1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
/*
* Copyright 2013-2016 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2012, Intel Corporation. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*
* Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1)
* (1) Intel Corporation, Israel Development Center, Haifa, Israel
* (2) University of Haifa, Israel
*/
#include "rsaz_exp.h"
#if defined(RSAZ_ENABLED)
#include <CNIOBoringSSL_mem.h>
#include "internal.h"
#include "../../internal.h"
// one is 1 in RSAZ's representation.
alignas(64) static const BN_ULONG one[40] = {
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
// two80 is 2^80 in RSAZ's representation. Note RSAZ uses base 2^29, so this is
// 2^(29*2 + 22) = 2^80, not 2^(64*2 + 22).
alignas(64) static const BN_ULONG two80[40] = {
0, 0, 1 << 22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
void RSAZ_1024_mod_exp_avx2(BN_ULONG result_norm[16],
const BN_ULONG base_norm[16],
const BN_ULONG exponent[16],
const BN_ULONG m_norm[16], const BN_ULONG RR[16],
BN_ULONG k0,
BN_ULONG storage[MOD_EXP_CTIME_STORAGE_LEN]) {
OPENSSL_STATIC_ASSERT(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH % 64 == 0,
"MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH is too small");
assert((uintptr_t)storage % 64 == 0);
BN_ULONG *a_inv, *m, *result, *table_s = storage + 40 * 3, *R2 = table_s;
// Note |R2| aliases |table_s|.
if (((((uintptr_t)storage & 4095) + 320) >> 12) != 0) {
result = storage;
a_inv = storage + 40;
m = storage + 40 * 2; // should not cross page
} else {
m = storage; // should not cross page
result = storage + 40;
a_inv = storage + 40 * 2;
}
rsaz_1024_norm2red_avx2(m, m_norm);
rsaz_1024_norm2red_avx2(a_inv, base_norm);
rsaz_1024_norm2red_avx2(R2, RR);
// Convert |R2| from the usual radix, giving R = 2^1024, to RSAZ's radix,
// giving R = 2^(36*29) = 2^1044.
rsaz_1024_mul_avx2(R2, R2, R2, m, k0);
// R2 = 2^2048 * 2^2048 / 2^1044 = 2^3052
rsaz_1024_mul_avx2(R2, R2, two80, m, k0);
// R2 = 2^3052 * 2^80 / 2^1044 = 2^2088 = (2^1044)^2
// table[0] = 1
rsaz_1024_mul_avx2(result, R2, one, m, k0);
// table[1] = a_inv^1
rsaz_1024_mul_avx2(a_inv, a_inv, R2, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 0);
rsaz_1024_scatter5_avx2(table_s, a_inv, 1);
// table[2] = a_inv^2
rsaz_1024_sqr_avx2(result, a_inv, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 2);
#if 0
// This is almost 2x smaller and less than 1% slower.
for (int index = 3; index < 32; index++) {
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, index);
}
#else
// table[4] = a_inv^4
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 4);
// table[8] = a_inv^8
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 8);
// table[16] = a_inv^16
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 16);
// table[17] = a_inv^17
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 17);
// table[3]
rsaz_1024_gather5_avx2(result, table_s, 2);
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 3);
// table[6]
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 6);
// table[12]
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 12);
// table[24]
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 24);
// table[25]
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 25);
// table[5]
rsaz_1024_gather5_avx2(result, table_s, 4);
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 5);
// table[10]
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 10);
// table[20]
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 20);
// table[21]
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 21);
// table[7]
rsaz_1024_gather5_avx2(result, table_s, 6);
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 7);
// table[14]
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 14);
// table[28]
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 28);
// table[29]
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 29);
// table[9]
rsaz_1024_gather5_avx2(result, table_s, 8);
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 9);
// table[18]
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 18);
// table[19]
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 19);
// table[11]
rsaz_1024_gather5_avx2(result, table_s, 10);
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 11);
// table[22]
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 22);
// table[23]
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 23);
// table[13]
rsaz_1024_gather5_avx2(result, table_s, 12);
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 13);
// table[26]
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 26);
// table[27]
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 27);
// table[15]
rsaz_1024_gather5_avx2(result, table_s, 14);
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 15);
// table[30]
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 30);
// table[31]
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 31);
#endif
const uint8_t *p_str = (const uint8_t *)exponent;
// load first window
int wvalue = p_str[127] >> 3;
rsaz_1024_gather5_avx2(result, table_s, wvalue);
int index = 1014;
while (index > -1) { // Loop for the remaining 127 windows.
rsaz_1024_sqr_avx2(result, result, m, k0, 5);
uint16_t wvalue_16;
memcpy(&wvalue_16, &p_str[index / 8], sizeof(wvalue_16));
wvalue = wvalue_16;
wvalue = (wvalue >> (index % 8)) & 31;
index -= 5;
rsaz_1024_gather5_avx2(a_inv, table_s, wvalue); // Borrow |a_inv|.
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
}
// Square four times.
rsaz_1024_sqr_avx2(result, result, m, k0, 4);
wvalue = p_str[0] & 15;
rsaz_1024_gather5_avx2(a_inv, table_s, wvalue); // Borrow |a_inv|.
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
// Convert from Montgomery.
rsaz_1024_mul_avx2(result, result, one, m, k0);
rsaz_1024_red2norm_avx2(result_norm, result);
OPENSSL_cleanse(storage, MOD_EXP_CTIME_STORAGE_LEN * sizeof(BN_ULONG));
}
#endif // RSAZ_ENABLED
|