1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
|
/* Copyright (c) 2015, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
// A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
//
// Inspired by Daniel J. Bernstein's public domain nistp224 implementation
// and Adam Langley's public domain 64-bit C implementation of curve25519.
#include <CNIOBoringSSL_base.h>
#include <CNIOBoringSSL_bn.h>
#include <CNIOBoringSSL_ec.h>
#include <CNIOBoringSSL_err.h>
#include <CNIOBoringSSL_mem.h>
#include <string.h>
#include "internal.h"
#include "../delocate.h"
#include "../../internal.h"
#if defined(BORINGSSL_HAS_UINT128) && !defined(OPENSSL_SMALL)
// Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
// using 64-bit coefficients called 'limbs', and sometimes (for multiplication
// results) as b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 +
// 2^336*b_6 using 128-bit coefficients called 'widelimbs'. A 4-p224_limb
// representation is an 'p224_felem'; a 7-p224_widelimb representation is a
// 'p224_widefelem'. Even within felems, bits of adjacent limbs overlap, and we
// don't always reduce the representations: we ensure that inputs to each
// p224_felem multiplication satisfy a_i < 2^60, so outputs satisfy b_i <
// 4*2^60*2^60, and fit into a 128-bit word without overflow. The coefficients
// are then again partially reduced to obtain an p224_felem satisfying a_i <
// 2^57. We only reduce to the unique minimal representation at the end of the
// computation.
typedef uint64_t p224_limb;
typedef uint128_t p224_widelimb;
typedef p224_limb p224_felem[4];
typedef p224_widelimb p224_widefelem[7];
// Field element represented as a byte arrary. 28*8 = 224 bits is also the
// group order size for the elliptic curve, and we also use this type for
// scalars for point multiplication.
typedef uint8_t p224_felem_bytearray[28];
// Precomputed multiples of the standard generator
// Points are given in coordinates (X, Y, Z) where Z normally is 1
// (0 for the point at infinity).
// For each field element, slice a_0 is word 0, etc.
//
// The table has 2 * 16 elements, starting with the following:
// index | bits | point
// ------+---------+------------------------------
// 0 | 0 0 0 0 | 0G
// 1 | 0 0 0 1 | 1G
// 2 | 0 0 1 0 | 2^56G
// 3 | 0 0 1 1 | (2^56 + 1)G
// 4 | 0 1 0 0 | 2^112G
// 5 | 0 1 0 1 | (2^112 + 1)G
// 6 | 0 1 1 0 | (2^112 + 2^56)G
// 7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
// 8 | 1 0 0 0 | 2^168G
// 9 | 1 0 0 1 | (2^168 + 1)G
// 10 | 1 0 1 0 | (2^168 + 2^56)G
// 11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
// 12 | 1 1 0 0 | (2^168 + 2^112)G
// 13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
// 14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
// 15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
// followed by a copy of this with each element multiplied by 2^28.
//
// The reason for this is so that we can clock bits into four different
// locations when doing simple scalar multiplies against the base point,
// and then another four locations using the second 16 elements.
static const p224_felem g_p224_pre_comp[2][16][3] = {
{{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
{{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
{0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
{1, 0, 0, 0}},
{{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
{0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
{1, 0, 0, 0}},
{{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
{0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
{1, 0, 0, 0}},
{{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
{0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
{1, 0, 0, 0}},
{{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
{0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
{1, 0, 0, 0}},
{{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
{0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
{1, 0, 0, 0}},
{{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
{0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
{1, 0, 0, 0}},
{{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
{0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
{1, 0, 0, 0}},
{{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
{0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
{1, 0, 0, 0}},
{{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
{0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
{1, 0, 0, 0}},
{{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
{0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
{1, 0, 0, 0}},
{{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
{0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
{1, 0, 0, 0}},
{{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
{0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
{1, 0, 0, 0}},
{{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
{0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
{1, 0, 0, 0}},
{{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
{0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
{1, 0, 0, 0}}},
{{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
{{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
{0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
{1, 0, 0, 0}},
{{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
{0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
{1, 0, 0, 0}},
{{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
{0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
{1, 0, 0, 0}},
{{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
{0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
{1, 0, 0, 0}},
{{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
{0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
{1, 0, 0, 0}},
{{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
{0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
{1, 0, 0, 0}},
{{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
{0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
{1, 0, 0, 0}},
{{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
{0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
{1, 0, 0, 0}},
{{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
{0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
{1, 0, 0, 0}},
{{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
{0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
{1, 0, 0, 0}},
{{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
{0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
{1, 0, 0, 0}},
{{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
{0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
{1, 0, 0, 0}},
{{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
{0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
{1, 0, 0, 0}},
{{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
{0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
{1, 0, 0, 0}},
{{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
{0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
{1, 0, 0, 0}}}};
static uint64_t p224_load_u64(const uint8_t in[8]) {
uint64_t ret;
OPENSSL_memcpy(&ret, in, sizeof(ret));
return ret;
}
// Helper functions to convert field elements to/from internal representation
static void p224_bin28_to_felem(p224_felem out, const uint8_t in[28]) {
out[0] = p224_load_u64(in) & 0x00ffffffffffffff;
out[1] = p224_load_u64(in + 7) & 0x00ffffffffffffff;
out[2] = p224_load_u64(in + 14) & 0x00ffffffffffffff;
out[3] = p224_load_u64(in + 20) >> 8;
}
static void p224_felem_to_bin28(uint8_t out[28], const p224_felem in) {
for (size_t i = 0; i < 7; ++i) {
out[i] = in[0] >> (8 * i);
out[i + 7] = in[1] >> (8 * i);
out[i + 14] = in[2] >> (8 * i);
out[i + 21] = in[3] >> (8 * i);
}
}
static void p224_generic_to_felem(p224_felem out, const EC_FELEM *in) {
p224_bin28_to_felem(out, in->bytes);
}
// Requires 0 <= in < 2*p (always call p224_felem_reduce first)
static void p224_felem_to_generic(EC_FELEM *out, const p224_felem in) {
// Reduce to unique minimal representation.
static const int64_t two56 = ((p224_limb)1) << 56;
// 0 <= in < 2*p, p = 2^224 - 2^96 + 1
// if in > p , reduce in = in - 2^224 + 2^96 - 1
int64_t tmp[4], a;
tmp[0] = in[0];
tmp[1] = in[1];
tmp[2] = in[2];
tmp[3] = in[3];
// Case 1: a = 1 iff in >= 2^224
a = (in[3] >> 56);
tmp[0] -= a;
tmp[1] += a << 40;
tmp[3] &= 0x00ffffffffffffff;
// Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1 and
// the lower part is non-zero
a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
(((int64_t)(in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
a &= 0x00ffffffffffffff;
// turn a into an all-one mask (if a = 0) or an all-zero mask
a = (a - 1) >> 63;
// subtract 2^224 - 2^96 + 1 if a is all-one
tmp[3] &= a ^ 0xffffffffffffffff;
tmp[2] &= a ^ 0xffffffffffffffff;
tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
tmp[0] -= 1 & a;
// eliminate negative coefficients: if tmp[0] is negative, tmp[1] must
// be non-zero, so we only need one step
a = tmp[0] >> 63;
tmp[0] += two56 & a;
tmp[1] -= 1 & a;
// carry 1 -> 2 -> 3
tmp[2] += tmp[1] >> 56;
tmp[1] &= 0x00ffffffffffffff;
tmp[3] += tmp[2] >> 56;
tmp[2] &= 0x00ffffffffffffff;
// Now 0 <= tmp < p
p224_felem tmp2;
tmp2[0] = tmp[0];
tmp2[1] = tmp[1];
tmp2[2] = tmp[2];
tmp2[3] = tmp[3];
p224_felem_to_bin28(out->bytes, tmp2);
// 224 is not a multiple of 64, so zero the remaining bytes.
OPENSSL_memset(out->bytes + 28, 0, 32 - 28);
}
// Field operations, using the internal representation of field elements.
// NB! These operations are specific to our point multiplication and cannot be
// expected to be correct in general - e.g., multiplication with a large scalar
// will cause an overflow.
static void p224_felem_assign(p224_felem out, const p224_felem in) {
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
out[3] = in[3];
}
// Sum two field elements: out += in
static void p224_felem_sum(p224_felem out, const p224_felem in) {
out[0] += in[0];
out[1] += in[1];
out[2] += in[2];
out[3] += in[3];
}
// Subtract field elements: out -= in
// Assumes in[i] < 2^57
static void p224_felem_diff(p224_felem out, const p224_felem in) {
static const p224_limb two58p2 =
(((p224_limb)1) << 58) + (((p224_limb)1) << 2);
static const p224_limb two58m2 =
(((p224_limb)1) << 58) - (((p224_limb)1) << 2);
static const p224_limb two58m42m2 =
(((p224_limb)1) << 58) - (((p224_limb)1) << 42) - (((p224_limb)1) << 2);
// Add 0 mod 2^224-2^96+1 to ensure out > in
out[0] += two58p2;
out[1] += two58m42m2;
out[2] += two58m2;
out[3] += two58m2;
out[0] -= in[0];
out[1] -= in[1];
out[2] -= in[2];
out[3] -= in[3];
}
// Subtract in unreduced 128-bit mode: out -= in
// Assumes in[i] < 2^119
static void p224_widefelem_diff(p224_widefelem out, const p224_widefelem in) {
static const p224_widelimb two120 = ((p224_widelimb)1) << 120;
static const p224_widelimb two120m64 =
(((p224_widelimb)1) << 120) - (((p224_widelimb)1) << 64);
static const p224_widelimb two120m104m64 = (((p224_widelimb)1) << 120) -
(((p224_widelimb)1) << 104) -
(((p224_widelimb)1) << 64);
// Add 0 mod 2^224-2^96+1 to ensure out > in
out[0] += two120;
out[1] += two120m64;
out[2] += two120m64;
out[3] += two120;
out[4] += two120m104m64;
out[5] += two120m64;
out[6] += two120m64;
out[0] -= in[0];
out[1] -= in[1];
out[2] -= in[2];
out[3] -= in[3];
out[4] -= in[4];
out[5] -= in[5];
out[6] -= in[6];
}
// Subtract in mixed mode: out128 -= in64
// in[i] < 2^63
static void p224_felem_diff_128_64(p224_widefelem out, const p224_felem in) {
static const p224_widelimb two64p8 =
(((p224_widelimb)1) << 64) + (((p224_widelimb)1) << 8);
static const p224_widelimb two64m8 =
(((p224_widelimb)1) << 64) - (((p224_widelimb)1) << 8);
static const p224_widelimb two64m48m8 = (((p224_widelimb)1) << 64) -
(((p224_widelimb)1) << 48) -
(((p224_widelimb)1) << 8);
// Add 0 mod 2^224-2^96+1 to ensure out > in
out[0] += two64p8;
out[1] += two64m48m8;
out[2] += two64m8;
out[3] += two64m8;
out[0] -= in[0];
out[1] -= in[1];
out[2] -= in[2];
out[3] -= in[3];
}
// Multiply a field element by a scalar: out = out * scalar
// The scalars we actually use are small, so results fit without overflow
static void p224_felem_scalar(p224_felem out, const p224_limb scalar) {
out[0] *= scalar;
out[1] *= scalar;
out[2] *= scalar;
out[3] *= scalar;
}
// Multiply an unreduced field element by a scalar: out = out * scalar
// The scalars we actually use are small, so results fit without overflow
static void p224_widefelem_scalar(p224_widefelem out,
const p224_widelimb scalar) {
out[0] *= scalar;
out[1] *= scalar;
out[2] *= scalar;
out[3] *= scalar;
out[4] *= scalar;
out[5] *= scalar;
out[6] *= scalar;
}
// Square a field element: out = in^2
static void p224_felem_square(p224_widefelem out, const p224_felem in) {
p224_limb tmp0, tmp1, tmp2;
tmp0 = 2 * in[0];
tmp1 = 2 * in[1];
tmp2 = 2 * in[2];
out[0] = ((p224_widelimb)in[0]) * in[0];
out[1] = ((p224_widelimb)in[0]) * tmp1;
out[2] = ((p224_widelimb)in[0]) * tmp2 + ((p224_widelimb)in[1]) * in[1];
out[3] = ((p224_widelimb)in[3]) * tmp0 + ((p224_widelimb)in[1]) * tmp2;
out[4] = ((p224_widelimb)in[3]) * tmp1 + ((p224_widelimb)in[2]) * in[2];
out[5] = ((p224_widelimb)in[3]) * tmp2;
out[6] = ((p224_widelimb)in[3]) * in[3];
}
// Multiply two field elements: out = in1 * in2
static void p224_felem_mul(p224_widefelem out, const p224_felem in1,
const p224_felem in2) {
out[0] = ((p224_widelimb)in1[0]) * in2[0];
out[1] = ((p224_widelimb)in1[0]) * in2[1] + ((p224_widelimb)in1[1]) * in2[0];
out[2] = ((p224_widelimb)in1[0]) * in2[2] + ((p224_widelimb)in1[1]) * in2[1] +
((p224_widelimb)in1[2]) * in2[0];
out[3] = ((p224_widelimb)in1[0]) * in2[3] + ((p224_widelimb)in1[1]) * in2[2] +
((p224_widelimb)in1[2]) * in2[1] + ((p224_widelimb)in1[3]) * in2[0];
out[4] = ((p224_widelimb)in1[1]) * in2[3] + ((p224_widelimb)in1[2]) * in2[2] +
((p224_widelimb)in1[3]) * in2[1];
out[5] = ((p224_widelimb)in1[2]) * in2[3] + ((p224_widelimb)in1[3]) * in2[2];
out[6] = ((p224_widelimb)in1[3]) * in2[3];
}
// Reduce seven 128-bit coefficients to four 64-bit coefficients.
// Requires in[i] < 2^126,
// ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
static void p224_felem_reduce(p224_felem out, const p224_widefelem in) {
static const p224_widelimb two127p15 =
(((p224_widelimb)1) << 127) + (((p224_widelimb)1) << 15);
static const p224_widelimb two127m71 =
(((p224_widelimb)1) << 127) - (((p224_widelimb)1) << 71);
static const p224_widelimb two127m71m55 = (((p224_widelimb)1) << 127) -
(((p224_widelimb)1) << 71) -
(((p224_widelimb)1) << 55);
p224_widelimb output[5];
// Add 0 mod 2^224-2^96+1 to ensure all differences are positive
output[0] = in[0] + two127p15;
output[1] = in[1] + two127m71m55;
output[2] = in[2] + two127m71;
output[3] = in[3];
output[4] = in[4];
// Eliminate in[4], in[5], in[6]
output[4] += in[6] >> 16;
output[3] += (in[6] & 0xffff) << 40;
output[2] -= in[6];
output[3] += in[5] >> 16;
output[2] += (in[5] & 0xffff) << 40;
output[1] -= in[5];
output[2] += output[4] >> 16;
output[1] += (output[4] & 0xffff) << 40;
output[0] -= output[4];
// Carry 2 -> 3 -> 4
output[3] += output[2] >> 56;
output[2] &= 0x00ffffffffffffff;
output[4] = output[3] >> 56;
output[3] &= 0x00ffffffffffffff;
// Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72
// Eliminate output[4]
output[2] += output[4] >> 16;
// output[2] < 2^56 + 2^56 = 2^57
output[1] += (output[4] & 0xffff) << 40;
output[0] -= output[4];
// Carry 0 -> 1 -> 2 -> 3
output[1] += output[0] >> 56;
out[0] = output[0] & 0x00ffffffffffffff;
output[2] += output[1] >> 56;
// output[2] < 2^57 + 2^72
out[1] = output[1] & 0x00ffffffffffffff;
output[3] += output[2] >> 56;
// output[3] <= 2^56 + 2^16
out[2] = output[2] & 0x00ffffffffffffff;
// out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
// out[3] <= 2^56 + 2^16 (due to final carry),
// so out < 2*p
out[3] = output[3];
}
// Get negative value: out = -in
// Requires in[i] < 2^63,
// ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
static void p224_felem_neg(p224_felem out, const p224_felem in) {
p224_widefelem tmp = {0};
p224_felem_diff_128_64(tmp, in);
p224_felem_reduce(out, tmp);
}
// Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
// elements are reduced to in < 2^225, so we only need to check three cases: 0,
// 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2
static p224_limb p224_felem_is_zero(const p224_felem in) {
p224_limb zero = in[0] | in[1] | in[2] | in[3];
zero = (((int64_t)(zero)-1) >> 63) & 1;
p224_limb two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000) |
(in[2] ^ 0x00ffffffffffffff) |
(in[3] ^ 0x00ffffffffffffff);
two224m96p1 = (((int64_t)(two224m96p1)-1) >> 63) & 1;
p224_limb two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000) |
(in[2] ^ 0x00ffffffffffffff) |
(in[3] ^ 0x01ffffffffffffff);
two225m97p2 = (((int64_t)(two225m97p2)-1) >> 63) & 1;
return (zero | two224m96p1 | two225m97p2);
}
// Invert a field element
// Computation chain copied from djb's code
static void p224_felem_inv(p224_felem out, const p224_felem in) {
p224_felem ftmp, ftmp2, ftmp3, ftmp4;
p224_widefelem tmp;
p224_felem_square(tmp, in);
p224_felem_reduce(ftmp, tmp); // 2
p224_felem_mul(tmp, in, ftmp);
p224_felem_reduce(ftmp, tmp); // 2^2 - 1
p224_felem_square(tmp, ftmp);
p224_felem_reduce(ftmp, tmp); // 2^3 - 2
p224_felem_mul(tmp, in, ftmp);
p224_felem_reduce(ftmp, tmp); // 2^3 - 1
p224_felem_square(tmp, ftmp);
p224_felem_reduce(ftmp2, tmp); // 2^4 - 2
p224_felem_square(tmp, ftmp2);
p224_felem_reduce(ftmp2, tmp); // 2^5 - 4
p224_felem_square(tmp, ftmp2);
p224_felem_reduce(ftmp2, tmp); // 2^6 - 8
p224_felem_mul(tmp, ftmp2, ftmp);
p224_felem_reduce(ftmp, tmp); // 2^6 - 1
p224_felem_square(tmp, ftmp);
p224_felem_reduce(ftmp2, tmp); // 2^7 - 2
for (size_t i = 0; i < 5; ++i) { // 2^12 - 2^6
p224_felem_square(tmp, ftmp2);
p224_felem_reduce(ftmp2, tmp);
}
p224_felem_mul(tmp, ftmp2, ftmp);
p224_felem_reduce(ftmp2, tmp); // 2^12 - 1
p224_felem_square(tmp, ftmp2);
p224_felem_reduce(ftmp3, tmp); // 2^13 - 2
for (size_t i = 0; i < 11; ++i) { // 2^24 - 2^12
p224_felem_square(tmp, ftmp3);
p224_felem_reduce(ftmp3, tmp);
}
p224_felem_mul(tmp, ftmp3, ftmp2);
p224_felem_reduce(ftmp2, tmp); // 2^24 - 1
p224_felem_square(tmp, ftmp2);
p224_felem_reduce(ftmp3, tmp); // 2^25 - 2
for (size_t i = 0; i < 23; ++i) { // 2^48 - 2^24
p224_felem_square(tmp, ftmp3);
p224_felem_reduce(ftmp3, tmp);
}
p224_felem_mul(tmp, ftmp3, ftmp2);
p224_felem_reduce(ftmp3, tmp); // 2^48 - 1
p224_felem_square(tmp, ftmp3);
p224_felem_reduce(ftmp4, tmp); // 2^49 - 2
for (size_t i = 0; i < 47; ++i) { // 2^96 - 2^48
p224_felem_square(tmp, ftmp4);
p224_felem_reduce(ftmp4, tmp);
}
p224_felem_mul(tmp, ftmp3, ftmp4);
p224_felem_reduce(ftmp3, tmp); // 2^96 - 1
p224_felem_square(tmp, ftmp3);
p224_felem_reduce(ftmp4, tmp); // 2^97 - 2
for (size_t i = 0; i < 23; ++i) { // 2^120 - 2^24
p224_felem_square(tmp, ftmp4);
p224_felem_reduce(ftmp4, tmp);
}
p224_felem_mul(tmp, ftmp2, ftmp4);
p224_felem_reduce(ftmp2, tmp); // 2^120 - 1
for (size_t i = 0; i < 6; ++i) { // 2^126 - 2^6
p224_felem_square(tmp, ftmp2);
p224_felem_reduce(ftmp2, tmp);
}
p224_felem_mul(tmp, ftmp2, ftmp);
p224_felem_reduce(ftmp, tmp); // 2^126 - 1
p224_felem_square(tmp, ftmp);
p224_felem_reduce(ftmp, tmp); // 2^127 - 2
p224_felem_mul(tmp, ftmp, in);
p224_felem_reduce(ftmp, tmp); // 2^127 - 1
for (size_t i = 0; i < 97; ++i) { // 2^224 - 2^97
p224_felem_square(tmp, ftmp);
p224_felem_reduce(ftmp, tmp);
}
p224_felem_mul(tmp, ftmp, ftmp3);
p224_felem_reduce(out, tmp); // 2^224 - 2^96 - 1
}
// Copy in constant time:
// if icopy == 1, copy in to out,
// if icopy == 0, copy out to itself.
static void p224_copy_conditional(p224_felem out, const p224_felem in,
p224_limb icopy) {
// icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one
const p224_limb copy = -icopy;
for (size_t i = 0; i < 4; ++i) {
const p224_limb tmp = copy & (in[i] ^ out[i]);
out[i] ^= tmp;
}
}
// ELLIPTIC CURVE POINT OPERATIONS
//
// Points are represented in Jacobian projective coordinates:
// (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
// or to the point at infinity if Z == 0.
// Double an elliptic curve point:
// (X', Y', Z') = 2 * (X, Y, Z), where
// X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
// Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2
// Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
// Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
// while x_out == y_in is not (maybe this works, but it's not tested).
static void p224_point_double(p224_felem x_out, p224_felem y_out,
p224_felem z_out, const p224_felem x_in,
const p224_felem y_in, const p224_felem z_in) {
p224_widefelem tmp, tmp2;
p224_felem delta, gamma, beta, alpha, ftmp, ftmp2;
p224_felem_assign(ftmp, x_in);
p224_felem_assign(ftmp2, x_in);
// delta = z^2
p224_felem_square(tmp, z_in);
p224_felem_reduce(delta, tmp);
// gamma = y^2
p224_felem_square(tmp, y_in);
p224_felem_reduce(gamma, tmp);
// beta = x*gamma
p224_felem_mul(tmp, x_in, gamma);
p224_felem_reduce(beta, tmp);
// alpha = 3*(x-delta)*(x+delta)
p224_felem_diff(ftmp, delta);
// ftmp[i] < 2^57 + 2^58 + 2 < 2^59
p224_felem_sum(ftmp2, delta);
// ftmp2[i] < 2^57 + 2^57 = 2^58
p224_felem_scalar(ftmp2, 3);
// ftmp2[i] < 3 * 2^58 < 2^60
p224_felem_mul(tmp, ftmp, ftmp2);
// tmp[i] < 2^60 * 2^59 * 4 = 2^121
p224_felem_reduce(alpha, tmp);
// x' = alpha^2 - 8*beta
p224_felem_square(tmp, alpha);
// tmp[i] < 4 * 2^57 * 2^57 = 2^116
p224_felem_assign(ftmp, beta);
p224_felem_scalar(ftmp, 8);
// ftmp[i] < 8 * 2^57 = 2^60
p224_felem_diff_128_64(tmp, ftmp);
// tmp[i] < 2^116 + 2^64 + 8 < 2^117
p224_felem_reduce(x_out, tmp);
// z' = (y + z)^2 - gamma - delta
p224_felem_sum(delta, gamma);
// delta[i] < 2^57 + 2^57 = 2^58
p224_felem_assign(ftmp, y_in);
p224_felem_sum(ftmp, z_in);
// ftmp[i] < 2^57 + 2^57 = 2^58
p224_felem_square(tmp, ftmp);
// tmp[i] < 4 * 2^58 * 2^58 = 2^118
p224_felem_diff_128_64(tmp, delta);
// tmp[i] < 2^118 + 2^64 + 8 < 2^119
p224_felem_reduce(z_out, tmp);
// y' = alpha*(4*beta - x') - 8*gamma^2
p224_felem_scalar(beta, 4);
// beta[i] < 4 * 2^57 = 2^59
p224_felem_diff(beta, x_out);
// beta[i] < 2^59 + 2^58 + 2 < 2^60
p224_felem_mul(tmp, alpha, beta);
// tmp[i] < 4 * 2^57 * 2^60 = 2^119
p224_felem_square(tmp2, gamma);
// tmp2[i] < 4 * 2^57 * 2^57 = 2^116
p224_widefelem_scalar(tmp2, 8);
// tmp2[i] < 8 * 2^116 = 2^119
p224_widefelem_diff(tmp, tmp2);
// tmp[i] < 2^119 + 2^120 < 2^121
p224_felem_reduce(y_out, tmp);
}
// Add two elliptic curve points:
// (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
// X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
// 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
// Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 *
// X_1)^2 - X_3) -
// Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
// Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
//
// This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
// This function is not entirely constant-time: it includes a branch for
// checking whether the two input points are equal, (while not equal to the
// point at infinity). This case never happens during single point
// multiplication, so there is no timing leak for ECDH or ECDSA signing.
static void p224_point_add(p224_felem x3, p224_felem y3, p224_felem z3,
const p224_felem x1, const p224_felem y1,
const p224_felem z1, const int mixed,
const p224_felem x2, const p224_felem y2,
const p224_felem z2) {
p224_felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
p224_widefelem tmp, tmp2;
p224_limb z1_is_zero, z2_is_zero, x_equal, y_equal;
if (!mixed) {
// ftmp2 = z2^2
p224_felem_square(tmp, z2);
p224_felem_reduce(ftmp2, tmp);
// ftmp4 = z2^3
p224_felem_mul(tmp, ftmp2, z2);
p224_felem_reduce(ftmp4, tmp);
// ftmp4 = z2^3*y1
p224_felem_mul(tmp2, ftmp4, y1);
p224_felem_reduce(ftmp4, tmp2);
// ftmp2 = z2^2*x1
p224_felem_mul(tmp2, ftmp2, x1);
p224_felem_reduce(ftmp2, tmp2);
} else {
// We'll assume z2 = 1 (special case z2 = 0 is handled later)
// ftmp4 = z2^3*y1
p224_felem_assign(ftmp4, y1);
// ftmp2 = z2^2*x1
p224_felem_assign(ftmp2, x1);
}
// ftmp = z1^2
p224_felem_square(tmp, z1);
p224_felem_reduce(ftmp, tmp);
// ftmp3 = z1^3
p224_felem_mul(tmp, ftmp, z1);
p224_felem_reduce(ftmp3, tmp);
// tmp = z1^3*y2
p224_felem_mul(tmp, ftmp3, y2);
// tmp[i] < 4 * 2^57 * 2^57 = 2^116
// ftmp3 = z1^3*y2 - z2^3*y1
p224_felem_diff_128_64(tmp, ftmp4);
// tmp[i] < 2^116 + 2^64 + 8 < 2^117
p224_felem_reduce(ftmp3, tmp);
// tmp = z1^2*x2
p224_felem_mul(tmp, ftmp, x2);
// tmp[i] < 4 * 2^57 * 2^57 = 2^116
// ftmp = z1^2*x2 - z2^2*x1
p224_felem_diff_128_64(tmp, ftmp2);
// tmp[i] < 2^116 + 2^64 + 8 < 2^117
p224_felem_reduce(ftmp, tmp);
// the formulae are incorrect if the points are equal
// so we check for this and do doubling if this happens
x_equal = p224_felem_is_zero(ftmp);
y_equal = p224_felem_is_zero(ftmp3);
z1_is_zero = p224_felem_is_zero(z1);
z2_is_zero = p224_felem_is_zero(z2);
// In affine coordinates, (X_1, Y_1) == (X_2, Y_2)
p224_limb is_nontrivial_double =
x_equal & y_equal & (1 - z1_is_zero) & (1 - z2_is_zero);
if (is_nontrivial_double) {
p224_point_double(x3, y3, z3, x1, y1, z1);
return;
}
// ftmp5 = z1*z2
if (!mixed) {
p224_felem_mul(tmp, z1, z2);
p224_felem_reduce(ftmp5, tmp);
} else {
// special case z2 = 0 is handled later
p224_felem_assign(ftmp5, z1);
}
// z_out = (z1^2*x2 - z2^2*x1)*(z1*z2)
p224_felem_mul(tmp, ftmp, ftmp5);
p224_felem_reduce(z_out, tmp);
// ftmp = (z1^2*x2 - z2^2*x1)^2
p224_felem_assign(ftmp5, ftmp);
p224_felem_square(tmp, ftmp);
p224_felem_reduce(ftmp, tmp);
// ftmp5 = (z1^2*x2 - z2^2*x1)^3
p224_felem_mul(tmp, ftmp, ftmp5);
p224_felem_reduce(ftmp5, tmp);
// ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2
p224_felem_mul(tmp, ftmp2, ftmp);
p224_felem_reduce(ftmp2, tmp);
// tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3
p224_felem_mul(tmp, ftmp4, ftmp5);
// tmp[i] < 4 * 2^57 * 2^57 = 2^116
// tmp2 = (z1^3*y2 - z2^3*y1)^2
p224_felem_square(tmp2, ftmp3);
// tmp2[i] < 4 * 2^57 * 2^57 < 2^116
// tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3
p224_felem_diff_128_64(tmp2, ftmp5);
// tmp2[i] < 2^116 + 2^64 + 8 < 2^117
// ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2
p224_felem_assign(ftmp5, ftmp2);
p224_felem_scalar(ftmp5, 2);
// ftmp5[i] < 2 * 2^57 = 2^58
/* x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
p224_felem_diff_128_64(tmp2, ftmp5);
// tmp2[i] < 2^117 + 2^64 + 8 < 2^118
p224_felem_reduce(x_out, tmp2);
// ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out
p224_felem_diff(ftmp2, x_out);
// ftmp2[i] < 2^57 + 2^58 + 2 < 2^59
// tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out)
p224_felem_mul(tmp2, ftmp3, ftmp2);
// tmp2[i] < 4 * 2^57 * 2^59 = 2^118
/* y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
p224_widefelem_diff(tmp2, tmp);
// tmp2[i] < 2^118 + 2^120 < 2^121
p224_felem_reduce(y_out, tmp2);
// the result (x_out, y_out, z_out) is incorrect if one of the inputs is
// the point at infinity, so we need to check for this separately
// if point 1 is at infinity, copy point 2 to output, and vice versa
p224_copy_conditional(x_out, x2, z1_is_zero);
p224_copy_conditional(x_out, x1, z2_is_zero);
p224_copy_conditional(y_out, y2, z1_is_zero);
p224_copy_conditional(y_out, y1, z2_is_zero);
p224_copy_conditional(z_out, z2, z1_is_zero);
p224_copy_conditional(z_out, z1, z2_is_zero);
p224_felem_assign(x3, x_out);
p224_felem_assign(y3, y_out);
p224_felem_assign(z3, z_out);
}
// p224_select_point selects the |idx|th point from a precomputation table and
// copies it to out.
static void p224_select_point(const uint64_t idx, size_t size,
const p224_felem pre_comp[/*size*/][3],
p224_felem out[3]) {
p224_limb *outlimbs = &out[0][0];
OPENSSL_memset(outlimbs, 0, 3 * sizeof(p224_felem));
for (size_t i = 0; i < size; i++) {
const p224_limb *inlimbs = &pre_comp[i][0][0];
uint64_t mask = i ^ idx;
mask |= mask >> 4;
mask |= mask >> 2;
mask |= mask >> 1;
mask &= 1;
mask--;
for (size_t j = 0; j < 4 * 3; j++) {
outlimbs[j] |= inlimbs[j] & mask;
}
}
}
// p224_get_bit returns the |i|th bit in |in|
static crypto_word_t p224_get_bit(const p224_felem_bytearray in, size_t i) {
if (i >= 224) {
return 0;
}
return (in[i >> 3] >> (i & 7)) & 1;
}
// Takes the Jacobian coordinates (X, Y, Z) of a point and returns
// (X', Y') = (X/Z^2, Y/Z^3)
static int ec_GFp_nistp224_point_get_affine_coordinates(
const EC_GROUP *group, const EC_RAW_POINT *point, EC_FELEM *x,
EC_FELEM *y) {
if (ec_GFp_simple_is_at_infinity(group, point)) {
OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
return 0;
}
p224_felem z1, z2;
p224_widefelem tmp;
p224_generic_to_felem(z1, &point->Z);
p224_felem_inv(z2, z1);
p224_felem_square(tmp, z2);
p224_felem_reduce(z1, tmp);
if (x != NULL) {
p224_felem x_in, x_out;
p224_generic_to_felem(x_in, &point->X);
p224_felem_mul(tmp, x_in, z1);
p224_felem_reduce(x_out, tmp);
p224_felem_to_generic(x, x_out);
}
if (y != NULL) {
p224_felem y_in, y_out;
p224_generic_to_felem(y_in, &point->Y);
p224_felem_mul(tmp, z1, z2);
p224_felem_reduce(z1, tmp);
p224_felem_mul(tmp, y_in, z1);
p224_felem_reduce(y_out, tmp);
p224_felem_to_generic(y, y_out);
}
return 1;
}
static void ec_GFp_nistp224_add(const EC_GROUP *group, EC_RAW_POINT *r,
const EC_RAW_POINT *a, const EC_RAW_POINT *b) {
p224_felem x1, y1, z1, x2, y2, z2;
p224_generic_to_felem(x1, &a->X);
p224_generic_to_felem(y1, &a->Y);
p224_generic_to_felem(z1, &a->Z);
p224_generic_to_felem(x2, &b->X);
p224_generic_to_felem(y2, &b->Y);
p224_generic_to_felem(z2, &b->Z);
p224_point_add(x1, y1, z1, x1, y1, z1, 0 /* both Jacobian */, x2, y2, z2);
// The outputs are already reduced, but still need to be contracted.
p224_felem_to_generic(&r->X, x1);
p224_felem_to_generic(&r->Y, y1);
p224_felem_to_generic(&r->Z, z1);
}
static void ec_GFp_nistp224_dbl(const EC_GROUP *group, EC_RAW_POINT *r,
const EC_RAW_POINT *a) {
p224_felem x, y, z;
p224_generic_to_felem(x, &a->X);
p224_generic_to_felem(y, &a->Y);
p224_generic_to_felem(z, &a->Z);
p224_point_double(x, y, z, x, y, z);
// The outputs are already reduced, but still need to be contracted.
p224_felem_to_generic(&r->X, x);
p224_felem_to_generic(&r->Y, y);
p224_felem_to_generic(&r->Z, z);
}
static void ec_GFp_nistp224_make_precomp(p224_felem out[17][3],
const EC_RAW_POINT *p) {
OPENSSL_memset(out[0], 0, sizeof(p224_felem) * 3);
p224_generic_to_felem(out[1][0], &p->X);
p224_generic_to_felem(out[1][1], &p->Y);
p224_generic_to_felem(out[1][2], &p->Z);
for (size_t j = 2; j <= 16; ++j) {
if (j & 1) {
p224_point_add(out[j][0], out[j][1], out[j][2], out[1][0], out[1][1],
out[1][2], 0, out[j - 1][0], out[j - 1][1], out[j - 1][2]);
} else {
p224_point_double(out[j][0], out[j][1], out[j][2], out[j / 2][0],
out[j / 2][1], out[j / 2][2]);
}
}
}
static void ec_GFp_nistp224_point_mul(const EC_GROUP *group, EC_RAW_POINT *r,
const EC_RAW_POINT *p,
const EC_SCALAR *scalar) {
p224_felem p_pre_comp[17][3];
ec_GFp_nistp224_make_precomp(p_pre_comp, p);
// Set nq to the point at infinity.
p224_felem nq[3], tmp[4];
OPENSSL_memset(nq, 0, 3 * sizeof(p224_felem));
int skip = 1; // Save two point operations in the first round.
for (size_t i = 220; i < 221; i--) {
if (!skip) {
p224_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
}
// Add every 5 doublings.
if (i % 5 == 0) {
crypto_word_t bits = p224_get_bit(scalar->bytes, i + 4) << 5;
bits |= p224_get_bit(scalar->bytes, i + 3) << 4;
bits |= p224_get_bit(scalar->bytes, i + 2) << 3;
bits |= p224_get_bit(scalar->bytes, i + 1) << 2;
bits |= p224_get_bit(scalar->bytes, i) << 1;
bits |= p224_get_bit(scalar->bytes, i - 1);
crypto_word_t sign, digit;
ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
// Select the point to add or subtract.
p224_select_point(digit, 17, (const p224_felem(*)[3])p_pre_comp, tmp);
p224_felem_neg(tmp[3], tmp[1]); // (X, -Y, Z) is the negative point
p224_copy_conditional(tmp[1], tmp[3], sign);
if (!skip) {
p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 0 /* mixed */,
tmp[0], tmp[1], tmp[2]);
} else {
OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem));
skip = 0;
}
}
}
// Reduce the output to its unique minimal representation.
p224_felem_to_generic(&r->X, nq[0]);
p224_felem_to_generic(&r->Y, nq[1]);
p224_felem_to_generic(&r->Z, nq[2]);
}
static void ec_GFp_nistp224_point_mul_base(const EC_GROUP *group,
EC_RAW_POINT *r,
const EC_SCALAR *scalar) {
// Set nq to the point at infinity.
p224_felem nq[3], tmp[3];
OPENSSL_memset(nq, 0, 3 * sizeof(p224_felem));
int skip = 1; // Save two point operations in the first round.
for (size_t i = 27; i < 28; i--) {
// double
if (!skip) {
p224_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
}
// First, look 28 bits upwards.
crypto_word_t bits = p224_get_bit(scalar->bytes, i + 196) << 3;
bits |= p224_get_bit(scalar->bytes, i + 140) << 2;
bits |= p224_get_bit(scalar->bytes, i + 84) << 1;
bits |= p224_get_bit(scalar->bytes, i + 28);
// Select the point to add, in constant time.
p224_select_point(bits, 16, g_p224_pre_comp[1], tmp);
if (!skip) {
p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
tmp[0], tmp[1], tmp[2]);
} else {
OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem));
skip = 0;
}
// Second, look at the current position/
bits = p224_get_bit(scalar->bytes, i + 168) << 3;
bits |= p224_get_bit(scalar->bytes, i + 112) << 2;
bits |= p224_get_bit(scalar->bytes, i + 56) << 1;
bits |= p224_get_bit(scalar->bytes, i);
// Select the point to add, in constant time.
p224_select_point(bits, 16, g_p224_pre_comp[0], tmp);
p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
tmp[0], tmp[1], tmp[2]);
}
// Reduce the output to its unique minimal representation.
p224_felem_to_generic(&r->X, nq[0]);
p224_felem_to_generic(&r->Y, nq[1]);
p224_felem_to_generic(&r->Z, nq[2]);
}
static void ec_GFp_nistp224_point_mul_public(const EC_GROUP *group,
EC_RAW_POINT *r,
const EC_SCALAR *g_scalar,
const EC_RAW_POINT *p,
const EC_SCALAR *p_scalar) {
// TODO(davidben): If P-224 ECDSA verify performance ever matters, using
// |ec_compute_wNAF| for |p_scalar| would likely be an easy improvement.
p224_felem p_pre_comp[17][3];
ec_GFp_nistp224_make_precomp(p_pre_comp, p);
// Set nq to the point at infinity.
p224_felem nq[3], tmp[3];
OPENSSL_memset(nq, 0, 3 * sizeof(p224_felem));
// Loop over both scalars msb-to-lsb, interleaving additions of multiples of
// the generator (two in each of the last 28 rounds) and additions of p (every
// 5th round).
int skip = 1; // Save two point operations in the first round.
for (size_t i = 220; i < 221; i--) {
if (!skip) {
p224_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
}
// Add multiples of the generator.
if (i <= 27) {
// First, look 28 bits upwards.
crypto_word_t bits = p224_get_bit(g_scalar->bytes, i + 196) << 3;
bits |= p224_get_bit(g_scalar->bytes, i + 140) << 2;
bits |= p224_get_bit(g_scalar->bytes, i + 84) << 1;
bits |= p224_get_bit(g_scalar->bytes, i + 28);
size_t index = (size_t)bits;
p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
g_p224_pre_comp[1][index][0], g_p224_pre_comp[1][index][1],
g_p224_pre_comp[1][index][2]);
assert(!skip);
// Second, look at the current position.
bits = p224_get_bit(g_scalar->bytes, i + 168) << 3;
bits |= p224_get_bit(g_scalar->bytes, i + 112) << 2;
bits |= p224_get_bit(g_scalar->bytes, i + 56) << 1;
bits |= p224_get_bit(g_scalar->bytes, i);
index = (size_t)bits;
p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
g_p224_pre_comp[0][index][0], g_p224_pre_comp[0][index][1],
g_p224_pre_comp[0][index][2]);
}
// Incorporate |p_scalar| every 5 doublings.
if (i % 5 == 0) {
crypto_word_t bits = p224_get_bit(p_scalar->bytes, i + 4) << 5;
bits |= p224_get_bit(p_scalar->bytes, i + 3) << 4;
bits |= p224_get_bit(p_scalar->bytes, i + 2) << 3;
bits |= p224_get_bit(p_scalar->bytes, i + 1) << 2;
bits |= p224_get_bit(p_scalar->bytes, i) << 1;
bits |= p224_get_bit(p_scalar->bytes, i - 1);
crypto_word_t sign, digit;
ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
// Select the point to add or subtract.
OPENSSL_memcpy(tmp, p_pre_comp[digit], 3 * sizeof(p224_felem));
if (sign) {
p224_felem_neg(tmp[1], tmp[1]); // (X, -Y, Z) is the negative point
}
if (!skip) {
p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 0 /* mixed */,
tmp[0], tmp[1], tmp[2]);
} else {
OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem));
skip = 0;
}
}
}
// Reduce the output to its unique minimal representation.
p224_felem_to_generic(&r->X, nq[0]);
p224_felem_to_generic(&r->Y, nq[1]);
p224_felem_to_generic(&r->Z, nq[2]);
}
static void ec_GFp_nistp224_felem_mul(const EC_GROUP *group, EC_FELEM *r,
const EC_FELEM *a, const EC_FELEM *b) {
p224_felem felem1, felem2;
p224_widefelem wide;
p224_generic_to_felem(felem1, a);
p224_generic_to_felem(felem2, b);
p224_felem_mul(wide, felem1, felem2);
p224_felem_reduce(felem1, wide);
p224_felem_to_generic(r, felem1);
}
static void ec_GFp_nistp224_felem_sqr(const EC_GROUP *group, EC_FELEM *r,
const EC_FELEM *a) {
p224_felem felem;
p224_generic_to_felem(felem, a);
p224_widefelem wide;
p224_felem_square(wide, felem);
p224_felem_reduce(felem, wide);
p224_felem_to_generic(r, felem);
}
DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistp224_method) {
out->group_init = ec_GFp_simple_group_init;
out->group_finish = ec_GFp_simple_group_finish;
out->group_set_curve = ec_GFp_simple_group_set_curve;
out->point_get_affine_coordinates =
ec_GFp_nistp224_point_get_affine_coordinates;
out->add = ec_GFp_nistp224_add;
out->dbl = ec_GFp_nistp224_dbl;
out->mul = ec_GFp_nistp224_point_mul;
out->mul_base = ec_GFp_nistp224_point_mul_base;
out->mul_public = ec_GFp_nistp224_point_mul_public;
out->felem_mul = ec_GFp_nistp224_felem_mul;
out->felem_sqr = ec_GFp_nistp224_felem_sqr;
out->felem_to_bytes = ec_GFp_simple_felem_to_bytes;
out->felem_from_bytes = ec_GFp_simple_felem_from_bytes;
out->scalar_inv0_montgomery = ec_simple_scalar_inv0_montgomery;
out->scalar_to_montgomery_inv_vartime =
ec_simple_scalar_to_montgomery_inv_vartime;
out->cmp_x_coordinate = ec_GFp_simple_cmp_x_coordinate;
}
#endif // BORINGSSL_HAS_UINT128 && !SMALL
|