1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
|
/* Copyright (c) 2018, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <CNIOBoringSSL_bn.h>
#include <assert.h>
#include <CNIOBoringSSL_err.h>
#include "internal.h"
static BN_ULONG word_is_odd_mask(BN_ULONG a) { return (BN_ULONG)0 - (a & 1); }
static void maybe_rshift1_words(BN_ULONG *a, BN_ULONG mask, BN_ULONG *tmp,
size_t num) {
bn_rshift1_words(tmp, a, num);
bn_select_words(a, mask, tmp, a, num);
}
static void maybe_rshift1_words_carry(BN_ULONG *a, BN_ULONG carry,
BN_ULONG mask, BN_ULONG *tmp,
size_t num) {
maybe_rshift1_words(a, mask, tmp, num);
if (num != 0) {
carry &= mask;
a[num - 1] |= carry << (BN_BITS2-1);
}
}
static BN_ULONG maybe_add_words(BN_ULONG *a, BN_ULONG mask, const BN_ULONG *b,
BN_ULONG *tmp, size_t num) {
BN_ULONG carry = bn_add_words(tmp, a, b, num);
bn_select_words(a, mask, tmp, a, num);
return carry & mask;
}
static int bn_gcd_consttime(BIGNUM *r, unsigned *out_shift, const BIGNUM *x,
const BIGNUM *y, BN_CTX *ctx) {
size_t width = x->width > y->width ? x->width : y->width;
if (width == 0) {
*out_shift = 0;
BN_zero(r);
return 1;
}
// This is a constant-time implementation of Stein's algorithm (binary GCD).
int ret = 0;
BN_CTX_start(ctx);
BIGNUM *u = BN_CTX_get(ctx);
BIGNUM *v = BN_CTX_get(ctx);
BIGNUM *tmp = BN_CTX_get(ctx);
if (u == NULL || v == NULL || tmp == NULL ||
!BN_copy(u, x) ||
!BN_copy(v, y) ||
!bn_resize_words(u, width) ||
!bn_resize_words(v, width) ||
!bn_resize_words(tmp, width)) {
goto err;
}
// Each loop iteration halves at least one of |u| and |v|. Thus we need at
// most the combined bit width of inputs for at least one value to be zero.
unsigned x_bits = x->width * BN_BITS2, y_bits = y->width * BN_BITS2;
unsigned num_iters = x_bits + y_bits;
if (num_iters < x_bits) {
OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG);
goto err;
}
unsigned shift = 0;
for (unsigned i = 0; i < num_iters; i++) {
BN_ULONG both_odd = word_is_odd_mask(u->d[0]) & word_is_odd_mask(v->d[0]);
// If both |u| and |v| are odd, subtract the smaller from the larger.
BN_ULONG u_less_than_v =
(BN_ULONG)0 - bn_sub_words(tmp->d, u->d, v->d, width);
bn_select_words(u->d, both_odd & ~u_less_than_v, tmp->d, u->d, width);
bn_sub_words(tmp->d, v->d, u->d, width);
bn_select_words(v->d, both_odd & u_less_than_v, tmp->d, v->d, width);
// At least one of |u| and |v| is now even.
BN_ULONG u_is_odd = word_is_odd_mask(u->d[0]);
BN_ULONG v_is_odd = word_is_odd_mask(v->d[0]);
assert(!(u_is_odd & v_is_odd));
// If both are even, the final GCD gains a factor of two.
shift += 1 & (~u_is_odd & ~v_is_odd);
// Halve any which are even.
maybe_rshift1_words(u->d, ~u_is_odd, tmp->d, width);
maybe_rshift1_words(v->d, ~v_is_odd, tmp->d, width);
}
// One of |u| or |v| is zero at this point. The algorithm usually makes |u|
// zero, unless |y| was already zero on input. Fix this by combining the
// values.
assert(BN_is_zero(u) || BN_is_zero(v));
for (size_t i = 0; i < width; i++) {
v->d[i] |= u->d[i];
}
*out_shift = shift;
ret = bn_set_words(r, v->d, width);
err:
BN_CTX_end(ctx);
return ret;
}
int BN_gcd(BIGNUM *r, const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) {
unsigned shift;
return bn_gcd_consttime(r, &shift, x, y, ctx) &&
BN_lshift(r, r, shift);
}
int bn_is_relatively_prime(int *out_relatively_prime, const BIGNUM *x,
const BIGNUM *y, BN_CTX *ctx) {
int ret = 0;
BN_CTX_start(ctx);
unsigned shift;
BIGNUM *gcd = BN_CTX_get(ctx);
if (gcd == NULL ||
!bn_gcd_consttime(gcd, &shift, x, y, ctx)) {
goto err;
}
// Check that 2^|shift| * |gcd| is one.
if (gcd->width == 0) {
*out_relatively_prime = 0;
} else {
BN_ULONG mask = shift | (gcd->d[0] ^ 1);
for (int i = 1; i < gcd->width; i++) {
mask |= gcd->d[i];
}
*out_relatively_prime = mask == 0;
}
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
int bn_lcm_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
BN_CTX_start(ctx);
unsigned shift;
BIGNUM *gcd = BN_CTX_get(ctx);
int ret = gcd != NULL &&
bn_mul_consttime(r, a, b, ctx) &&
bn_gcd_consttime(gcd, &shift, a, b, ctx) &&
bn_div_consttime(r, NULL, r, gcd, ctx) &&
bn_rshift_secret_shift(r, r, shift, ctx);
BN_CTX_end(ctx);
return ret;
}
int bn_mod_inverse_consttime(BIGNUM *r, int *out_no_inverse, const BIGNUM *a,
const BIGNUM *n, BN_CTX *ctx) {
*out_no_inverse = 0;
if (BN_is_negative(a) || BN_ucmp(a, n) >= 0) {
OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED);
return 0;
}
if (BN_is_zero(a)) {
if (BN_is_one(n)) {
BN_zero(r);
return 1;
}
*out_no_inverse = 1;
OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE);
return 0;
}
// This is a constant-time implementation of the extended binary GCD
// algorithm. It is adapted from the Handbook of Applied Cryptography, section
// 14.4.3, algorithm 14.51, and modified to bound coefficients and avoid
// negative numbers.
//
// For more details and proof of correctness, see
// https://github.com/mit-plv/fiat-crypto/pull/333. In particular, see |step|
// and |mod_inverse_consttime| for the algorithm in Gallina and see
// |mod_inverse_consttime_spec| for the correctness result.
if (!BN_is_odd(a) && !BN_is_odd(n)) {
*out_no_inverse = 1;
OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE);
return 0;
}
// This function exists to compute the RSA private exponent, where |a| is one
// word. We'll thus use |a_width| when available.
size_t n_width = n->width, a_width = a->width;
if (a_width > n_width) {
a_width = n_width;
}
int ret = 0;
BN_CTX_start(ctx);
BIGNUM *u = BN_CTX_get(ctx);
BIGNUM *v = BN_CTX_get(ctx);
BIGNUM *A = BN_CTX_get(ctx);
BIGNUM *B = BN_CTX_get(ctx);
BIGNUM *C = BN_CTX_get(ctx);
BIGNUM *D = BN_CTX_get(ctx);
BIGNUM *tmp = BN_CTX_get(ctx);
BIGNUM *tmp2 = BN_CTX_get(ctx);
if (u == NULL || v == NULL || A == NULL || B == NULL || C == NULL ||
D == NULL || tmp == NULL || tmp2 == NULL ||
!BN_copy(u, a) ||
!BN_copy(v, n) ||
!BN_one(A) ||
!BN_one(D) ||
// For convenience, size |u| and |v| equivalently.
!bn_resize_words(u, n_width) ||
!bn_resize_words(v, n_width) ||
// |A| and |C| are bounded by |m|.
!bn_resize_words(A, n_width) ||
!bn_resize_words(C, n_width) ||
// |B| and |D| are bounded by |a|.
!bn_resize_words(B, a_width) ||
!bn_resize_words(D, a_width) ||
// |tmp| and |tmp2| may be used at either size.
!bn_resize_words(tmp, n_width) ||
!bn_resize_words(tmp2, n_width)) {
goto err;
}
// Each loop iteration halves at least one of |u| and |v|. Thus we need at
// most the combined bit width of inputs for at least one value to be zero.
unsigned a_bits = a_width * BN_BITS2, n_bits = n_width * BN_BITS2;
unsigned num_iters = a_bits + n_bits;
if (num_iters < a_bits) {
OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG);
goto err;
}
// Before and after each loop iteration, the following hold:
//
// u = A*a - B*n
// v = D*n - C*a
// 0 < u <= a
// 0 <= v <= n
// 0 <= A < n
// 0 <= B <= a
// 0 <= C < n
// 0 <= D <= a
//
// After each loop iteration, u and v only get smaller, and at least one of
// them shrinks by at least a factor of two.
for (unsigned i = 0; i < num_iters; i++) {
BN_ULONG both_odd = word_is_odd_mask(u->d[0]) & word_is_odd_mask(v->d[0]);
// If both |u| and |v| are odd, subtract the smaller from the larger.
BN_ULONG v_less_than_u =
(BN_ULONG)0 - bn_sub_words(tmp->d, v->d, u->d, n_width);
bn_select_words(v->d, both_odd & ~v_less_than_u, tmp->d, v->d, n_width);
bn_sub_words(tmp->d, u->d, v->d, n_width);
bn_select_words(u->d, both_odd & v_less_than_u, tmp->d, u->d, n_width);
// If we updated one of the values, update the corresponding coefficient.
BN_ULONG carry = bn_add_words(tmp->d, A->d, C->d, n_width);
carry -= bn_sub_words(tmp2->d, tmp->d, n->d, n_width);
bn_select_words(tmp->d, carry, tmp->d, tmp2->d, n_width);
bn_select_words(A->d, both_odd & v_less_than_u, tmp->d, A->d, n_width);
bn_select_words(C->d, both_odd & ~v_less_than_u, tmp->d, C->d, n_width);
bn_add_words(tmp->d, B->d, D->d, a_width);
bn_sub_words(tmp2->d, tmp->d, a->d, a_width);
bn_select_words(tmp->d, carry, tmp->d, tmp2->d, a_width);
bn_select_words(B->d, both_odd & v_less_than_u, tmp->d, B->d, a_width);
bn_select_words(D->d, both_odd & ~v_less_than_u, tmp->d, D->d, a_width);
// Our loop invariants hold at this point. Additionally, exactly one of |u|
// and |v| is now even.
BN_ULONG u_is_even = ~word_is_odd_mask(u->d[0]);
BN_ULONG v_is_even = ~word_is_odd_mask(v->d[0]);
assert(u_is_even != v_is_even);
// Halve the even one and adjust the corresponding coefficient.
maybe_rshift1_words(u->d, u_is_even, tmp->d, n_width);
BN_ULONG A_or_B_is_odd =
word_is_odd_mask(A->d[0]) | word_is_odd_mask(B->d[0]);
BN_ULONG A_carry =
maybe_add_words(A->d, A_or_B_is_odd & u_is_even, n->d, tmp->d, n_width);
BN_ULONG B_carry =
maybe_add_words(B->d, A_or_B_is_odd & u_is_even, a->d, tmp->d, a_width);
maybe_rshift1_words_carry(A->d, A_carry, u_is_even, tmp->d, n_width);
maybe_rshift1_words_carry(B->d, B_carry, u_is_even, tmp->d, a_width);
maybe_rshift1_words(v->d, v_is_even, tmp->d, n_width);
BN_ULONG C_or_D_is_odd =
word_is_odd_mask(C->d[0]) | word_is_odd_mask(D->d[0]);
BN_ULONG C_carry =
maybe_add_words(C->d, C_or_D_is_odd & v_is_even, n->d, tmp->d, n_width);
BN_ULONG D_carry =
maybe_add_words(D->d, C_or_D_is_odd & v_is_even, a->d, tmp->d, a_width);
maybe_rshift1_words_carry(C->d, C_carry, v_is_even, tmp->d, n_width);
maybe_rshift1_words_carry(D->d, D_carry, v_is_even, tmp->d, a_width);
}
assert(BN_is_zero(v));
if (!BN_is_one(u)) {
*out_no_inverse = 1;
OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE);
goto err;
}
ret = BN_copy(r, A) != NULL;
err:
BN_CTX_end(ctx);
return ret;
}
|