1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
|
/* Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
* ====================================================================
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the OpenSSL open source
* license provided above.
*
* The elliptic curve binary polynomial software is originally written by
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
* Laboratories. */
#include <CNIOBoringSSL_ec.h>
#include <CNIOBoringSSL_bn.h>
#include <CNIOBoringSSL_err.h>
#include <CNIOBoringSSL_mem.h>
#include "../bn/internal.h"
#include "../delocate.h"
#include "internal.h"
int ec_GFp_mont_group_init(EC_GROUP *group) {
int ok;
ok = ec_GFp_simple_group_init(group);
group->mont = NULL;
return ok;
}
void ec_GFp_mont_group_finish(EC_GROUP *group) {
BN_MONT_CTX_free(group->mont);
group->mont = NULL;
ec_GFp_simple_group_finish(group);
}
int ec_GFp_mont_group_set_curve(EC_GROUP *group, const BIGNUM *p,
const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
BN_MONT_CTX_free(group->mont);
group->mont = BN_MONT_CTX_new_for_modulus(p, ctx);
if (group->mont == NULL) {
OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
return 0;
}
if (!ec_GFp_simple_group_set_curve(group, p, a, b, ctx)) {
BN_MONT_CTX_free(group->mont);
group->mont = NULL;
return 0;
}
return 1;
}
static void ec_GFp_mont_felem_to_montgomery(const EC_GROUP *group,
EC_FELEM *out, const EC_FELEM *in) {
bn_to_montgomery_small(out->words, in->words, group->field.width,
group->mont);
}
static void ec_GFp_mont_felem_from_montgomery(const EC_GROUP *group,
EC_FELEM *out,
const EC_FELEM *in) {
bn_from_montgomery_small(out->words, group->field.width, in->words,
group->field.width, group->mont);
}
static void ec_GFp_mont_felem_inv0(const EC_GROUP *group, EC_FELEM *out,
const EC_FELEM *a) {
bn_mod_inverse0_prime_mont_small(out->words, a->words, group->field.width,
group->mont);
}
void ec_GFp_mont_felem_mul(const EC_GROUP *group, EC_FELEM *r,
const EC_FELEM *a, const EC_FELEM *b) {
bn_mod_mul_montgomery_small(r->words, a->words, b->words, group->field.width,
group->mont);
}
void ec_GFp_mont_felem_sqr(const EC_GROUP *group, EC_FELEM *r,
const EC_FELEM *a) {
bn_mod_mul_montgomery_small(r->words, a->words, a->words, group->field.width,
group->mont);
}
void ec_GFp_mont_felem_to_bytes(const EC_GROUP *group, uint8_t *out,
size_t *out_len, const EC_FELEM *in) {
EC_FELEM tmp;
ec_GFp_mont_felem_from_montgomery(group, &tmp, in);
ec_GFp_simple_felem_to_bytes(group, out, out_len, &tmp);
}
int ec_GFp_mont_felem_from_bytes(const EC_GROUP *group, EC_FELEM *out,
const uint8_t *in, size_t len) {
if (!ec_GFp_simple_felem_from_bytes(group, out, in, len)) {
return 0;
}
ec_GFp_mont_felem_to_montgomery(group, out, out);
return 1;
}
static void ec_GFp_mont_felem_reduce(const EC_GROUP *group, EC_FELEM *out,
const BN_ULONG *words, size_t num) {
// Convert "from" Montgomery form so the value is reduced mod p.
bn_from_montgomery_small(out->words, group->field.width, words, num,
group->mont);
// Convert "to" Montgomery form to remove the R^-1 factor added.
ec_GFp_mont_felem_to_montgomery(group, out, out);
// Convert to Montgomery form to match this implementation's representation.
ec_GFp_mont_felem_to_montgomery(group, out, out);
}
static void ec_GFp_mont_felem_exp(const EC_GROUP *group, EC_FELEM *out,
const EC_FELEM *a, const BN_ULONG *exp,
size_t num_exp) {
bn_mod_exp_mont_small(out->words, a->words, group->field.width, exp, num_exp,
group->mont);
}
static int ec_GFp_mont_point_get_affine_coordinates(const EC_GROUP *group,
const EC_RAW_POINT *point,
EC_FELEM *x, EC_FELEM *y) {
if (ec_GFp_simple_is_at_infinity(group, point)) {
OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
return 0;
}
// Transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3). Note the check above
// ensures |point->Z| is non-zero, so the inverse always exists.
EC_FELEM z1, z2;
ec_GFp_mont_felem_inv0(group, &z2, &point->Z);
ec_GFp_mont_felem_sqr(group, &z1, &z2);
if (x != NULL) {
ec_GFp_mont_felem_mul(group, x, &point->X, &z1);
}
if (y != NULL) {
ec_GFp_mont_felem_mul(group, &z1, &z1, &z2);
ec_GFp_mont_felem_mul(group, y, &point->Y, &z1);
}
return 1;
}
static int ec_GFp_mont_jacobian_to_affine_batch(const EC_GROUP *group,
EC_AFFINE *out,
const EC_RAW_POINT *in,
size_t num) {
if (num == 0) {
return 1;
}
// Compute prefix products of all Zs. Use |out[i].X| as scratch space
// to store these values.
out[0].X = in[0].Z;
for (size_t i = 1; i < num; i++) {
ec_GFp_mont_felem_mul(group, &out[i].X, &out[i - 1].X, &in[i].Z);
}
// Some input was infinity iff the product of all Zs is zero.
if (ec_felem_non_zero_mask(group, &out[num - 1].X) == 0) {
OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
return 0;
}
// Invert the product of all Zs.
EC_FELEM zinvprod;
ec_GFp_mont_felem_inv0(group, &zinvprod, &out[num - 1].X);
for (size_t i = num - 1; i < num; i--) {
// Our loop invariant is that |zinvprod| is Z0^-1 * Z1^-1 * ... * Zi^-1.
// Recover Zi^-1 by multiplying by the previous product.
EC_FELEM zinv, zinv2;
if (i == 0) {
zinv = zinvprod;
} else {
ec_GFp_mont_felem_mul(group, &zinv, &zinvprod, &out[i - 1].X);
// Maintain the loop invariant for the next iteration.
ec_GFp_mont_felem_mul(group, &zinvprod, &zinvprod, &in[i].Z);
}
// Compute affine coordinates: x = X * Z^-2 and y = Y * Z^-3.
ec_GFp_mont_felem_sqr(group, &zinv2, &zinv);
ec_GFp_mont_felem_mul(group, &out[i].X, &in[i].X, &zinv2);
ec_GFp_mont_felem_mul(group, &out[i].Y, &in[i].Y, &zinv2);
ec_GFp_mont_felem_mul(group, &out[i].Y, &out[i].Y, &zinv);
}
return 1;
}
void ec_GFp_mont_add(const EC_GROUP *group, EC_RAW_POINT *out,
const EC_RAW_POINT *a, const EC_RAW_POINT *b) {
if (a == b) {
ec_GFp_mont_dbl(group, out, a);
return;
}
// The method is taken from:
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-add-2007-bl
//
// Coq transcription and correctness proof:
// <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L467>
// <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L544>
EC_FELEM x_out, y_out, z_out;
BN_ULONG z1nz = ec_felem_non_zero_mask(group, &a->Z);
BN_ULONG z2nz = ec_felem_non_zero_mask(group, &b->Z);
// z1z1 = z1z1 = z1**2
EC_FELEM z1z1;
ec_GFp_mont_felem_sqr(group, &z1z1, &a->Z);
// z2z2 = z2**2
EC_FELEM z2z2;
ec_GFp_mont_felem_sqr(group, &z2z2, &b->Z);
// u1 = x1*z2z2
EC_FELEM u1;
ec_GFp_mont_felem_mul(group, &u1, &a->X, &z2z2);
// two_z1z2 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2
EC_FELEM two_z1z2;
ec_felem_add(group, &two_z1z2, &a->Z, &b->Z);
ec_GFp_mont_felem_sqr(group, &two_z1z2, &two_z1z2);
ec_felem_sub(group, &two_z1z2, &two_z1z2, &z1z1);
ec_felem_sub(group, &two_z1z2, &two_z1z2, &z2z2);
// s1 = y1 * z2**3
EC_FELEM s1;
ec_GFp_mont_felem_mul(group, &s1, &b->Z, &z2z2);
ec_GFp_mont_felem_mul(group, &s1, &s1, &a->Y);
// u2 = x2*z1z1
EC_FELEM u2;
ec_GFp_mont_felem_mul(group, &u2, &b->X, &z1z1);
// h = u2 - u1
EC_FELEM h;
ec_felem_sub(group, &h, &u2, &u1);
BN_ULONG xneq = ec_felem_non_zero_mask(group, &h);
// z_out = two_z1z2 * h
ec_GFp_mont_felem_mul(group, &z_out, &h, &two_z1z2);
// z1z1z1 = z1 * z1z1
EC_FELEM z1z1z1;
ec_GFp_mont_felem_mul(group, &z1z1z1, &a->Z, &z1z1);
// s2 = y2 * z1**3
EC_FELEM s2;
ec_GFp_mont_felem_mul(group, &s2, &b->Y, &z1z1z1);
// r = (s2 - s1)*2
EC_FELEM r;
ec_felem_sub(group, &r, &s2, &s1);
ec_felem_add(group, &r, &r, &r);
BN_ULONG yneq = ec_felem_non_zero_mask(group, &r);
// This case will never occur in the constant-time |ec_GFp_mont_mul|.
BN_ULONG is_nontrivial_double = ~xneq & ~yneq & z1nz & z2nz;
if (is_nontrivial_double) {
ec_GFp_mont_dbl(group, out, a);
return;
}
// I = (2h)**2
EC_FELEM i;
ec_felem_add(group, &i, &h, &h);
ec_GFp_mont_felem_sqr(group, &i, &i);
// J = h * I
EC_FELEM j;
ec_GFp_mont_felem_mul(group, &j, &h, &i);
// V = U1 * I
EC_FELEM v;
ec_GFp_mont_felem_mul(group, &v, &u1, &i);
// x_out = r**2 - J - 2V
ec_GFp_mont_felem_sqr(group, &x_out, &r);
ec_felem_sub(group, &x_out, &x_out, &j);
ec_felem_sub(group, &x_out, &x_out, &v);
ec_felem_sub(group, &x_out, &x_out, &v);
// y_out = r(V-x_out) - 2 * s1 * J
ec_felem_sub(group, &y_out, &v, &x_out);
ec_GFp_mont_felem_mul(group, &y_out, &y_out, &r);
EC_FELEM s1j;
ec_GFp_mont_felem_mul(group, &s1j, &s1, &j);
ec_felem_sub(group, &y_out, &y_out, &s1j);
ec_felem_sub(group, &y_out, &y_out, &s1j);
ec_felem_select(group, &x_out, z1nz, &x_out, &b->X);
ec_felem_select(group, &out->X, z2nz, &x_out, &a->X);
ec_felem_select(group, &y_out, z1nz, &y_out, &b->Y);
ec_felem_select(group, &out->Y, z2nz, &y_out, &a->Y);
ec_felem_select(group, &z_out, z1nz, &z_out, &b->Z);
ec_felem_select(group, &out->Z, z2nz, &z_out, &a->Z);
}
void ec_GFp_mont_dbl(const EC_GROUP *group, EC_RAW_POINT *r,
const EC_RAW_POINT *a) {
if (group->a_is_minus3) {
// The method is taken from:
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
//
// Coq transcription and correctness proof:
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L93>
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L201>
EC_FELEM delta, gamma, beta, ftmp, ftmp2, tmptmp, alpha, fourbeta;
// delta = z^2
ec_GFp_mont_felem_sqr(group, &delta, &a->Z);
// gamma = y^2
ec_GFp_mont_felem_sqr(group, &gamma, &a->Y);
// beta = x*gamma
ec_GFp_mont_felem_mul(group, &beta, &a->X, &gamma);
// alpha = 3*(x-delta)*(x+delta)
ec_felem_sub(group, &ftmp, &a->X, &delta);
ec_felem_add(group, &ftmp2, &a->X, &delta);
ec_felem_add(group, &tmptmp, &ftmp2, &ftmp2);
ec_felem_add(group, &ftmp2, &ftmp2, &tmptmp);
ec_GFp_mont_felem_mul(group, &alpha, &ftmp, &ftmp2);
// x' = alpha^2 - 8*beta
ec_GFp_mont_felem_sqr(group, &r->X, &alpha);
ec_felem_add(group, &fourbeta, &beta, &beta);
ec_felem_add(group, &fourbeta, &fourbeta, &fourbeta);
ec_felem_add(group, &tmptmp, &fourbeta, &fourbeta);
ec_felem_sub(group, &r->X, &r->X, &tmptmp);
// z' = (y + z)^2 - gamma - delta
ec_felem_add(group, &delta, &gamma, &delta);
ec_felem_add(group, &ftmp, &a->Y, &a->Z);
ec_GFp_mont_felem_sqr(group, &r->Z, &ftmp);
ec_felem_sub(group, &r->Z, &r->Z, &delta);
// y' = alpha*(4*beta - x') - 8*gamma^2
ec_felem_sub(group, &r->Y, &fourbeta, &r->X);
ec_felem_add(group, &gamma, &gamma, &gamma);
ec_GFp_mont_felem_sqr(group, &gamma, &gamma);
ec_GFp_mont_felem_mul(group, &r->Y, &alpha, &r->Y);
ec_felem_add(group, &gamma, &gamma, &gamma);
ec_felem_sub(group, &r->Y, &r->Y, &gamma);
} else {
// The method is taken from:
// http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-2007-bl
//
// Coq transcription and correctness proof:
// <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L102>
// <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L534>
EC_FELEM xx, yy, yyyy, zz;
ec_GFp_mont_felem_sqr(group, &xx, &a->X);
ec_GFp_mont_felem_sqr(group, &yy, &a->Y);
ec_GFp_mont_felem_sqr(group, &yyyy, &yy);
ec_GFp_mont_felem_sqr(group, &zz, &a->Z);
// s = 2*((x_in + yy)^2 - xx - yyyy)
EC_FELEM s;
ec_felem_add(group, &s, &a->X, &yy);
ec_GFp_mont_felem_sqr(group, &s, &s);
ec_felem_sub(group, &s, &s, &xx);
ec_felem_sub(group, &s, &s, &yyyy);
ec_felem_add(group, &s, &s, &s);
// m = 3*xx + a*zz^2
EC_FELEM m;
ec_GFp_mont_felem_sqr(group, &m, &zz);
ec_GFp_mont_felem_mul(group, &m, &group->a, &m);
ec_felem_add(group, &m, &m, &xx);
ec_felem_add(group, &m, &m, &xx);
ec_felem_add(group, &m, &m, &xx);
// x_out = m^2 - 2*s
ec_GFp_mont_felem_sqr(group, &r->X, &m);
ec_felem_sub(group, &r->X, &r->X, &s);
ec_felem_sub(group, &r->X, &r->X, &s);
// z_out = (y_in + z_in)^2 - yy - zz
ec_felem_add(group, &r->Z, &a->Y, &a->Z);
ec_GFp_mont_felem_sqr(group, &r->Z, &r->Z);
ec_felem_sub(group, &r->Z, &r->Z, &yy);
ec_felem_sub(group, &r->Z, &r->Z, &zz);
// y_out = m*(s-x_out) - 8*yyyy
ec_felem_add(group, &yyyy, &yyyy, &yyyy);
ec_felem_add(group, &yyyy, &yyyy, &yyyy);
ec_felem_add(group, &yyyy, &yyyy, &yyyy);
ec_felem_sub(group, &r->Y, &s, &r->X);
ec_GFp_mont_felem_mul(group, &r->Y, &r->Y, &m);
ec_felem_sub(group, &r->Y, &r->Y, &yyyy);
}
}
static int ec_GFp_mont_cmp_x_coordinate(const EC_GROUP *group,
const EC_RAW_POINT *p,
const EC_SCALAR *r) {
if (!group->field_greater_than_order ||
group->field.width != group->order.width) {
// Do not bother optimizing this case. p > order in all commonly-used
// curves.
return ec_GFp_simple_cmp_x_coordinate(group, p, r);
}
if (ec_GFp_simple_is_at_infinity(group, p)) {
return 0;
}
// We wish to compare X/Z^2 with r. This is equivalent to comparing X with
// r*Z^2. Note that X and Z are represented in Montgomery form, while r is
// not.
EC_FELEM r_Z2, Z2_mont, X;
ec_GFp_mont_felem_mul(group, &Z2_mont, &p->Z, &p->Z);
// r < order < p, so this is valid.
OPENSSL_memcpy(r_Z2.words, r->words, group->field.width * sizeof(BN_ULONG));
ec_GFp_mont_felem_mul(group, &r_Z2, &r_Z2, &Z2_mont);
ec_GFp_mont_felem_from_montgomery(group, &X, &p->X);
if (ec_felem_equal(group, &r_Z2, &X)) {
return 1;
}
// During signing the x coefficient is reduced modulo the group order.
// Therefore there is a small possibility, less than 1/2^128, that group_order
// < p.x < P. in that case we need not only to compare against |r| but also to
// compare against r+group_order.
if (bn_less_than_words(r->words, group->field_minus_order.words,
group->field.width)) {
// We can ignore the carry because: r + group_order < p < 2^256.
bn_add_words(r_Z2.words, r->words, group->order.d, group->field.width);
ec_GFp_mont_felem_mul(group, &r_Z2, &r_Z2, &Z2_mont);
if (ec_felem_equal(group, &r_Z2, &X)) {
return 1;
}
}
return 0;
}
DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_mont_method) {
out->group_init = ec_GFp_mont_group_init;
out->group_finish = ec_GFp_mont_group_finish;
out->group_set_curve = ec_GFp_mont_group_set_curve;
out->point_get_affine_coordinates = ec_GFp_mont_point_get_affine_coordinates;
out->jacobian_to_affine_batch = ec_GFp_mont_jacobian_to_affine_batch;
out->add = ec_GFp_mont_add;
out->dbl = ec_GFp_mont_dbl;
out->mul = ec_GFp_mont_mul;
out->mul_base = ec_GFp_mont_mul_base;
out->mul_batch = ec_GFp_mont_mul_batch;
out->mul_public_batch = ec_GFp_mont_mul_public_batch;
out->init_precomp = ec_GFp_mont_init_precomp;
out->mul_precomp = ec_GFp_mont_mul_precomp;
out->felem_mul = ec_GFp_mont_felem_mul;
out->felem_sqr = ec_GFp_mont_felem_sqr;
out->felem_to_bytes = ec_GFp_mont_felem_to_bytes;
out->felem_from_bytes = ec_GFp_mont_felem_from_bytes;
out->felem_reduce = ec_GFp_mont_felem_reduce;
out->felem_exp = ec_GFp_mont_felem_exp;
out->scalar_inv0_montgomery = ec_simple_scalar_inv0_montgomery;
out->scalar_to_montgomery_inv_vartime =
ec_simple_scalar_to_montgomery_inv_vartime;
out->cmp_x_coordinate = ec_GFp_mont_cmp_x_coordinate;
}
|