File: hash_to_curve.c

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (385 lines) | stat: -rw-r--r-- 15,471 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
/* Copyright (c) 2020, Google Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */

#include <CNIOBoringSSL_ec.h>

#include <CNIOBoringSSL_digest.h>
#include <CNIOBoringSSL_err.h>
#include <CNIOBoringSSL_nid.h>
#include <CNIOBoringSSL_type_check.h>

#include <assert.h>

#include "internal.h"
#include "../fipsmodule/bn/internal.h"
#include "../fipsmodule/ec/internal.h"
#include "../internal.h"


// This file implements hash-to-curve, as described in
// draft-irtf-cfrg-hash-to-curve-07.
//
// This hash-to-curve implementation is written generically with the
// expectation that we will eventually wish to support other curves. If it
// becomes a performance bottleneck, some possible optimizations by
// specializing it to the curve:
//
// - Rather than using a generic |felem_exp|, specialize the exponentation to
//   c2 with a faster addition chain.
//
// - |felem_mul| and |felem_sqr| are indirect calls to generic Montgomery
//   code. Given the few curves, we could specialize
//   |map_to_curve_simple_swu|. But doing this reasonably without duplicating
//   code in C is difficult. (C++ templates would be useful here.)
//
// - P-521's Z and c2 have small power-of-two absolute values. We could save
//   two multiplications in SSWU. (Other curves have reasonable values of Z
//   and inconvenient c2.) This is unlikely to be worthwhile without C++
//   templates to make specializing more convenient.

// expand_message_xmd implements the operation described in section 5.3.1 of
// draft-irtf-cfrg-hash-to-curve-07. It returns one on success and zero on
// allocation failure or if |out_len| was too large.
static int expand_message_xmd(const EVP_MD *md, uint8_t *out, size_t out_len,
                              const uint8_t *msg, size_t msg_len,
                              const uint8_t *dst, size_t dst_len) {
  int ret = 0;
  const size_t block_size = EVP_MD_block_size(md);
  const size_t md_size = EVP_MD_size(md);
  EVP_MD_CTX ctx;
  EVP_MD_CTX_init(&ctx);

  // Long DSTs are hashed down to size. See section 5.3.3.
  OPENSSL_STATIC_ASSERT(EVP_MAX_MD_SIZE < 256, "hashed DST still too large");
  uint8_t dst_buf[EVP_MAX_MD_SIZE];
  if (dst_len >= 256) {
    static const char kPrefix[] = "H2C-OVERSIZE-DST-";
    if (!EVP_DigestInit_ex(&ctx, md, NULL) ||
        !EVP_DigestUpdate(&ctx, kPrefix, sizeof(kPrefix) - 1) ||
        !EVP_DigestUpdate(&ctx, dst, dst_len) ||
        !EVP_DigestFinal_ex(&ctx, dst_buf, NULL)) {
      goto err;
    }
    dst = dst_buf;
    dst_len = md_size;
  }
  uint8_t dst_len_u8 = (uint8_t)dst_len;

  // Compute b_0.
  static const uint8_t kZeros[EVP_MAX_MD_BLOCK_SIZE] = {0};
  // If |out_len| exceeds 16 bits then |i| will wrap below causing an error to
  // be returned. This depends on the static assert above.
  uint8_t l_i_b_str_zero[3] = {out_len >> 8, out_len, 0};
  uint8_t b_0[EVP_MAX_MD_SIZE];
  if (!EVP_DigestInit_ex(&ctx, md, NULL) ||
      !EVP_DigestUpdate(&ctx, kZeros, block_size) ||
      !EVP_DigestUpdate(&ctx, msg, msg_len) ||
      !EVP_DigestUpdate(&ctx, l_i_b_str_zero, sizeof(l_i_b_str_zero)) ||
      !EVP_DigestUpdate(&ctx, dst, dst_len) ||
      !EVP_DigestUpdate(&ctx, &dst_len_u8, 1) ||
      !EVP_DigestFinal_ex(&ctx, b_0, NULL)) {
    goto err;
  }

  uint8_t b_i[EVP_MAX_MD_SIZE];
  uint8_t i = 1;
  while (out_len > 0) {
    if (i == 0) {
      // Input was too large.
      OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
      goto err;
    }
    if (i > 1) {
      for (size_t j = 0; j < md_size; j++) {
        b_i[j] ^= b_0[j];
      }
    } else {
      OPENSSL_memcpy(b_i, b_0, md_size);
    }

    if (!EVP_DigestInit_ex(&ctx, md, NULL) ||
        !EVP_DigestUpdate(&ctx, b_i, md_size) ||
        !EVP_DigestUpdate(&ctx, &i, 1) ||
        !EVP_DigestUpdate(&ctx, dst, dst_len) ||
        !EVP_DigestUpdate(&ctx, &dst_len_u8, 1) ||
        !EVP_DigestFinal_ex(&ctx, b_i, NULL)) {
      goto err;
    }

    size_t todo = out_len >= md_size ? md_size : out_len;
    OPENSSL_memcpy(out, b_i, todo);
    out += todo;
    out_len -= todo;
    i++;
  }

  ret = 1;

err:
  EVP_MD_CTX_cleanup(&ctx);
  return ret;
}

// num_bytes_to_derive determines the number of bytes to derive when hashing to
// a number modulo |modulus|. See the hash_to_field operation defined in
// section 5.2 of draft-irtf-cfrg-hash-to-curve-07.
static int num_bytes_to_derive(size_t *out, const BIGNUM *modulus, unsigned k) {
  size_t bits = BN_num_bits(modulus);
  size_t L = (bits + k + 7) / 8;
  // We require 2^(8*L) < 2^(2*bits - 2) <= n^2 so to fit in bounds for
  // |felem_reduce| and |ec_scalar_reduce|. All defined hash-to-curve suites
  // define |k| to be well under this bound. (|k| is usually around half of
  // |p_bits|.)
  if (L * 8 >= 2 * bits - 2 ||
      L > 2 * EC_MAX_BYTES) {
    assert(0);
    OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
    return 0;
  }

  *out = L;
  return 1;
}

// big_endian_to_words decodes |in| as a big-endian integer and writes the
// result to |out|. |num_words| must be large enough to contain the output.
static void big_endian_to_words(BN_ULONG *out, size_t num_words,
                                const uint8_t *in, size_t len) {
  assert(len <= num_words * sizeof(BN_ULONG));
  // Ensure any excess bytes are zeroed.
  OPENSSL_memset(out, 0, num_words * sizeof(BN_ULONG));
  uint8_t *out_u8 = (uint8_t *)out;
  for (size_t i = 0; i < len; i++) {
    out_u8[len - 1 - i] = in[i];
  }
}

// hash_to_field implements the operation described in section 5.2
// of draft-irtf-cfrg-hash-to-curve-07, with count = 2. |k| is the security
// factor.
static int hash_to_field2(const EC_GROUP *group, const EVP_MD *md,
                          EC_FELEM *out1, EC_FELEM *out2, const uint8_t *dst,
                          size_t dst_len, unsigned k, const uint8_t *msg,
                          size_t msg_len) {
  size_t L;
  uint8_t buf[4 * EC_MAX_BYTES];
  if (!num_bytes_to_derive(&L, &group->field, k) ||
      !expand_message_xmd(md, buf, 2 * L, msg, msg_len, dst, dst_len)) {
    return 0;
  }
  BN_ULONG words[2 * EC_MAX_WORDS];
  size_t num_words = 2 * group->field.width;
  big_endian_to_words(words, num_words, buf, L);
  group->meth->felem_reduce(group, out1, words, num_words);
  big_endian_to_words(words, num_words, buf + L, L);
  group->meth->felem_reduce(group, out2, words, num_words);
  return 1;
}

// hash_to_scalar behaves like |hash_to_field2| but returns a value modulo the
// group order rather than a field element. |k| is the security factor.
static int hash_to_scalar(const EC_GROUP *group, const EVP_MD *md,
                          EC_SCALAR *out, const uint8_t *dst, size_t dst_len,
                          unsigned k, const uint8_t *msg, size_t msg_len) {
  size_t L;
  uint8_t buf[EC_MAX_BYTES * 2];
  if (!num_bytes_to_derive(&L, &group->order, k) ||
      !expand_message_xmd(md, buf, L, msg, msg_len, dst, dst_len)) {
    return 0;
  }

  BN_ULONG words[2 * EC_MAX_WORDS];
  size_t num_words = 2 * group->order.width;
  big_endian_to_words(words, num_words, buf, L);
  ec_scalar_reduce(group, out, words, num_words);
  return 1;
}

static inline void mul_A(const EC_GROUP *group, EC_FELEM *out,
                         const EC_FELEM *in) {
  assert(group->a_is_minus3);
  EC_FELEM tmp;
  ec_felem_add(group, &tmp, in, in);      // tmp = 2*in
  ec_felem_add(group, &tmp, &tmp, &tmp);  // tmp = 4*in
  ec_felem_sub(group, out, in, &tmp);     // out = -3*in
}

static inline void mul_minus_A(const EC_GROUP *group, EC_FELEM *out,
                               const EC_FELEM *in) {
  assert(group->a_is_minus3);
  EC_FELEM tmp;
  ec_felem_add(group, &tmp, in, in);   // tmp = 2*in
  ec_felem_add(group, out, &tmp, in);  // out = 3*in
}

// sgn0_le implements the operation described in section 4.1.2 of
// draft-irtf-cfrg-hash-to-curve-07.
static BN_ULONG sgn0_le(const EC_GROUP *group, const EC_FELEM *a) {
  uint8_t buf[EC_MAX_BYTES];
  size_t len;
  ec_felem_to_bytes(group, buf, &len, a);
  return buf[len - 1] & 1;
}

// map_to_curve_simple_swu implements the operation described in section 6.6.2
// of draft-irtf-cfrg-hash-to-curve-07, using the optimization in appendix
// D.2.1. It returns one on success and zero on error.
static int map_to_curve_simple_swu(const EC_GROUP *group, const EC_FELEM *Z,
                                   const BN_ULONG *c1, size_t num_c1,
                                   const EC_FELEM *c2, EC_RAW_POINT *out,
                                   const EC_FELEM *u) {
  void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a,
                          const EC_FELEM *b) = group->meth->felem_mul;
  void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) =
      group->meth->felem_sqr;

  // This function requires the prime be 3 mod 4, and that A = -3.
  if (group->field.width == 0 || (group->field.d[0] & 3) != 3 ||
      !group->a_is_minus3) {
    OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
    return 0;
  }

  EC_FELEM tv1, tv2, tv3, tv4, xd, x1n, x2n, tmp, gxd, gx1, y1, y2;
  felem_sqr(group, &tv1, u);                         // tv1 = u^2
  felem_mul(group, &tv3, Z, &tv1);                   // tv3 = Z * tv1
  felem_sqr(group, &tv2, &tv3);                      // tv2 = tv3^2
  ec_felem_add(group, &xd, &tv2, &tv3);              // xd = tv2 + tv3
  ec_felem_add(group, &x1n, &xd, &group->one);       // x1n = xd + 1
  felem_mul(group, &x1n, &x1n, &group->b);           // x1n = x1n * B
  mul_minus_A(group, &xd, &xd);                      // xd = -A * xd
  BN_ULONG e1 = ec_felem_non_zero_mask(group, &xd);  // e1 = xd == 0 [flipped]
  mul_A(group, &tmp, Z);
  ec_felem_select(group, &xd, e1, &xd, &tmp);  // xd = CMOV(xd, Z * A, e1)
  felem_sqr(group, &tv2, &xd);                 // tv2 = xd^2
  felem_mul(group, &gxd, &tv2, &xd);           // gxd = tv2 * xd = xd^3
  mul_A(group, &tv2, &tv2);                    // tv2 = A * tv2
  felem_sqr(group, &gx1, &x1n);                // gx1 = x1n^2
  ec_felem_add(group, &gx1, &gx1, &tv2);       // gx1 = gx1 + tv2
  felem_mul(group, &gx1, &gx1, &x1n);          // gx1 = gx1 * x1n
  felem_mul(group, &tv2, &group->b, &gxd);     // tv2 = B * gxd
  ec_felem_add(group, &gx1, &gx1, &tv2);       // gx1 = gx1 + tv2
  felem_sqr(group, &tv4, &gxd);                // tv4 = gxd^2
  felem_mul(group, &tv2, &gx1, &gxd);          // tv2 = gx1 * gxd
  felem_mul(group, &tv4, &tv4, &tv2);          // tv4 = tv4 * tv2
  group->meth->felem_exp(group, &y1, &tv4, c1, num_c1);  // y1 = tv4^c1
  felem_mul(group, &y1, &y1, &tv2);                      // y1 = y1 * tv2
  felem_mul(group, &x2n, &tv3, &x1n);                    // x2n = tv3 * x1n
  felem_mul(group, &y2, &y1, c2);                        // y2 = y1 * c2
  felem_mul(group, &y2, &y2, &tv1);                      // y2 = y2 * tv1
  felem_mul(group, &y2, &y2, u);                         // y2 = y2 * u
  felem_sqr(group, &tv2, &y1);                           // tv2 = y1^2
  felem_mul(group, &tv2, &tv2, &gxd);                    // tv2 = tv2 * gxd
  ec_felem_sub(group, &tv3, &tv2, &gx1);
  BN_ULONG e2 =
      ec_felem_non_zero_mask(group, &tv3);       // e2 = tv2 == gx1 [flipped]
  ec_felem_select(group, &x1n, e2, &x2n, &x1n);  // xn = CMOV(x2n, x1n, e2)
  ec_felem_select(group, &y1, e2, &y2, &y1);     // y = CMOV(y2, y1, e2)
  BN_ULONG sgn0_u = sgn0_le(group, u);
  BN_ULONG sgn0_y = sgn0_le(group, &y1);
  BN_ULONG e3 = sgn0_u ^ sgn0_y;
  e3 = ((BN_ULONG)0) - e3;  // e3 = sgn0(u) == sgn0(y) [flipped]
  ec_felem_neg(group, &y2, &y1);
  ec_felem_select(group, &y1, e3, &y2, &y1);  // y = CMOV(-y, y, e3)

  // Appendix D.1 describes how to convert (x1n, xd, y1, 1) to Jacobian
  // coordinates. Note yd = 1. Also note that gxd computed above is xd^3.
  felem_mul(group, &out->X, &x1n, &xd);     // X = xn * xd
  felem_mul(group, &out->Y, &y1, &gxd);     // Y = yn * gxd = yn * xd^3
  out->Z = xd;                              // Z = xd
  return 1;
}

static int hash_to_curve(const EC_GROUP *group, const EVP_MD *md,
                         const EC_FELEM *Z, const EC_FELEM *c2, unsigned k,
                         EC_RAW_POINT *out, const uint8_t *dst, size_t dst_len,
                         const uint8_t *msg, size_t msg_len) {
  EC_FELEM u0, u1;
  if (!hash_to_field2(group, md, &u0, &u1, dst, dst_len, k, msg, msg_len)) {
    return 0;
  }

  // Compute |c1| = (p - 3) / 4.
  BN_ULONG c1[EC_MAX_WORDS];
  size_t num_c1 = group->field.width;
  if (!bn_copy_words(c1, num_c1, &group->field)) {
    return 0;
  }
  bn_rshift_words(c1, c1, /*shift=*/2, /*num=*/num_c1);

  EC_RAW_POINT Q0, Q1;
  if (!map_to_curve_simple_swu(group, Z, c1, num_c1, c2, &Q0, &u0) ||
      !map_to_curve_simple_swu(group, Z, c1, num_c1, c2, &Q1, &u1)) {
    return 0;
  }

  group->meth->add(group, out, &Q0, &Q1);  // R = Q0 + Q1
  // All our curves have cofactor one, so |clear_cofactor| is a no-op.
  return 1;
}

static int felem_from_u8(const EC_GROUP *group, EC_FELEM *out, uint8_t a) {
  uint8_t bytes[EC_MAX_BYTES] = {0};
  size_t len = BN_num_bytes(&group->field);
  bytes[len - 1] = a;
  return ec_felem_from_bytes(group, out, bytes, len);
}

int ec_hash_to_curve_p384_xmd_sha512_sswu_draft07(
    const EC_GROUP *group, EC_RAW_POINT *out, const uint8_t *dst,
    size_t dst_len, const uint8_t *msg, size_t msg_len) {
  // See section 8.3 of draft-irtf-cfrg-hash-to-curve-07.
  if (EC_GROUP_get_curve_name(group) != NID_secp384r1) {
    OPENSSL_PUT_ERROR(EC, EC_R_GROUP_MISMATCH);
    return 0;
  }

  // kSqrt1728 was computed as follows in python3:
  //
  // p = 2**384 - 2**128 - 2**96 + 2**32 - 1
  // z3 = 12**3
  // c2 = pow(z3, (p+1)//4, p)
  // assert z3 == pow(c2, 2, p)
  // ", ".join("0x%02x" % b for b in c2.to_bytes(384//8, 'big')

  static const uint8_t kSqrt1728[] = {
      0x01, 0x98, 0x77, 0xcc, 0x10, 0x41, 0xb7, 0x55, 0x57, 0x43, 0xc0, 0xae,
      0x2e, 0x3a, 0x3e, 0x61, 0xfb, 0x2a, 0xaa, 0x2e, 0x0e, 0x87, 0xea, 0x55,
      0x7a, 0x56, 0x3d, 0x8b, 0x59, 0x8a, 0x09, 0x40, 0xd0, 0xa6, 0x97, 0xa9,
      0xe0, 0xb9, 0xe9, 0x2c, 0xfa, 0xa3, 0x14, 0xf5, 0x83, 0xc9, 0xd0, 0x66
  };

  // Z = -12, c2 = sqrt(1728)
  EC_FELEM Z, c2;
  if (!felem_from_u8(group, &Z, 12) ||
      !ec_felem_from_bytes(group, &c2, kSqrt1728, sizeof(kSqrt1728))) {
    return 0;
  }
  ec_felem_neg(group, &Z, &Z);

  return hash_to_curve(group, EVP_sha512(), &Z, &c2, /*k=*/192, out, dst,
                       dst_len, msg, msg_len);
}

int ec_hash_to_scalar_p384_xmd_sha512_draft07(
    const EC_GROUP *group, EC_SCALAR *out, const uint8_t *dst, size_t dst_len,
    const uint8_t *msg, size_t msg_len) {
  if (EC_GROUP_get_curve_name(group) != NID_secp384r1) {
    OPENSSL_PUT_ERROR(EC, EC_R_GROUP_MISMATCH);
    return 0;
  }

  return hash_to_scalar(group, EVP_sha512(), out, dst, dst_len, /*k=*/192, msg,
                        msg_len);
}