1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
|
/*
* Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2014, Intel Corporation. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*
* Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1)
* (1) Intel Corporation, Israel Development Center, Haifa, Israel
* (2) University of Haifa, Israel
*
* Reference:
* S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
* 256 Bit Primes"
*/
#include <CNIOBoringSSL_ec.h>
#include <assert.h>
#include <stdint.h>
#include <string.h>
#include <CNIOBoringSSL_bn.h>
#include <CNIOBoringSSL_cpu.h>
#include <CNIOBoringSSL_crypto.h>
#include <CNIOBoringSSL_err.h>
#include "../bn/internal.h"
#include "../delocate.h"
#include "../../internal.h"
#include "internal.h"
#include "p256-x86_64.h"
#if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
!defined(OPENSSL_SMALL)
typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
// One converted into the Montgomery domain
static const BN_ULONG ONE[P256_LIMBS] = {
TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe),
};
// Precomputed tables for the default generator
#include "p256-x86_64-table.h"
// Recode window to a signed digit, see |ec_GFp_nistp_recode_scalar_bits| in
// util.c for details
static crypto_word_t booth_recode_w5(crypto_word_t in) {
crypto_word_t s, d;
s = ~((in >> 5) - 1);
d = (1 << 6) - in - 1;
d = (d & s) | (in & ~s);
d = (d >> 1) + (d & 1);
return (d << 1) + (s & 1);
}
static crypto_word_t booth_recode_w7(crypto_word_t in) {
crypto_word_t s, d;
s = ~((in >> 7) - 1);
d = (1 << 8) - in - 1;
d = (d & s) | (in & ~s);
d = (d >> 1) + (d & 1);
return (d << 1) + (s & 1);
}
// copy_conditional copies |src| to |dst| if |move| is one and leaves it as-is
// if |move| is zero.
//
// WARNING: this breaks the usual convention of constant-time functions
// returning masks.
static void copy_conditional(BN_ULONG dst[P256_LIMBS],
const BN_ULONG src[P256_LIMBS], BN_ULONG move) {
BN_ULONG mask1 = ((BN_ULONG)0) - move;
BN_ULONG mask2 = ~mask1;
dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
if (P256_LIMBS == 8) {
dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
}
}
// is_not_zero returns one iff in != 0 and zero otherwise.
//
// WARNING: this breaks the usual convention of constant-time functions
// returning masks.
//
// (define-fun is_not_zero ((in (_ BitVec 64))) (_ BitVec 64)
// (bvlshr (bvor in (bvsub #x0000000000000000 in)) #x000000000000003f)
// )
//
// (declare-fun x () (_ BitVec 64))
//
// (assert (and (= x #x0000000000000000) (= (is_not_zero x) #x0000000000000001)))
// (check-sat)
//
// (assert (and (not (= x #x0000000000000000)) (= (is_not_zero x) #x0000000000000000)))
// (check-sat)
//
static BN_ULONG is_not_zero(BN_ULONG in) {
in |= (0 - in);
in >>= BN_BITS2 - 1;
return in;
}
// ecp_nistz256_mod_inverse_sqr_mont sets |r| to (|in| * 2^-256)^-2 * 2^256 mod
// p. That is, |r| is the modular inverse square of |in| for input and output in
// the Montgomery domain.
static void ecp_nistz256_mod_inverse_sqr_mont(BN_ULONG r[P256_LIMBS],
const BN_ULONG in[P256_LIMBS]) {
// This implements the addition chain described in
// https://briansmith.org/ecc-inversion-addition-chains-01#p256_field_inversion
BN_ULONG x2[P256_LIMBS], x3[P256_LIMBS], x6[P256_LIMBS], x12[P256_LIMBS],
x15[P256_LIMBS], x30[P256_LIMBS], x32[P256_LIMBS];
ecp_nistz256_sqr_mont(x2, in); // 2^2 - 2^1
ecp_nistz256_mul_mont(x2, x2, in); // 2^2 - 2^0
ecp_nistz256_sqr_mont(x3, x2); // 2^3 - 2^1
ecp_nistz256_mul_mont(x3, x3, in); // 2^3 - 2^0
ecp_nistz256_sqr_mont(x6, x3);
for (int i = 1; i < 3; i++) {
ecp_nistz256_sqr_mont(x6, x6);
} // 2^6 - 2^3
ecp_nistz256_mul_mont(x6, x6, x3); // 2^6 - 2^0
ecp_nistz256_sqr_mont(x12, x6);
for (int i = 1; i < 6; i++) {
ecp_nistz256_sqr_mont(x12, x12);
} // 2^12 - 2^6
ecp_nistz256_mul_mont(x12, x12, x6); // 2^12 - 2^0
ecp_nistz256_sqr_mont(x15, x12);
for (int i = 1; i < 3; i++) {
ecp_nistz256_sqr_mont(x15, x15);
} // 2^15 - 2^3
ecp_nistz256_mul_mont(x15, x15, x3); // 2^15 - 2^0
ecp_nistz256_sqr_mont(x30, x15);
for (int i = 1; i < 15; i++) {
ecp_nistz256_sqr_mont(x30, x30);
} // 2^30 - 2^15
ecp_nistz256_mul_mont(x30, x30, x15); // 2^30 - 2^0
ecp_nistz256_sqr_mont(x32, x30);
ecp_nistz256_sqr_mont(x32, x32); // 2^32 - 2^2
ecp_nistz256_mul_mont(x32, x32, x2); // 2^32 - 2^0
BN_ULONG ret[P256_LIMBS];
ecp_nistz256_sqr_mont(ret, x32);
for (int i = 1; i < 31 + 1; i++) {
ecp_nistz256_sqr_mont(ret, ret);
} // 2^64 - 2^32
ecp_nistz256_mul_mont(ret, ret, in); // 2^64 - 2^32 + 2^0
for (int i = 0; i < 96 + 32; i++) {
ecp_nistz256_sqr_mont(ret, ret);
} // 2^192 - 2^160 + 2^128
ecp_nistz256_mul_mont(ret, ret, x32); // 2^192 - 2^160 + 2^128 + 2^32 - 2^0
for (int i = 0; i < 32; i++) {
ecp_nistz256_sqr_mont(ret, ret);
} // 2^224 - 2^192 + 2^160 + 2^64 - 2^32
ecp_nistz256_mul_mont(ret, ret, x32); // 2^224 - 2^192 + 2^160 + 2^64 - 2^0
for (int i = 0; i < 30; i++) {
ecp_nistz256_sqr_mont(ret, ret);
} // 2^254 - 2^222 + 2^190 + 2^94 - 2^30
ecp_nistz256_mul_mont(ret, ret, x30); // 2^254 - 2^222 + 2^190 + 2^94 - 2^0
ecp_nistz256_sqr_mont(ret, ret);
ecp_nistz256_sqr_mont(r, ret); // 2^256 - 2^224 + 2^192 + 2^96 - 2^2
}
// r = p * p_scalar
static void ecp_nistz256_windowed_mul(const EC_GROUP *group, P256_POINT *r,
const EC_RAW_POINT *p,
const EC_SCALAR *p_scalar) {
assert(p != NULL);
assert(p_scalar != NULL);
assert(group->field.width == P256_LIMBS);
static const size_t kWindowSize = 5;
static const crypto_word_t kMask = (1 << (5 /* kWindowSize */ + 1)) - 1;
// A |P256_POINT| is (3 * 32) = 96 bytes, and the 64-byte alignment should
// add no more than 63 bytes of overhead. Thus, |table| should require
// ~1599 ((96 * 16) + 63) bytes of stack space.
alignas(64) P256_POINT table[16];
uint8_t p_str[33];
OPENSSL_memcpy(p_str, p_scalar->bytes, 32);
p_str[32] = 0;
// table[0] is implicitly (0,0,0) (the point at infinity), therefore it is
// not stored. All other values are actually stored with an offset of -1 in
// table.
P256_POINT *row = table;
assert(group->field.width == P256_LIMBS);
OPENSSL_memcpy(row[1 - 1].X, p->X.words, P256_LIMBS * sizeof(BN_ULONG));
OPENSSL_memcpy(row[1 - 1].Y, p->Y.words, P256_LIMBS * sizeof(BN_ULONG));
OPENSSL_memcpy(row[1 - 1].Z, p->Z.words, P256_LIMBS * sizeof(BN_ULONG));
ecp_nistz256_point_double(&row[2 - 1], &row[1 - 1]);
ecp_nistz256_point_add(&row[3 - 1], &row[2 - 1], &row[1 - 1]);
ecp_nistz256_point_double(&row[4 - 1], &row[2 - 1]);
ecp_nistz256_point_double(&row[6 - 1], &row[3 - 1]);
ecp_nistz256_point_double(&row[8 - 1], &row[4 - 1]);
ecp_nistz256_point_double(&row[12 - 1], &row[6 - 1]);
ecp_nistz256_point_add(&row[5 - 1], &row[4 - 1], &row[1 - 1]);
ecp_nistz256_point_add(&row[7 - 1], &row[6 - 1], &row[1 - 1]);
ecp_nistz256_point_add(&row[9 - 1], &row[8 - 1], &row[1 - 1]);
ecp_nistz256_point_add(&row[13 - 1], &row[12 - 1], &row[1 - 1]);
ecp_nistz256_point_double(&row[14 - 1], &row[7 - 1]);
ecp_nistz256_point_double(&row[10 - 1], &row[5 - 1]);
ecp_nistz256_point_add(&row[15 - 1], &row[14 - 1], &row[1 - 1]);
ecp_nistz256_point_add(&row[11 - 1], &row[10 - 1], &row[1 - 1]);
ecp_nistz256_point_double(&row[16 - 1], &row[8 - 1]);
BN_ULONG tmp[P256_LIMBS];
alignas(32) P256_POINT h;
size_t index = 255;
crypto_word_t wvalue = p_str[(index - 1) / 8];
wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
ecp_nistz256_select_w5(r, table, booth_recode_w5(wvalue) >> 1);
while (index >= 5) {
if (index != 255) {
size_t off = (index - 1) / 8;
wvalue = (crypto_word_t)p_str[off] | (crypto_word_t)p_str[off + 1] << 8;
wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
wvalue = booth_recode_w5(wvalue);
ecp_nistz256_select_w5(&h, table, wvalue >> 1);
ecp_nistz256_neg(tmp, h.Y);
copy_conditional(h.Y, tmp, (wvalue & 1));
ecp_nistz256_point_add(r, r, &h);
}
index -= kWindowSize;
ecp_nistz256_point_double(r, r);
ecp_nistz256_point_double(r, r);
ecp_nistz256_point_double(r, r);
ecp_nistz256_point_double(r, r);
ecp_nistz256_point_double(r, r);
}
// Final window
wvalue = p_str[0];
wvalue = (wvalue << 1) & kMask;
wvalue = booth_recode_w5(wvalue);
ecp_nistz256_select_w5(&h, table, wvalue >> 1);
ecp_nistz256_neg(tmp, h.Y);
copy_conditional(h.Y, tmp, wvalue & 1);
ecp_nistz256_point_add(r, r, &h);
}
typedef union {
P256_POINT p;
P256_POINT_AFFINE a;
} p256_point_union_t;
static crypto_word_t calc_first_wvalue(size_t *index, const uint8_t p_str[33]) {
static const size_t kWindowSize = 7;
static const crypto_word_t kMask = (1 << (7 /* kWindowSize */ + 1)) - 1;
*index = kWindowSize;
crypto_word_t wvalue = (p_str[0] << 1) & kMask;
return booth_recode_w7(wvalue);
}
static crypto_word_t calc_wvalue(size_t *index, const uint8_t p_str[33]) {
static const size_t kWindowSize = 7;
static const crypto_word_t kMask = (1 << (7 /* kWindowSize */ + 1)) - 1;
const size_t off = (*index - 1) / 8;
crypto_word_t wvalue =
(crypto_word_t)p_str[off] | (crypto_word_t)p_str[off + 1] << 8;
wvalue = (wvalue >> ((*index - 1) % 8)) & kMask;
*index += kWindowSize;
return booth_recode_w7(wvalue);
}
static void ecp_nistz256_point_mul(const EC_GROUP *group, EC_RAW_POINT *r,
const EC_RAW_POINT *p,
const EC_SCALAR *scalar) {
alignas(32) P256_POINT out;
ecp_nistz256_windowed_mul(group, &out, p, scalar);
assert(group->field.width == P256_LIMBS);
OPENSSL_memcpy(r->X.words, out.X, P256_LIMBS * sizeof(BN_ULONG));
OPENSSL_memcpy(r->Y.words, out.Y, P256_LIMBS * sizeof(BN_ULONG));
OPENSSL_memcpy(r->Z.words, out.Z, P256_LIMBS * sizeof(BN_ULONG));
}
static void ecp_nistz256_point_mul_base(const EC_GROUP *group, EC_RAW_POINT *r,
const EC_SCALAR *scalar) {
alignas(32) p256_point_union_t t, p;
uint8_t p_str[33];
OPENSSL_memcpy(p_str, scalar->bytes, 32);
p_str[32] = 0;
// First window
size_t index = 0;
crypto_word_t wvalue = calc_first_wvalue(&index, p_str);
ecp_nistz256_select_w7(&p.a, ecp_nistz256_precomputed[0], wvalue >> 1);
ecp_nistz256_neg(p.p.Z, p.p.Y);
copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
// Convert |p| from affine to Jacobian coordinates. We set Z to zero if |p|
// is infinity and |ONE| otherwise. |p| was computed from the table, so it
// is infinity iff |wvalue >> 1| is zero.
OPENSSL_memset(p.p.Z, 0, sizeof(p.p.Z));
copy_conditional(p.p.Z, ONE, is_not_zero(wvalue >> 1));
for (int i = 1; i < 37; i++) {
wvalue = calc_wvalue(&index, p_str);
ecp_nistz256_select_w7(&t.a, ecp_nistz256_precomputed[i], wvalue >> 1);
ecp_nistz256_neg(t.p.Z, t.a.Y);
copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
// Note |ecp_nistz256_point_add_affine| does not work if |p.p| and |t.a|
// are the same non-infinity point.
ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
}
assert(group->field.width == P256_LIMBS);
OPENSSL_memcpy(r->X.words, p.p.X, P256_LIMBS * sizeof(BN_ULONG));
OPENSSL_memcpy(r->Y.words, p.p.Y, P256_LIMBS * sizeof(BN_ULONG));
OPENSSL_memcpy(r->Z.words, p.p.Z, P256_LIMBS * sizeof(BN_ULONG));
}
static void ecp_nistz256_points_mul_public(const EC_GROUP *group,
EC_RAW_POINT *r,
const EC_SCALAR *g_scalar,
const EC_RAW_POINT *p_,
const EC_SCALAR *p_scalar) {
assert(p_ != NULL && p_scalar != NULL && g_scalar != NULL);
alignas(32) p256_point_union_t t, p;
uint8_t p_str[33];
OPENSSL_memcpy(p_str, g_scalar->bytes, 32);
p_str[32] = 0;
// First window
size_t index = 0;
size_t wvalue = calc_first_wvalue(&index, p_str);
// Convert |p| from affine to Jacobian coordinates. We set Z to zero if |p|
// is infinity and |ONE| otherwise. |p| was computed from the table, so it
// is infinity iff |wvalue >> 1| is zero.
if ((wvalue >> 1) != 0) {
OPENSSL_memcpy(&p.a, &ecp_nistz256_precomputed[0][(wvalue >> 1) - 1],
sizeof(p.a));
OPENSSL_memcpy(&p.p.Z, ONE, sizeof(p.p.Z));
} else {
OPENSSL_memset(&p.a, 0, sizeof(p.a));
OPENSSL_memset(p.p.Z, 0, sizeof(p.p.Z));
}
if ((wvalue & 1) == 1) {
ecp_nistz256_neg(p.p.Y, p.p.Y);
}
for (int i = 1; i < 37; i++) {
wvalue = calc_wvalue(&index, p_str);
if ((wvalue >> 1) == 0) {
continue;
}
OPENSSL_memcpy(&t.a, &ecp_nistz256_precomputed[i][(wvalue >> 1) - 1],
sizeof(p.a));
if ((wvalue & 1) == 1) {
ecp_nistz256_neg(t.a.Y, t.a.Y);
}
// Note |ecp_nistz256_point_add_affine| does not work if |p.p| and |t.a|
// are the same non-infinity point, so it is important that we compute the
// |g_scalar| term before the |p_scalar| term.
ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
}
ecp_nistz256_windowed_mul(group, &t.p, p_, p_scalar);
ecp_nistz256_point_add(&p.p, &p.p, &t.p);
assert(group->field.width == P256_LIMBS);
OPENSSL_memcpy(r->X.words, p.p.X, P256_LIMBS * sizeof(BN_ULONG));
OPENSSL_memcpy(r->Y.words, p.p.Y, P256_LIMBS * sizeof(BN_ULONG));
OPENSSL_memcpy(r->Z.words, p.p.Z, P256_LIMBS * sizeof(BN_ULONG));
}
static int ecp_nistz256_get_affine(const EC_GROUP *group,
const EC_RAW_POINT *point, EC_FELEM *x,
EC_FELEM *y) {
if (ec_GFp_simple_is_at_infinity(group, point)) {
OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
return 0;
}
BN_ULONG z_inv2[P256_LIMBS];
assert(group->field.width == P256_LIMBS);
ecp_nistz256_mod_inverse_sqr_mont(z_inv2, point->Z.words);
if (x != NULL) {
ecp_nistz256_mul_mont(x->words, z_inv2, point->X.words);
}
if (y != NULL) {
ecp_nistz256_sqr_mont(z_inv2, z_inv2); // z^-4
ecp_nistz256_mul_mont(y->words, point->Y.words, point->Z.words); // y * z
ecp_nistz256_mul_mont(y->words, y->words, z_inv2); // y * z^-3
}
return 1;
}
static void ecp_nistz256_add(const EC_GROUP *group, EC_RAW_POINT *r,
const EC_RAW_POINT *a_, const EC_RAW_POINT *b_) {
P256_POINT a, b;
OPENSSL_memcpy(a.X, a_->X.words, P256_LIMBS * sizeof(BN_ULONG));
OPENSSL_memcpy(a.Y, a_->Y.words, P256_LIMBS * sizeof(BN_ULONG));
OPENSSL_memcpy(a.Z, a_->Z.words, P256_LIMBS * sizeof(BN_ULONG));
OPENSSL_memcpy(b.X, b_->X.words, P256_LIMBS * sizeof(BN_ULONG));
OPENSSL_memcpy(b.Y, b_->Y.words, P256_LIMBS * sizeof(BN_ULONG));
OPENSSL_memcpy(b.Z, b_->Z.words, P256_LIMBS * sizeof(BN_ULONG));
ecp_nistz256_point_add(&a, &a, &b);
OPENSSL_memcpy(r->X.words, a.X, P256_LIMBS * sizeof(BN_ULONG));
OPENSSL_memcpy(r->Y.words, a.Y, P256_LIMBS * sizeof(BN_ULONG));
OPENSSL_memcpy(r->Z.words, a.Z, P256_LIMBS * sizeof(BN_ULONG));
}
static void ecp_nistz256_dbl(const EC_GROUP *group, EC_RAW_POINT *r,
const EC_RAW_POINT *a_) {
P256_POINT a;
OPENSSL_memcpy(a.X, a_->X.words, P256_LIMBS * sizeof(BN_ULONG));
OPENSSL_memcpy(a.Y, a_->Y.words, P256_LIMBS * sizeof(BN_ULONG));
OPENSSL_memcpy(a.Z, a_->Z.words, P256_LIMBS * sizeof(BN_ULONG));
ecp_nistz256_point_double(&a, &a);
OPENSSL_memcpy(r->X.words, a.X, P256_LIMBS * sizeof(BN_ULONG));
OPENSSL_memcpy(r->Y.words, a.Y, P256_LIMBS * sizeof(BN_ULONG));
OPENSSL_memcpy(r->Z.words, a.Z, P256_LIMBS * sizeof(BN_ULONG));
}
static void ecp_nistz256_inv0_mod_ord(const EC_GROUP *group, EC_SCALAR *out,
const EC_SCALAR *in) {
// table[i] stores a power of |in| corresponding to the matching enum value.
enum {
// The following indices specify the power in binary.
i_1 = 0,
i_10,
i_11,
i_101,
i_111,
i_1010,
i_1111,
i_10101,
i_101010,
i_101111,
// The following indices specify 2^N-1, or N ones in a row.
i_x6,
i_x8,
i_x16,
i_x32
};
BN_ULONG table[15][P256_LIMBS];
// https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
//
// Even though this code path spares 12 squarings, 4.5%, and 13
// multiplications, 25%, the overall sign operation is not that much faster,
// not more that 2%. Most of the performance of this function comes from the
// scalar operations.
// Pre-calculate powers.
OPENSSL_memcpy(table[i_1], in->words, P256_LIMBS * sizeof(BN_ULONG));
ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1);
ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]);
ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]);
ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]);
ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1);
ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]);
ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1);
ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]);
ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1);
ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]);
ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]);
ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2);
ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]);
ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8);
ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]);
ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16);
ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]);
// Compute |in| raised to the order-2.
ecp_nistz256_ord_sqr_mont(out->words, table[i_x32], 64);
ecp_nistz256_ord_mul_mont(out->words, out->words, table[i_x32]);
static const struct {
uint8_t p, i;
} kChain[27] = {{32, i_x32}, {6, i_101111}, {5, i_111}, {4, i_11},
{5, i_1111}, {5, i_10101}, {4, i_101}, {3, i_101},
{3, i_101}, {5, i_111}, {9, i_101111}, {6, i_1111},
{2, i_1}, {5, i_1}, {6, i_1111}, {5, i_111},
{4, i_111}, {5, i_111}, {5, i_101}, {3, i_11},
{10, i_101111}, {2, i_11}, {5, i_11}, {5, i_11},
{3, i_1}, {7, i_10101}, {6, i_1111}};
for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kChain); i++) {
ecp_nistz256_ord_sqr_mont(out->words, out->words, kChain[i].p);
ecp_nistz256_ord_mul_mont(out->words, out->words, table[kChain[i].i]);
}
}
static int ecp_nistz256_scalar_to_montgomery_inv_vartime(const EC_GROUP *group,
EC_SCALAR *out,
const EC_SCALAR *in) {
if ((OPENSSL_ia32cap_get()[1] & (1 << 28)) == 0) {
// No AVX support; fallback to generic code.
return ec_simple_scalar_to_montgomery_inv_vartime(group, out, in);
}
assert(group->order.width == P256_LIMBS);
if (!beeu_mod_inverse_vartime(out->words, in->words, group->order.d)) {
return 0;
}
// The result should be returned in the Montgomery domain.
ec_scalar_to_montgomery(group, out, out);
return 1;
}
static int ecp_nistz256_cmp_x_coordinate(const EC_GROUP *group,
const EC_RAW_POINT *p,
const EC_SCALAR *r) {
if (ec_GFp_simple_is_at_infinity(group, p)) {
return 0;
}
assert(group->order.width == P256_LIMBS);
assert(group->field.width == P256_LIMBS);
// We wish to compare X/Z^2 with r. This is equivalent to comparing X with
// r*Z^2. Note that X and Z are represented in Montgomery form, while r is
// not.
BN_ULONG r_Z2[P256_LIMBS], Z2_mont[P256_LIMBS], X[P256_LIMBS];
ecp_nistz256_mul_mont(Z2_mont, p->Z.words, p->Z.words);
ecp_nistz256_mul_mont(r_Z2, r->words, Z2_mont);
ecp_nistz256_from_mont(X, p->X.words);
if (OPENSSL_memcmp(r_Z2, X, sizeof(r_Z2)) == 0) {
return 1;
}
// During signing the x coefficient is reduced modulo the group order.
// Therefore there is a small possibility, less than 1/2^128, that group_order
// < p.x < P. in that case we need not only to compare against |r| but also to
// compare against r+group_order.
if (bn_less_than_words(r->words, group->field_minus_order.words,
P256_LIMBS)) {
// We can ignore the carry because: r + group_order < p < 2^256.
bn_add_words(r_Z2, r->words, group->order.d, P256_LIMBS);
ecp_nistz256_mul_mont(r_Z2, r_Z2, Z2_mont);
if (OPENSSL_memcmp(r_Z2, X, sizeof(r_Z2)) == 0) {
return 1;
}
}
return 0;
}
DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistz256_method) {
out->group_init = ec_GFp_mont_group_init;
out->group_finish = ec_GFp_mont_group_finish;
out->group_set_curve = ec_GFp_mont_group_set_curve;
out->point_get_affine_coordinates = ecp_nistz256_get_affine;
out->add = ecp_nistz256_add;
out->dbl = ecp_nistz256_dbl;
out->mul = ecp_nistz256_point_mul;
out->mul_base = ecp_nistz256_point_mul_base;
out->mul_public = ecp_nistz256_points_mul_public;
out->felem_mul = ec_GFp_mont_felem_mul;
out->felem_sqr = ec_GFp_mont_felem_sqr;
out->felem_to_bytes = ec_GFp_mont_felem_to_bytes;
out->felem_from_bytes = ec_GFp_mont_felem_from_bytes;
out->scalar_inv0_montgomery = ecp_nistz256_inv0_mod_ord;
out->scalar_to_montgomery_inv_vartime =
ecp_nistz256_scalar_to_montgomery_inv_vartime;
out->cmp_x_coordinate = ecp_nistz256_cmp_x_coordinate;
}
#endif /* !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
!defined(OPENSSL_SMALL) */
|