1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <CNIOBoringSSL_bn.h>
#include <assert.h>
#include <limits.h>
#include <CNIOBoringSSL_err.h>
#include "internal.h"
// bn_div_words divides a double-width |h|,|l| by |d| and returns the result,
// which must fit in a |BN_ULONG|.
OPENSSL_UNUSED static BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l,
BN_ULONG d) {
BN_ULONG dh, dl, q, ret = 0, th, tl, t;
int i, count = 2;
if (d == 0) {
return BN_MASK2;
}
i = BN_num_bits_word(d);
assert((i == BN_BITS2) || (h <= (BN_ULONG)1 << i));
i = BN_BITS2 - i;
if (h >= d) {
h -= d;
}
if (i) {
d <<= i;
h = (h << i) | (l >> (BN_BITS2 - i));
l <<= i;
}
dh = (d & BN_MASK2h) >> BN_BITS4;
dl = (d & BN_MASK2l);
for (;;) {
if ((h >> BN_BITS4) == dh) {
q = BN_MASK2l;
} else {
q = h / dh;
}
th = q * dh;
tl = dl * q;
for (;;) {
t = h - th;
if ((t & BN_MASK2h) ||
((tl) <= ((t << BN_BITS4) | ((l & BN_MASK2h) >> BN_BITS4)))) {
break;
}
q--;
th -= dh;
tl -= dl;
}
t = (tl >> BN_BITS4);
tl = (tl << BN_BITS4) & BN_MASK2h;
th += t;
if (l < tl) {
th++;
}
l -= tl;
if (h < th) {
h += d;
q--;
}
h -= th;
if (--count == 0) {
break;
}
ret = q << BN_BITS4;
h = (h << BN_BITS4) | (l >> BN_BITS4);
l = (l & BN_MASK2l) << BN_BITS4;
}
ret |= q;
return ret;
}
static inline void bn_div_rem_words(BN_ULONG *quotient_out, BN_ULONG *rem_out,
BN_ULONG n0, BN_ULONG n1, BN_ULONG d0) {
// GCC and Clang generate function calls to |__udivdi3| and |__umoddi3| when
// the |BN_ULLONG|-based C code is used.
//
// GCC bugs:
// * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=14224
// * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=43721
// * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=54183
// * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58897
// * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=65668
//
// Clang bugs:
// * https://llvm.org/bugs/show_bug.cgi?id=6397
// * https://llvm.org/bugs/show_bug.cgi?id=12418
//
// These issues aren't specific to x86 and x86_64, so it might be worthwhile
// to add more assembly language implementations.
#if defined(BN_CAN_USE_INLINE_ASM) && defined(OPENSSL_X86)
__asm__ volatile("divl %4"
: "=a"(*quotient_out), "=d"(*rem_out)
: "a"(n1), "d"(n0), "rm"(d0)
: "cc");
#elif defined(BN_CAN_USE_INLINE_ASM) && defined(OPENSSL_X86_64)
__asm__ volatile("divq %4"
: "=a"(*quotient_out), "=d"(*rem_out)
: "a"(n1), "d"(n0), "rm"(d0)
: "cc");
#else
#if defined(BN_CAN_DIVIDE_ULLONG)
BN_ULLONG n = (((BN_ULLONG)n0) << BN_BITS2) | n1;
*quotient_out = (BN_ULONG)(n / d0);
#else
*quotient_out = bn_div_words(n0, n1, d0);
#endif
*rem_out = n1 - (*quotient_out * d0);
#endif
}
// BN_div computes "quotient := numerator / divisor", rounding towards zero,
// and sets up |rem| such that "quotient * divisor + rem = numerator" holds.
//
// Thus:
//
// quotient->neg == numerator->neg ^ divisor->neg
// (unless the result is zero)
// rem->neg == numerator->neg
// (unless the remainder is zero)
//
// If |quotient| or |rem| is NULL, the respective value is not returned.
//
// This was specifically designed to contain fewer branches that may leak
// sensitive information; see "New Branch Prediction Vulnerabilities in OpenSSL
// and Necessary Software Countermeasures" by Onur Acıçmez, Shay Gueron, and
// Jean-Pierre Seifert.
int BN_div(BIGNUM *quotient, BIGNUM *rem, const BIGNUM *numerator,
const BIGNUM *divisor, BN_CTX *ctx) {
int norm_shift, loop;
BIGNUM wnum;
BN_ULONG *resp, *wnump;
BN_ULONG d0, d1;
int num_n, div_n;
// This function relies on the historical minimal-width |BIGNUM| invariant.
// It is already not constant-time (constant-time reductions should use
// Montgomery logic), so we shrink all inputs and intermediate values to
// retain the previous behavior.
// Invalid zero-padding would have particularly bad consequences.
int numerator_width = bn_minimal_width(numerator);
int divisor_width = bn_minimal_width(divisor);
if ((numerator_width > 0 && numerator->d[numerator_width - 1] == 0) ||
(divisor_width > 0 && divisor->d[divisor_width - 1] == 0)) {
OPENSSL_PUT_ERROR(BN, BN_R_NOT_INITIALIZED);
return 0;
}
if (BN_is_zero(divisor)) {
OPENSSL_PUT_ERROR(BN, BN_R_DIV_BY_ZERO);
return 0;
}
BN_CTX_start(ctx);
BIGNUM *tmp = BN_CTX_get(ctx);
BIGNUM *snum = BN_CTX_get(ctx);
BIGNUM *sdiv = BN_CTX_get(ctx);
BIGNUM *res = NULL;
if (quotient == NULL) {
res = BN_CTX_get(ctx);
} else {
res = quotient;
}
if (sdiv == NULL || res == NULL) {
goto err;
}
// First we normalise the numbers
norm_shift = BN_BITS2 - (BN_num_bits(divisor) % BN_BITS2);
if (!BN_lshift(sdiv, divisor, norm_shift)) {
goto err;
}
bn_set_minimal_width(sdiv);
sdiv->neg = 0;
norm_shift += BN_BITS2;
if (!BN_lshift(snum, numerator, norm_shift)) {
goto err;
}
bn_set_minimal_width(snum);
snum->neg = 0;
// Since we don't want to have special-case logic for the case where snum is
// larger than sdiv, we pad snum with enough zeroes without changing its
// value.
if (snum->width <= sdiv->width + 1) {
if (!bn_wexpand(snum, sdiv->width + 2)) {
goto err;
}
for (int i = snum->width; i < sdiv->width + 2; i++) {
snum->d[i] = 0;
}
snum->width = sdiv->width + 2;
} else {
if (!bn_wexpand(snum, snum->width + 1)) {
goto err;
}
snum->d[snum->width] = 0;
snum->width++;
}
div_n = sdiv->width;
num_n = snum->width;
loop = num_n - div_n;
// Lets setup a 'window' into snum
// This is the part that corresponds to the current
// 'area' being divided
wnum.neg = 0;
wnum.d = &(snum->d[loop]);
wnum.width = div_n;
// only needed when BN_ucmp messes up the values between width and max
wnum.dmax = snum->dmax - loop; // so we don't step out of bounds
// Get the top 2 words of sdiv
// div_n=sdiv->width;
d0 = sdiv->d[div_n - 1];
d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2];
// pointer to the 'top' of snum
wnump = &(snum->d[num_n - 1]);
// Setup |res|. |numerator| and |res| may alias, so we save |numerator->neg|
// for later.
const int numerator_neg = numerator->neg;
res->neg = (numerator_neg ^ divisor->neg);
if (!bn_wexpand(res, loop + 1)) {
goto err;
}
res->width = loop - 1;
resp = &(res->d[loop - 1]);
// space for temp
if (!bn_wexpand(tmp, div_n + 1)) {
goto err;
}
// if res->width == 0 then clear the neg value otherwise decrease
// the resp pointer
if (res->width == 0) {
res->neg = 0;
} else {
resp--;
}
for (int i = 0; i < loop - 1; i++, wnump--, resp--) {
BN_ULONG q, l0;
// the first part of the loop uses the top two words of snum and sdiv to
// calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv
BN_ULONG n0, n1, rm = 0;
n0 = wnump[0];
n1 = wnump[-1];
if (n0 == d0) {
q = BN_MASK2;
} else {
// n0 < d0
bn_div_rem_words(&q, &rm, n0, n1, d0);
#ifdef BN_ULLONG
BN_ULLONG t2 = (BN_ULLONG)d1 * q;
for (;;) {
if (t2 <= ((((BN_ULLONG)rm) << BN_BITS2) | wnump[-2])) {
break;
}
q--;
rm += d0;
if (rm < d0) {
break; // don't let rm overflow
}
t2 -= d1;
}
#else // !BN_ULLONG
BN_ULONG t2l, t2h;
BN_UMULT_LOHI(t2l, t2h, d1, q);
for (;;) {
if (t2h < rm ||
(t2h == rm && t2l <= wnump[-2])) {
break;
}
q--;
rm += d0;
if (rm < d0) {
break; // don't let rm overflow
}
if (t2l < d1) {
t2h--;
}
t2l -= d1;
}
#endif // !BN_ULLONG
}
l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q);
tmp->d[div_n] = l0;
wnum.d--;
// ingore top values of the bignums just sub the two
// BN_ULONG arrays with bn_sub_words
if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n + 1)) {
// Note: As we have considered only the leading
// two BN_ULONGs in the calculation of q, sdiv * q
// might be greater than wnum (but then (q-1) * sdiv
// is less or equal than wnum)
q--;
if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n)) {
// we can't have an overflow here (assuming
// that q != 0, but if q == 0 then tmp is
// zero anyway)
(*wnump)++;
}
}
// store part of the result
*resp = q;
}
bn_set_minimal_width(snum);
if (rem != NULL) {
if (!BN_rshift(rem, snum, norm_shift)) {
goto err;
}
if (!BN_is_zero(rem)) {
rem->neg = numerator_neg;
}
}
bn_set_minimal_width(res);
BN_CTX_end(ctx);
return 1;
err:
BN_CTX_end(ctx);
return 0;
}
int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx) {
if (!(BN_mod(r, m, d, ctx))) {
return 0;
}
if (!r->neg) {
return 1;
}
// now -|d| < r < 0, so we have to set r := r + |d|.
return (d->neg ? BN_sub : BN_add)(r, r, d);
}
BN_ULONG bn_reduce_once(BN_ULONG *r, const BN_ULONG *a, BN_ULONG carry,
const BN_ULONG *m, size_t num) {
assert(r != a);
// |r| = |a| - |m|. |bn_sub_words| performs the bulk of the subtraction, and
// then we apply the borrow to |carry|.
carry -= bn_sub_words(r, a, m, num);
// We know 0 <= |a| < 2*|m|, so -|m| <= |r| < |m|.
//
// If 0 <= |r| < |m|, |r| fits in |num| words and |carry| is zero. We then
// wish to select |r| as the answer. Otherwise -m <= r < 0 and we wish to
// return |r| + |m|, or |a|. |carry| must then be -1 or all ones. In both
// cases, |carry| is a suitable input to |bn_select_words|.
//
// Although |carry| may be one if it was one on input and |bn_sub_words|
// returns zero, this would give |r| > |m|, violating our input assumptions.
assert(carry == 0 || carry == (BN_ULONG)-1);
bn_select_words(r, carry, a /* r < 0 */, r /* r >= 0 */, num);
return carry;
}
BN_ULONG bn_reduce_once_in_place(BN_ULONG *r, BN_ULONG carry, const BN_ULONG *m,
BN_ULONG *tmp, size_t num) {
// See |bn_reduce_once| for why this logic works.
carry -= bn_sub_words(tmp, r, m, num);
assert(carry == 0 || carry == (BN_ULONG)-1);
bn_select_words(r, carry, r /* tmp < 0 */, tmp /* tmp >= 0 */, num);
return carry;
}
void bn_mod_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
const BN_ULONG *m, BN_ULONG *tmp, size_t num) {
// r = a - b
BN_ULONG borrow = bn_sub_words(r, a, b, num);
// tmp = a - b + m
bn_add_words(tmp, r, m, num);
bn_select_words(r, 0 - borrow, tmp /* r < 0 */, r /* r >= 0 */, num);
}
void bn_mod_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
const BN_ULONG *m, BN_ULONG *tmp, size_t num) {
BN_ULONG carry = bn_add_words(r, a, b, num);
bn_reduce_once_in_place(r, carry, m, tmp, num);
}
int bn_div_consttime(BIGNUM *quotient, BIGNUM *remainder,
const BIGNUM *numerator, const BIGNUM *divisor,
BN_CTX *ctx) {
if (BN_is_negative(numerator) || BN_is_negative(divisor)) {
OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
return 0;
}
if (BN_is_zero(divisor)) {
OPENSSL_PUT_ERROR(BN, BN_R_DIV_BY_ZERO);
return 0;
}
// This function implements long division in binary. It is not very efficient,
// but it is simple, easy to make constant-time, and performant enough for RSA
// key generation.
int ret = 0;
BN_CTX_start(ctx);
BIGNUM *q = quotient, *r = remainder;
if (quotient == NULL || quotient == numerator || quotient == divisor) {
q = BN_CTX_get(ctx);
}
if (remainder == NULL || remainder == numerator || remainder == divisor) {
r = BN_CTX_get(ctx);
}
BIGNUM *tmp = BN_CTX_get(ctx);
if (q == NULL || r == NULL || tmp == NULL ||
!bn_wexpand(q, numerator->width) ||
!bn_wexpand(r, divisor->width) ||
!bn_wexpand(tmp, divisor->width)) {
goto err;
}
OPENSSL_memset(q->d, 0, numerator->width * sizeof(BN_ULONG));
q->width = numerator->width;
q->neg = 0;
OPENSSL_memset(r->d, 0, divisor->width * sizeof(BN_ULONG));
r->width = divisor->width;
r->neg = 0;
// Incorporate |numerator| into |r|, one bit at a time, reducing after each
// step. At the start of each loop iteration, |r| < |divisor|
for (int i = numerator->width - 1; i >= 0; i--) {
for (int bit = BN_BITS2 - 1; bit >= 0; bit--) {
// Incorporate the next bit of the numerator, by computing
// r = 2*r or 2*r + 1. Note the result fits in one more word. We store the
// extra word in |carry|.
BN_ULONG carry = bn_add_words(r->d, r->d, r->d, divisor->width);
r->d[0] |= (numerator->d[i] >> bit) & 1;
// |r| was previously fully-reduced, so we know:
// 2*0 <= r <= 2*(divisor-1) + 1
// 0 <= r <= 2*divisor - 1 < 2*divisor.
// Thus |r| satisfies the preconditions for |bn_reduce_once_in_place|.
BN_ULONG subtracted = bn_reduce_once_in_place(r->d, carry, divisor->d,
tmp->d, divisor->width);
// The corresponding bit of the quotient is set iff we needed to subtract.
q->d[i] |= (~subtracted & 1) << bit;
}
}
if ((quotient != NULL && !BN_copy(quotient, q)) ||
(remainder != NULL && !BN_copy(remainder, r))) {
goto err;
}
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
static BIGNUM *bn_scratch_space_from_ctx(size_t width, BN_CTX *ctx) {
BIGNUM *ret = BN_CTX_get(ctx);
if (ret == NULL ||
!bn_wexpand(ret, width)) {
return NULL;
}
ret->neg = 0;
ret->width = width;
return ret;
}
// bn_resized_from_ctx returns |bn| with width at least |width| or NULL on
// error. This is so it may be used with low-level "words" functions. If
// necessary, it allocates a new |BIGNUM| with a lifetime of the current scope
// in |ctx|, so the caller does not need to explicitly free it. |bn| must fit in
// |width| words.
static const BIGNUM *bn_resized_from_ctx(const BIGNUM *bn, size_t width,
BN_CTX *ctx) {
if ((size_t)bn->width >= width) {
// Any excess words must be zero.
assert(bn_fits_in_words(bn, width));
return bn;
}
BIGNUM *ret = bn_scratch_space_from_ctx(width, ctx);
if (ret == NULL ||
!BN_copy(ret, bn) ||
!bn_resize_words(ret, width)) {
return NULL;
}
return ret;
}
int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
BN_CTX *ctx) {
if (!BN_add(r, a, b)) {
return 0;
}
return BN_nnmod(r, r, m, ctx);
}
int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
const BIGNUM *m) {
BN_CTX *ctx = BN_CTX_new();
int ok = ctx != NULL &&
bn_mod_add_consttime(r, a, b, m, ctx);
BN_CTX_free(ctx);
return ok;
}
int bn_mod_add_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
const BIGNUM *m, BN_CTX *ctx) {
BN_CTX_start(ctx);
a = bn_resized_from_ctx(a, m->width, ctx);
b = bn_resized_from_ctx(b, m->width, ctx);
BIGNUM *tmp = bn_scratch_space_from_ctx(m->width, ctx);
int ok = a != NULL && b != NULL && tmp != NULL &&
bn_wexpand(r, m->width);
if (ok) {
bn_mod_add_words(r->d, a->d, b->d, m->d, tmp->d, m->width);
r->width = m->width;
r->neg = 0;
}
BN_CTX_end(ctx);
return ok;
}
int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
BN_CTX *ctx) {
if (!BN_sub(r, a, b)) {
return 0;
}
return BN_nnmod(r, r, m, ctx);
}
int bn_mod_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
const BIGNUM *m, BN_CTX *ctx) {
BN_CTX_start(ctx);
a = bn_resized_from_ctx(a, m->width, ctx);
b = bn_resized_from_ctx(b, m->width, ctx);
BIGNUM *tmp = bn_scratch_space_from_ctx(m->width, ctx);
int ok = a != NULL && b != NULL && tmp != NULL &&
bn_wexpand(r, m->width);
if (ok) {
bn_mod_sub_words(r->d, a->d, b->d, m->d, tmp->d, m->width);
r->width = m->width;
r->neg = 0;
}
BN_CTX_end(ctx);
return ok;
}
int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
const BIGNUM *m) {
BN_CTX *ctx = BN_CTX_new();
int ok = ctx != NULL &&
bn_mod_sub_consttime(r, a, b, m, ctx);
BN_CTX_free(ctx);
return ok;
}
int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
BN_CTX *ctx) {
BIGNUM *t;
int ret = 0;
BN_CTX_start(ctx);
t = BN_CTX_get(ctx);
if (t == NULL) {
goto err;
}
if (a == b) {
if (!BN_sqr(t, a, ctx)) {
goto err;
}
} else {
if (!BN_mul(t, a, b, ctx)) {
goto err;
}
}
if (!BN_nnmod(r, t, m, ctx)) {
goto err;
}
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
if (!BN_sqr(r, a, ctx)) {
return 0;
}
// r->neg == 0, thus we don't need BN_nnmod
return BN_mod(r, r, m, ctx);
}
int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
BN_CTX *ctx) {
BIGNUM *abs_m = NULL;
int ret;
if (!BN_nnmod(r, a, m, ctx)) {
return 0;
}
if (m->neg) {
abs_m = BN_dup(m);
if (abs_m == NULL) {
return 0;
}
abs_m->neg = 0;
}
ret = bn_mod_lshift_consttime(r, r, n, (abs_m ? abs_m : m), ctx);
BN_free(abs_m);
return ret;
}
int bn_mod_lshift_consttime(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
BN_CTX *ctx) {
if (!BN_copy(r, a)) {
return 0;
}
for (int i = 0; i < n; i++) {
if (!bn_mod_lshift1_consttime(r, r, m, ctx)) {
return 0;
}
}
return 1;
}
int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m) {
BN_CTX *ctx = BN_CTX_new();
int ok = ctx != NULL &&
bn_mod_lshift_consttime(r, a, n, m, ctx);
BN_CTX_free(ctx);
return ok;
}
int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
if (!BN_lshift1(r, a)) {
return 0;
}
return BN_nnmod(r, r, m, ctx);
}
int bn_mod_lshift1_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *m,
BN_CTX *ctx) {
return bn_mod_add_consttime(r, a, a, m, ctx);
}
int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m) {
BN_CTX *ctx = BN_CTX_new();
int ok = ctx != NULL &&
bn_mod_lshift1_consttime(r, a, m, ctx);
BN_CTX_free(ctx);
return ok;
}
BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w) {
BN_ULONG ret = 0;
int i, j;
if (!w) {
// actually this an error (division by zero)
return (BN_ULONG) - 1;
}
if (a->width == 0) {
return 0;
}
// normalize input for |bn_div_rem_words|.
j = BN_BITS2 - BN_num_bits_word(w);
w <<= j;
if (!BN_lshift(a, a, j)) {
return (BN_ULONG) - 1;
}
for (i = a->width - 1; i >= 0; i--) {
BN_ULONG l = a->d[i];
BN_ULONG d;
BN_ULONG unused_rem;
bn_div_rem_words(&d, &unused_rem, ret, l, w);
ret = l - (d * w);
a->d[i] = d;
}
bn_set_minimal_width(a);
ret >>= j;
return ret;
}
BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w) {
#ifndef BN_CAN_DIVIDE_ULLONG
BN_ULONG ret = 0;
#else
BN_ULLONG ret = 0;
#endif
int i;
if (w == 0) {
return (BN_ULONG) -1;
}
#ifndef BN_CAN_DIVIDE_ULLONG
// If |w| is too long and we don't have |BN_ULLONG| division then we need to
// fall back to using |BN_div_word|.
if (w > ((BN_ULONG)1 << BN_BITS4)) {
BIGNUM *tmp = BN_dup(a);
if (tmp == NULL) {
return (BN_ULONG)-1;
}
ret = BN_div_word(tmp, w);
BN_free(tmp);
return ret;
}
#endif
for (i = a->width - 1; i >= 0; i--) {
#ifndef BN_CAN_DIVIDE_ULLONG
ret = ((ret << BN_BITS4) | ((a->d[i] >> BN_BITS4) & BN_MASK2l)) % w;
ret = ((ret << BN_BITS4) | (a->d[i] & BN_MASK2l)) % w;
#else
ret = (BN_ULLONG)(((ret << (BN_ULLONG)BN_BITS2) | a->d[i]) % (BN_ULLONG)w);
#endif
}
return (BN_ULONG)ret;
}
int BN_mod_pow2(BIGNUM *r, const BIGNUM *a, size_t e) {
if (e == 0 || a->width == 0) {
BN_zero(r);
return 1;
}
size_t num_words = 1 + ((e - 1) / BN_BITS2);
// If |a| definitely has less than |e| bits, just BN_copy.
if ((size_t) a->width < num_words) {
return BN_copy(r, a) != NULL;
}
// Otherwise, first make sure we have enough space in |r|.
// Note that this will fail if num_words > INT_MAX.
if (!bn_wexpand(r, num_words)) {
return 0;
}
// Copy the content of |a| into |r|.
OPENSSL_memcpy(r->d, a->d, num_words * sizeof(BN_ULONG));
// If |e| isn't word-aligned, we have to mask off some of our bits.
size_t top_word_exponent = e % (sizeof(BN_ULONG) * 8);
if (top_word_exponent != 0) {
r->d[num_words - 1] &= (((BN_ULONG) 1) << top_word_exponent) - 1;
}
// Fill in the remaining fields of |r|.
r->neg = a->neg;
r->width = (int) num_words;
bn_set_minimal_width(r);
return 1;
}
int BN_nnmod_pow2(BIGNUM *r, const BIGNUM *a, size_t e) {
if (!BN_mod_pow2(r, a, e)) {
return 0;
}
// If the returned value was non-negative, we're done.
if (BN_is_zero(r) || !r->neg) {
return 1;
}
size_t num_words = 1 + (e - 1) / BN_BITS2;
// Expand |r| to the size of our modulus.
if (!bn_wexpand(r, num_words)) {
return 0;
}
// Clear the upper words of |r|.
OPENSSL_memset(&r->d[r->width], 0, (num_words - r->width) * BN_BYTES);
// Set parameters of |r|.
r->neg = 0;
r->width = (int) num_words;
// Now, invert every word. The idea here is that we want to compute 2^e-|x|,
// which is actually equivalent to the twos-complement representation of |x|
// in |e| bits, which is -x = ~x + 1.
for (int i = 0; i < r->width; i++) {
r->d[i] = ~r->d[i];
}
// If our exponent doesn't span the top word, we have to mask the rest.
size_t top_word_exponent = e % BN_BITS2;
if (top_word_exponent != 0) {
r->d[r->width - 1] &= (((BN_ULONG) 1) << top_word_exponent) - 1;
}
// Keep the minimal-width invariant for |BIGNUM|.
bn_set_minimal_width(r);
// Finally, add one, for the reason described above.
return BN_add(r, r, BN_value_one());
}
|