedFunctions.first {
$0.matches(structure)
}
}
private func _suggestionForUnknownFunction(_ structure: FunctionStructure) -> FunctionStructure? {
guard let key = supportedFunctionSuggestions.keys.first(where: { $0.matches(structure) }) else {
return nil
}
return supportedFunctionSuggestions[key]
}
private class ShorthandArgumentIdentifierDetector: SyntaxVisitor {
var found = false
override func visit(_ node: DeclReferenceExprSyntax) -> SyntaxVisitorContinueKind {
// Look for identifiers such as $0, $1, etc.
if case let .dollarIdentifier(identifier) = node.baseName.tokenKind, identifier.dropFirst().allSatisfy(\.isNumber) {
found = true
return .skipChildren
} else {
return .visitChildren
}
}
}
extension SyntaxProtocol {
var containsShorthandArgumentIdentifiers: Bool {
let visitor = ShorthandArgumentIdentifierDetector(viewMode: .all)
visitor.walk(self)
return visitor.found
}
}
private protocol PredicateSyntaxRewriter : SyntaxRewriter {
var success: Bool { get }
var diagnostics: [Diagnostic] { get }
}
extension PredicateSyntaxRewriter {
var success: Bool { true }
var diagnostics: [Diagnostic] { [] }
}
extension SyntaxProtocol {
fileprivate func rewrite(with rewriter: some PredicateSyntaxRewriter) throws -> Syntax {
let translated = rewriter.rewrite(Syntax(self))
guard rewriter.success else {
throw DiagnosticsError(diagnostics: rewriter.diagnostics)
}
return translated
}
}
private class OptionalChainRewriter: SyntaxRewriter, PredicateSyntaxRewriter {
var withinValidChainingTreeStart = true
var withinChainingTree = false
var optionalInput: ExprSyntax? = nil
private func _prePossibleTopOfTree() -> Bool {
if !withinChainingTree && withinValidChainingTreeStart {
withinChainingTree = true
return true
}
return false
}
private func _postTopOfTree(_ node: ExprSyntax) -> ExprSyntax {
assert(withinChainingTree)
withinChainingTree = false
if let input = optionalInput {
optionalInput = nil
let visited = self.visit(input)
let closure = ClosureExprSyntax(statements: [CodeBlockItemSyntax(item: CodeBlockItemSyntax.Item(node))])
let functionMember = MemberAccessExprSyntax(base: visited, name: "flatMap")
let functionCall = FunctionCallExprSyntax(calledExpression: functionMember, arguments: [], trailingClosure: closure)
return ExprSyntax(functionCall)
}
return node
}
override func visit(_ node: ClosureExprSyntax) -> ExprSyntax {
guard withinChainingTree else {
// If we're not already in a chaining tree, just keep progressing with our current rewriter
return super.visit(node)
}
// We're in the middle of a potential tree, so rewrite the closure with a fresh state
// This ensures potential chaining in the closure isn't rewritten outside of the closure
guard let rewritten = (try? node.rewrite(with: OptionalChainRewriter()))?.as(ExprSyntax.self) else {
// If rewriting the closure failed, just leave the closure as-is
return ExprSyntax(node)
}
return rewritten
}
override func visit(_ node: FunctionCallExprSyntax) -> ExprSyntax {
let priorValidTreeStart = withinValidChainingTreeStart
defer { withinValidChainingTreeStart = priorValidTreeStart }
if node.arguments.containsShorthandArgumentIdentifiers {
withinValidChainingTreeStart = false
}
let topOfTree = _prePossibleTopOfTree()
let visited = super.visit(node)
if topOfTree {
return _postTopOfTree(visited)
} else {
return visited
}
}
override func visit(_ node: MemberAccessExprSyntax) -> ExprSyntax {
let topOfTree = _prePossibleTopOfTree()
let visited = super.visit(node)
if topOfTree {
return _postTopOfTree(visited)
} else {
return visited
}
}
override func visit(_ node: OptionalChainingExprSyntax) -> ExprSyntax {
guard withinChainingTree else {
return super.visit(node)
}
// Capture the optional input, and replace it in the output expression with a "$0"
optionalInput = node.expression
return .init(DeclReferenceExprSyntax(baseName: .dollarIdentifier("$0")))
}
}
extension CodeBlockItemListSyntax.Element.Item {
fileprivate var _expression: ExprSyntax? {
switch self {
case .expr(let expr): return expr
case .stmt(let stmt): return stmt.as(ExpressionStmtSyntax.self)?.expression
default: return nil
}
}
}
extension ConditionElementListSyntax {
fileprivate var optionalBindings: [OptionalBindingConditionSyntax]? {
var result = [OptionalBindingConditionSyntax]()
for element in self {
switch element.condition {
case let .optionalBinding(binding):
result.append(binding)
default:
return nil
}
}
return result
}
}
extension ClosureParameterListSyntax {
fileprivate var withVariableWrappedTypes: Self {
return Self(self.map {
if let type = $0.type {
$0.with(\.type, "PredicateExpressions.Variable<\(type)>")
} else {
$0
}
})
}
}
extension KeyPathExprSyntax {
private enum KeyPathDirectExpressionRewritingError : Error {
case unknownKeypathComponentType
}
fileprivate func asDirectExpression(on base: some ExprSyntaxProtocol) -> ExprSyntax? {
var result = ExprSyntax(base)
for item in components {
switch item.component {
case .property(let prop):
result = ExprSyntax(MemberAccessExprSyntax(base: result, declName: prop.declName))
case .optional(let opt):
if opt.questionOrExclamationMark.tokenKind == .exclamationMark {
result = ExprSyntax(ForceUnwrapExprSyntax(expression: result))
} else {
result = ExprSyntax(OptionalChainingExprSyntax(expression: result))
}
case .subscript(let sub):
result = ExprSyntax(SubscriptCallExprSyntax(calledExpression: result, arguments: sub.arguments))
#if FOUNDATION_FRAMEWORK
default:
return nil
#endif
}
}
return result
}
}
private class PredicateQueryRewriter: SyntaxRewriter, PredicateSyntaxRewriter {
private let indentWidth: Trivia = .spaces(4)
private var indentLevel = 0
private var indent: Trivia {
Trivia(pieces: Array(repeating: .spaces(4), count: indentLevel))
}
var validOptionalChainingTree = true
var diagnostics: [Diagnostic] = []
var success: Bool { diagnostics.isEmpty }
let kind: ExpansionKind
init(kind: ExpansionKind) {
self.kind = kind
}
private func diagnose(node: SyntaxProtocol, message: PredicateExpansionDiagnostic, fixIts: [FixIt] = []) {
diagnostics.append(.init(node: Syntax(node), message: message, fixIts: fixIts))
}
private func makeArgument(label: String?, _ expression: ExprSyntax, shouldVisit: Bool = true, shouldIndent: Bool = true) -> LabeledExprSyntax {
if shouldIndent {
indentLevel += 1
}
defer {
if shouldIndent {
indentLevel -= 1
}
}
let labelSyntax = label.map {
TokenSyntax(.identifier($0), presence: .present)
}?.with(\.leadingTrivia, indent)
let colonSyntax = label.map { _ in
TokenSyntax(.colon, presence: .present)
}
var argument = shouldVisit ? visit(expression) : expression
if shouldVisit && argument == expression {
argument = "PredicateExpressions.build_Arg(\(expression.with(\.leadingTrivia, []).with(\.trailingTrivia, [])))"
}
argument = argument.with(\.leadingTrivia, label == nil ? indent : .space)
return .init(label: labelSyntax,
colon: colonSyntax,
expression: argument,
trailingComma: nil)
}
override func visit(_ node: PrefixOperatorExprSyntax) -> ExprSyntax {
switch node.operator.text {
case "!":
let syntax: ExprSyntax =
"""
\(raw: indent)PredicateExpressions.build_Negation(
\(makeArgument(label: nil, node.expression))
\(raw: indent))
"""
return syntax
case "-":
let syntax: ExprSyntax =
"""
\(raw: indent)PredicateExpressions.build_UnaryMinus(
\(makeArgument(label: nil, node.expression))
\(raw: indent))
"""
return syntax
default:
diagnose(node: node.operator, message: "The '\(node.operator.text)' operator is not supported in this \(kind.keyword)")
return ExprSyntax(node)
}
}
override func visit(_ node: InfixOperatorExprSyntax) -> ExprSyntax {
let lhsOp = node.leftOperand
let rhsOp = node.rightOperand
let opExpr = node.operator
guard let opSyntax = opExpr.as(BinaryOperatorExprSyntax.self) else {
diagnose(node: opExpr, message: "The '\(opExpr.description)' operator is not supported in this \(kind.keyword)")
return ExprSyntax(node)
}
let (lhsLabel, rhsLabel) = switch opSyntax.operator.text {
case "...", "..<": ("lower", "upper")
default: ("lhs", "rhs")
}
let lhsArgument = makeArgument(label: lhsLabel, lhsOp).with(\.trailingTrivia, [])
let rhsArgument = makeArgument(label: rhsLabel, rhsOp).with(\.trailingTrivia, [])
switch (opSyntax.operator.text) {
case "==":
let syntax: ExprSyntax =
"""
\(raw: indent)PredicateExpressions.build_Equal(
\(lhsArgument),
\(rhsArgument)
\(raw: indent))
"""
return syntax
case "!=":
let syntax: ExprSyntax =
"""
\(raw: indent)PredicateExpressions.build_NotEqual(
\(lhsArgument),
\(rhsArgument)
\(raw: indent))
"""
return syntax
case "<":
let syntax: ExprSyntax =
"""
\(raw: indent)PredicateExpressions.build_Comparison(
\(lhsArgument),
\(rhsArgument),
\(raw: indent + indentWidth)op: .lessThan
\(raw: indent))
"""
return syntax
case "<=":
let syntax: ExprSyntax =
"""
\(raw: indent)PredicateExpressions.build_Comparison(
\(lhsArgument),
\(rhsArgument),
\(raw: indent + indentWidth)op: .lessThanOrEqual
\(raw: indent))
"""
return syntax
case ">":
let syntax: ExprSyntax =
"""
\(raw: indent)PredicateExpressions.build_Comparison(
\(lhsArgument),
\(rhsArgument),
\(raw: indent + indentWidth)op: .greaterThan
\(raw: indent))
"""
return syntax
case ">=":
let syntax: ExprSyntax =
"""
\(raw: indent)PredicateExpressions.build_Comparison(
\(lhsArgument),
\(rhsArgument),
\(raw: indent + indentWidth)op: .greaterThanOrEqual
\(raw: indent))
"""
return syntax
case "||":
let syntax: ExprSyntax =
"""
\(raw: indent)PredicateExpressions.build_Disjunction(
\(lhsArgument),
\(rhsArgument)
\(raw: indent))
"""
return syntax
case "&&":
let syntax: ExprSyntax =
"""
\(raw: indent)PredicateExpressions.build_Conjunction(
\(lhsArgument),
\(rhsArgument)
\(raw: indent))
"""
return syntax
case "+":
let syntax: ExprSyntax =
"""
\(raw: indent)PredicateExpressions.build_Arithmetic(
\(lhsArgument),
\(rhsArgument),
\(raw: indent + indentWidth)op: .add
\(raw: indent))
"""
return syntax
case "-":
let syntax: ExprSyntax =
"""
\(raw: indent)PredicateExpressions.build_Arithmetic(
\(lhsArgument),
\(rhsArgument),
\(raw: indent + indentWidth)op: .subtract
\(raw: indent))
"""
return syntax
case "*":
let syntax: ExprSyntax =
"""
\(raw: indent)PredicateExpressions.build_Arithmetic(
\(lhsArgument),
\(rhsArgument),
\(raw: indent + indentWidth)op: .multiply
\(raw: indent))
"""
return syntax
case "/":
let syntax: ExprSyntax =
"""
\(raw: indent)PredicateExpressions.build_Division(
\(lhsArgument),
\(rhsArgument)
\(raw: indent))
"""
return syntax
case "%":
let syntax: ExprSyntax =
"""
\(raw: indent)PredicateExpressions.build_Remainder(
\(lhsArgument),
\(rhsArgument)
\(raw: indent))
"""
return syntax
case "??":
let syntax: ExprSyntax =
"""
\(raw: indent)PredicateExpressions.build_NilCoalesce(
\(lhsArgument),
\(rhsArgument)
\(raw: indent))
"""
return syntax
case "...":
let syntax: ExprSyntax =
"""
\(raw: indent)PredicateExpressions.build_ClosedRange(
\(lhsArgument),
\(rhsArgument)
\(raw: indent))
"""
return syntax
case "..<":
let syntax: ExprSyntax =
"""
\(raw: indent)PredicateExpressions.build_Range(
\(lhsArgument),
\(rhsArgument)
\(raw: indent))
"""
return syntax
default:
diagnose(node: opSyntax, message: "The '\(opSyntax.operator.text)' operator is not supported in this \(kind.keyword)")
return ExprSyntax(node)
}
}
// We only hit this if our OptionalChainingRewriter was unable to rewrite them out of the expression tree
override func visit(_ node: OptionalChainingExprSyntax) -> ExprSyntax {
diagnose(node: node.questionMark, message: "Optional chaining is not supported here in this \(kind.keyword). Use the flatMap(_:) function explicitly instead.")
return .init(node)
}
override func visit(_ node: ForceUnwrapExprSyntax) -> ExprSyntax {
return """
\(raw: indent)PredicateExpressions.build_ForcedUnwrap(
\(makeArgument(label: nil, node.expression))
\(raw: indent))
"""
}
override func visit(_ node: NilLiteralExprSyntax) -> ExprSyntax {
"PredicateExpressions.build_NilLiteral()"
}
override func visit(_ node: MemberAccessExprSyntax) -> ExprSyntax {
guard let base = node.base else {
diagnose(node: node, message: "Member access without an explicit base is not supported in this \(kind.keyword)")
return .init(node)
}
let newPropertyComponent = KeyPathPropertyComponentSyntax(declName: node.declName)
let keyPath = KeyPathExprSyntax(components: [.init(period: TokenSyntax.periodToken(), component: .property(newPropertyComponent))])
return """
\(raw: indent)PredicateExpressions.build_KeyPath(
\(makeArgument(label: "root", base)),
\(makeArgument(label: "keyPath", .init(keyPath), shouldVisit: false).with(\.trailingTrivia, []))
\(raw: indent))
"""
}
override func visit(_ node: FunctionCallExprSyntax) -> ExprSyntax {
let memberAccess = node.calledExpression.as(MemberAccessExprSyntax.self)
let base = memberAccess?.base
let funcName = memberAccess?.declName.baseName.with(\.leadingTrivia, []).with(\.trailingTrivia, []).text ?? node.calledExpression.as(DeclReferenceExprSyntax.self)!.baseName.text
return _processFunction(
base: base,
functionName: funcName,
argumentList: node.arguments,
trailingClosure: node.trailingClosure,
diagnosticPoint: .init(memberAccess?.declName) ?? .init(node),
functionCallExpr: node)
?? .init(node)
}
override func visit(_ node: SubscriptCallExprSyntax) -> ExprSyntax {
return _processFunction(
base: node.calledExpression,
functionName: "subscript",
argumentList: node.arguments,
trailingClosure: node.trailingClosure,
diagnosticPoint: .init(node.leftSquare))
?? .init(node)
}
private func _processFunction(base: ExprSyntax?, functionName: String, argumentList: LabeledExprListSyntax, trailingClosure: ClosureExprSyntax?, diagnosticPoint: Syntax, functionCallExpr: FunctionCallExprSyntax? = nil) -> ExprSyntax? {
// The provided base is nil when calling global functions functions
guard let base else {
diagnose(node: diagnosticPoint, message: "Global functions are not supported in this \(kind.keyword)")
return nil
}
// Check this function against our known list to provide rich diagnostics for functions we know we don't support
let name = TokenSyntax(.identifier(functionName), presence: .present).with(\.leadingTrivia, []).with(\.trailingTrivia, [])
let args = argumentList.map {
let isClosure = $0.expression.is(ClosureExprSyntax.self) || $0.expression.is(KeyPathExprSyntax.self)
return FunctionStructure.Argument(label: $0.label?.text, kind: isClosure ? .closure : .standard)
}
let structure = FunctionStructure(name.text, arguments: args, trailingClosure: trailingClosure != nil)
guard let knownFunc = _knownMatchingFunction(structure) else {
let diagnostic = PredicateExpansionDiagnostic("The \(structure.signature) function is not supported in this \(kind.keyword)")
var fixIts = [FixIt]()
if let functionCallExpr,
let suggestion = _suggestionForUnknownFunction(structure),
let changes = suggestion.fixItChanges(transformingFrom: functionCallExpr) {
fixIts.append(FixIt(message: PredicateExpansionDiagnostic("Use \(suggestion.signature)", severity: .note), changes: changes))
}
diagnose(node: diagnosticPoint, message: diagnostic, fixIts: fixIts)
return nil
}
var arguments: [LabeledExprSyntax] = []
func addArgument(_ argument: ExprSyntax, label: String?, withComma: Bool) {
arguments.append(
makeArgument(label: label, argument)
.with(\.trailingComma, withComma ? TokenSyntax(.comma, presence: .present) : nil)
.with(\.trailingTrivia, withComma ? .newline : [])
)
}
// Function arguments can contain dollar sign identifiers that can't be nested inside of a new closure
// Prevent this function call from being placed inside of a flatMap due to optionalChaining
let oldValidOptionalChainingTree = validOptionalChainingTree
validOptionalChainingTree = false
addArgument(base, label: nil, withComma: !argumentList.isEmpty)
validOptionalChainingTree = oldValidOptionalChainingTree
for (sourceArg, knownArgStructure) in zip(argumentList, knownFunc.arguments.expandingPackToMatchCount(argumentList.count)) {
var expression = sourceArg.expression
if knownArgStructure.kind == .closure, let kpExpr = sourceArg.expression.as(KeyPathExprSyntax.self) {
guard !kpExpr.containsShorthandArgumentIdentifiers,
let memberAccess = kpExpr.asDirectExpression(on: DeclReferenceExprSyntax(baseName: .dollarIdentifier("$0"))),
let preparedMemberAccess = try? memberAccess.rewrite(with: OptionalChainRewriter()) else {
diagnose(node: kpExpr, message: "This key path is not supported here in this \(kind.keyword). Use an explicit closure instead.")
return nil
}
expression = ExprSyntax(ClosureExprSyntax(statements: [CodeBlockItemSyntax(item: .expr(preparedMemberAccess.as(ExprSyntax.self)!))]))
}
addArgument(expression, label: sourceArg.label?.text, withComma: sourceArg.trailingComma != nil)
}
if let closure = trailingClosure {
// Don't indent, because closures already get indented
let closureArg = makeArgument(label: nil, ExprSyntax(closure), shouldIndent: false)
return """
\(raw: indent)PredicateExpressions.build_\(name.with(\.leadingTrivia, []).with(\.trailingTrivia, []))(
\(LabeledExprListSyntax(arguments))
\(raw: indent))\(raw: Trivia.space)\(closureArg.with(\.leadingTrivia, []).with(\.trailingTrivia, []))
"""
} else {
return """
\(raw: indent)PredicateExpressions.build_\(name.with(\.leadingTrivia, []).with(\.trailingTrivia, []))(
\(LabeledExprListSyntax(arguments))
\(raw: indent))
"""
}
}
override func visit(_ node: TupleExprSyntax) -> ExprSyntax {
guard node.elements.count == 1, let element = node.elements.first else {
diagnose(node: node, message: "Tuples are not supported in this \(kind.keyword)")
return ExprSyntax(node)
}
// Support expressions like "(input as? Bool) == true" where parantheses used for grouping are treated like a single element tuple expression
return visit(element.expression)
}
// Processes a code block and guarantees that the returned code block only contains one item
func _processCodeBlock(_ statements: CodeBlockItemListSyntax, in node: Syntax, removeReturn: Bool = false) -> CodeBlockItemListSyntax? {
guard statements.count == 1 else {
diagnose(node: statements.isEmpty ? node : statements[statements.index(after: statements.startIndex)], message: "\(kind.capitalizedKeyword) body may only contain one expression")
return nil
}
indentLevel += 1
var body = visit(statements)
if success && body == statements {
let wrapped: ExprSyntax =
"""
\(raw: indent)PredicateExpressions.build_Arg(
\(raw: indent + indentWidth)\(body.with(\.leadingTrivia, []).with(\.trailingTrivia, []))
\(raw: indent))
"""
body = [.init(item: .expr(wrapped))]
}
indentLevel -= 1
if removeReturn, let first = body.first, case .stmt(let statement) = first.item, let returnStmt = statement.as(ReturnStmtSyntax.self), let returnExpr = returnStmt.expression {
body = [.init(item: .expr(returnExpr.with(\.leadingTrivia, returnStmt.leadingTrivia)))]
}
return body
}
override func visit(_ node: CodeBlockSyntax) -> CodeBlockSyntax {
guard let body = _processCodeBlock(node.statements, in: .init(node)) else {
return node
}
return node.with(\.statements, body)
}
override func visit(_ node: ClosureExprSyntax) -> ExprSyntax {
guard let body = _processCodeBlock(node.statements, in: .init(node)) else {
return .init(node)
}
var resultingSignature = node.signature
if let signature = node.signature {
var visited = signature
visited.returnClause = nil
if case .parameterClause(let paramClause) = signature.parameterClause {
let newParamClause = paramClause.with(\.parameters, paramClause.parameters.withVariableWrappedTypes)
visited.parameterClause = .parameterClause(newParamClause)
}
resultingSignature = visited
}
return ExprSyntax(
node
.with(\.statements, body)
.with(\.leftBrace, node.leftBrace.with(\.trailingTrivia, node.signature == nil ? .newline : .space))
.with(\.signature, resultingSignature?.with(\.trailingTrivia, .newline))
.with(\.rightBrace, node.rightBrace.with(\.leadingTrivia, .newline + indent))
)
}
override func visit(_ node: TernaryExprSyntax) -> ExprSyntax {
let condition = node.condition
let firstChoice = node.thenExpression
let secondChoice = node.elseExpression
return """
\(raw: indent)PredicateExpressions.build_Conditional(
\(makeArgument(label: nil, condition).with(\.trailingTrivia, [])),
\(makeArgument(label: nil, firstChoice).with(\.trailingTrivia, [])),
\(makeArgument(label: nil, secondChoice).with(\.trailingTrivia, []))
\(raw: indent))
"""
}
override func visit(_ node: IsExprSyntax) -> ExprSyntax {
return """
\(raw: indent)PredicateExpressions.TypeCheck<_, \(node.type)>(
\(makeArgument(label: nil, node.expression).with(\.trailingTrivia, []))
\(raw: indent))
"""
}
override func visit(_ node: AsExprSyntax) -> ExprSyntax {
let castType: String
switch node.questionOrExclamationMark?.tokenKind {
case .none: fallthrough
case .some(.exclamationMark):
castType = "Force"
case .some(.postfixQuestionMark):
castType = "Conditional"
default:
fatalError("Unexpected question/exclamation mark token kind")
}
return """
\(raw: indent)PredicateExpressions.\(raw: castType)Cast<_, \(node.type)>(
\(makeArgument(label: nil, node.expression).with(\.trailingTrivia, []))
\(raw: indent))
"""
}
override func visit(_ node: ReturnStmtSyntax) -> StmtSyntax {
guard let expression = node.expression else {
// No expansion needed when returning Void
return StmtSyntax(node)
}
let visited = visit(expression)
guard visited == expression else {
// No expansion needed when returning transformed expression
return StmtSyntax(node.with(\.expression, visited.with(\.leadingTrivia, [])).with(\.leadingTrivia, indent))
}
// Wrap constant return expressions in a build_Arg call
let wrapped: ExprSyntax =
"""
PredicateExpressions.build_Arg(
\(visited.with(\.leadingTrivia, indent + indentWidth))
\(raw: indent))
"""
return StmtSyntax(node.with(\.expression, wrapped).with(\.leadingTrivia, indent))
}
override func visit(_ node: SwitchExprSyntax) -> ExprSyntax {
self.diagnose(node: node, message: "Switch expressions are not supported in this \(kind.keyword)")
return .init(node)
}
private func _rewriteConditionsAsExpression<C: BidirectionalCollection<ConditionElementListSyntax.Element>>(_ collection: C, in expr: IfExprSyntax) -> ExprSyntax? {
guard let last = collection.last else {
self.diagnose(node: expr, message: "This list of conditionals is unsupported in this \(kind.keyword)")
return nil
}
guard case .expression(let lastExpr) = last.condition else {
let type: String
switch last.condition {
case .availability(_):
type = "Availability conditions"
case .matchingPattern(_):
type = "Matching pattern conditions"
case .optionalBinding(_):
self.diagnose(node: last, message: "Mixing optional bindings with other conditions is not supported in this \(kind.keyword)")
return nil
default:
type = "These types of conditions"
}
self.diagnose(node: last, message: "\(type) are not supported in this \(kind.keyword)")
return nil
}
let rest = collection.dropLast()
if rest.isEmpty {
return lastExpr
} else {
guard let restRewritten = _rewriteConditionsAsExpression(rest, in: expr) else {
return nil
}
return .init(InfixOperatorExprSyntax(leftOperand: restRewritten, operator: BinaryOperatorExprSyntax(operator: .binaryOperator("&&")), rightOperand: lastExpr))
}
}
private func _rewriteIfAsFlatMap(bindings: [OptionalBindingConditionSyntax], body: ExprSyntax, else: ExprSyntax) -> ExprSyntax? {
indentLevel += bindings.count
var prior: ExprSyntax = body
for binding in bindings.reversed() {
guard let identifier = binding.pattern.as(IdentifierPatternSyntax.self)?.identifier else {
self.diagnose(node: binding.pattern, message: "This optional binding condition is not supported in this \(kind.keyword)")
return nil
}
let initializer = binding.initializer?.value ?? ExprSyntax(DeclReferenceExprSyntax(baseName: identifier))
prior = """
\(raw: indent)PredicateExpressions.build_flatMap(
\(makeArgument(label: nil, initializer).with(\.trailingTrivia, []))
\(raw: indent)) { \(identifier.with(\.trailingTrivia, []).with(\.leadingTrivia, [])) in
\(makeArgument(label: nil, prior, shouldVisit: false).with(\.trailingTrivia, []))
\(raw: indent)}
"""
indentLevel -= 1
}
return """
\(raw: indent)PredicateExpressions.build_NilCoalesce(
\(makeArgument(label: "lhs", prior, shouldVisit: false)),
\(makeArgument(label: "rhs", `else`, shouldVisit: false))
\(raw: indent))
"""
}
private func _processIfBody(_ node: IfExprSyntax) -> ExprSyntax? {
guard let visitedBody = _processCodeBlock(node.body.statements, in: .init(node.body), removeReturn: true) else {
return nil
}
guard let bodyExpression = visitedBody.first?.item._expression else {
self.diagnose(node: node.body, message: "This if expression body is not supported in this \(kind.keyword)")
return nil
}
return bodyExpression
}
private func _processElseBody(_ node: IfExprSyntax) -> ExprSyntax? {
guard let elseBody = node.elseBody else {
self.diagnose(node: node, message: "If expressions without an else expression are not supported in this \(kind.keyword)")
return nil
}
let elseExpression: ExprSyntax
switch elseBody {
case .codeBlock(let codeBlock):
guard let visitedElseBody = _processCodeBlock(codeBlock.statements, in: .init(codeBlock), removeReturn: true) else {
return nil
}
guard let expr = visitedElseBody.first?.item._expression else {
self.diagnose(node: node.body, message: "This if expression else body is not supported in this \(kind.keyword)")
return nil
}
elseExpression = expr
case .ifExpr(let ifExpr):
elseExpression = visit(ifExpr)
#if FOUNDATION_FRAMEWORK
@unknown default:
self.diagnose(node: elseBody, message: "This if expression else body is not supported in this \(kind.keyword)")
return nil
#endif
}
return elseExpression
}
override func visit(_ node: IfExprSyntax) -> ExprSyntax {
if let bindings = node.conditions.optionalBindings {
indentLevel += bindings.count
guard let bodyExpression = _processIfBody(node) else {
return .init(node)
}
indentLevel -= bindings.count
guard let elseExpression = _processElseBody(node) else {
return .init(node)
}
return _rewriteIfAsFlatMap(bindings: bindings, body: bodyExpression, else: elseExpression) ?? .init(node)
}
guard let ifExpression = _rewriteConditionsAsExpression(node.conditions, in: node),
let bodyExpression = _processIfBody(node),
let elseExpression = _processElseBody(node) else {
return .init(node)
}
return """
\(raw: indent)PredicateExpressions.build_Conditional(
\(makeArgument(label: nil, ifExpression).with(\.trailingTrivia, [])),
\(makeArgument(label: nil, bodyExpression, shouldVisit: false).with(\.trailingTrivia, [])),
\(makeArgument(label: nil, elseExpression, shouldVisit: false).with(\.trailingTrivia, []))
\(raw: indent))
"""
}
override func visit(_ node: WhileStmtSyntax) -> StmtSyntax {
self.diagnose(node: node, message: "While loops are not supported in this \(kind.keyword)")
return .init(node)
}
override func visit(_ node: ForStmtSyntax) -> StmtSyntax {
self.diagnose(node: node, message: "For-in loops are not supported in this \(kind.keyword)")
return .init(node)
}
override func visit(_ node: DoStmtSyntax) -> StmtSyntax {
self.diagnose(node: node, message: "Do statements are not supported in this \(kind.keyword)")
return .init(node)
}
override func visit(_ node: CatchClauseSyntax) -> CatchClauseSyntax {
self.diagnose(node: node, message: "Catch clauses are not supported in this \(kind.keyword)")
return node
}
override func visit(_ node: RepeatStmtSyntax) -> StmtSyntax {
self.diagnose(node: node, message: "Repeat-while loops are not supported in this \(kind.keyword)")
return .init(node)
}
override func visit(_ node: CodeBlockItemSyntax) -> CodeBlockItemSyntax {
// At this point, we know we're the only item in the code block because predicates only support single-expression code blocks
// Diagnose any declarations
if case .decl(_) = node.item {
diagnose(node: node.item, message: "Declarations are not supported in this \(kind.keyword)")
return node
}
if case let .stmt(statement) = node.item {
// Unwrap a do statement with valid expression bodies
if let doStatement = statement.as(DoStmtSyntax.self) {
if let catchClause = doStatement.catchClauses.first {
diagnose(node: catchClause, message: "Catch clauses are not supported in this \(kind.keyword)")
return node
}
indentLevel -= 1
let visitedBody = self.visit(doStatement.body)
indentLevel += 1
guard success else {
return node
}
guard let innerExpr = visitedBody.statements.first else {
diagnose(node: doStatement, message: "Do statement is not supported here in this \(kind.keyword)")
return node
}
return innerExpr
}
}
return super.visit(node)
}
}
private struct PredicateExpansionDiagnostic: DiagnosticMessage, FixItMessage, ExpressibleByStringLiteral, ExpressibleByStringInterpolation {
let message: String
let severity: DiagnosticSeverity
let diagnosticID: MessageID = .init(domain: "FoundationMacros", id: "PredicateDiagnostic")
var fixItID: MessageID { diagnosticID }
init(_ message: String, severity: DiagnosticSeverity = .error) {
self.message = message
self.severity = severity
}
init(stringLiteral value: String) {
self.init(value)
}
}
private enum ExpansionKind {
case predicate
case expression
var keyword: String {
switch self {
case .predicate:
"predicate"
case .expression:
"expression"
}
}
var capitalizedKeyword: String {
let keyword = self.keyword
let first = keyword.first!.uppercased()
return "\(first)\(keyword.dropFirst())"
}
var macroKeyword: String {
"#\(capitalizedKeyword)"
}
var qualifiedExpansionType: String {
#if FOUNDATION_FRAMEWORK
"Foundation.\(capitalizedKeyword)"
#else
"FoundationEssentials.\(capitalizedKeyword)"
#endif
}
}
private func predicateExpansion(of node: some FreestandingMacroExpansionSyntax, in context: some MacroExpansionContext, kind: ExpansionKind) throws -> ExprSyntax {
guard let closure = node.trailingClosure else {
let fixIts: [FixIt]
if let argument = node.arguments.first?.expression.as(ClosureExprSyntax.self) {
var newNode = node.with(\.leftParen, nil)
.with(\.rightParen, nil)
.with(\.trailingClosure, argument.with(\.leadingTrivia, [.spaces(1)]).with(\.trailingTrivia, []))
newNode.arguments = []
fixIts = [
FixIt(message: PredicateExpansionDiagnostic("Use a trailing closure instead of a function parameter", severity: .note), changes: [
.replace(oldNode: Syntax(node), newNode: Syntax(newNode))
])
]
} else {
fixIts = []
}
throw DiagnosticsError(diagnostics: [.init(
node: Syntax(node),
message: PredicateExpansionDiagnostic("\(kind.macroKeyword) macro expansion requires a trailing closure"),
fixIts: fixIts
)])
}
let translatedClosure = try closure
.rewrite(with: OptionalChainRewriter())
.rewrite(with: PredicateQueryRewriter(kind: kind))
.with(\.leadingTrivia, [])
.with(\.trailingTrivia, [])
if let genericArgs = node.genericArgumentClause {
let strippedGenericArgs = genericArgs
.with(\.leadingTrivia, [])
.with(\.trailingTrivia, [])
return "\(raw: kind.qualifiedExpansionType)\(strippedGenericArgs)(\(translatedClosure))"
} else {
// When the macro is specified without generic args (ex. "#Predicate { ... }") initialize a Predicate without generic args so they can be inferred from context
return "\(raw: kind.qualifiedExpansionType)(\(translatedClosure))"
}
}
public struct PredicateMacro: SwiftSyntaxMacros.ExpressionMacro, Sendable {
public static var formatMode: FormatMode { .disabled }
public static func expansion(of node: some FreestandingMacroExpansionSyntax, in context: some MacroExpansionContext) throws -> ExprSyntax {
try predicateExpansion(of: node, in: context, kind: .predicate)
}
}
public struct ExpressionMacro: SwiftSyntaxMacros.ExpressionMacro, Sendable {
public static var formatMode: FormatMode { .disabled }
public static func expansion(of node: some FreestandingMacroExpansionSyntax, in context: some MacroExpansionContext) throws -> ExprSyntax {
try predicateExpansion(of: node, in: context, kind: .expression)
}
}
|