File: p256.c

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (740 lines) | stat: -rw-r--r-- 27,317 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
/* Copyright (c) 2020, Google Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */

// An implementation of the NIST P-256 elliptic curve point multiplication.
// 256-bit Montgomery form for 64 and 32-bit. Field operations are generated by
// Fiat, which lives in //third_party/fiat.

#include <CNIOBoringSSL_base.h>

#include <CNIOBoringSSL_bn.h>
#include <CNIOBoringSSL_ec.h>
#include <CNIOBoringSSL_err.h>
#include <CNIOBoringSSL_mem.h>
#include <CNIOBoringSSL_type_check.h>

#include <assert.h>
#include <string.h>

#include "../../internal.h"
#include "../delocate.h"
#include "./internal.h"


// MSVC does not implement uint128_t, and crashes with intrinsics
#if defined(BORINGSSL_HAS_UINT128)
#define BORINGSSL_NISTP256_64BIT 1
#include "../../../third_party/fiat/p256_64.h"
#else
#include "../../../third_party/fiat/p256_32.h"
#endif


// utility functions, handwritten

#if defined(BORINGSSL_NISTP256_64BIT)
#define FIAT_P256_NLIMBS 4
typedef uint64_t fiat_p256_limb_t;
typedef uint64_t fiat_p256_felem[FIAT_P256_NLIMBS];
static const fiat_p256_felem fiat_p256_one = {0x1, 0xffffffff00000000,
                                              0xffffffffffffffff, 0xfffffffe};
#else  // 64BIT; else 32BIT
#define FIAT_P256_NLIMBS 8
typedef uint32_t fiat_p256_limb_t;
typedef uint32_t fiat_p256_felem[FIAT_P256_NLIMBS];
static const fiat_p256_felem fiat_p256_one = {
    0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0};
#endif  // 64BIT


static fiat_p256_limb_t fiat_p256_nz(
    const fiat_p256_limb_t in1[FIAT_P256_NLIMBS]) {
  fiat_p256_limb_t ret;
  fiat_p256_nonzero(&ret, in1);
  return ret;
}

static void fiat_p256_copy(fiat_p256_limb_t out[FIAT_P256_NLIMBS],
                           const fiat_p256_limb_t in1[FIAT_P256_NLIMBS]) {
  for (size_t i = 0; i < FIAT_P256_NLIMBS; i++) {
    out[i] = in1[i];
  }
}

static void fiat_p256_cmovznz(fiat_p256_limb_t out[FIAT_P256_NLIMBS],
                              fiat_p256_limb_t t,
                              const fiat_p256_limb_t z[FIAT_P256_NLIMBS],
                              const fiat_p256_limb_t nz[FIAT_P256_NLIMBS]) {
  fiat_p256_selectznz(out, !!t, z, nz);
}

static void fiat_p256_from_generic(fiat_p256_felem out, const EC_FELEM *in) {
  fiat_p256_from_bytes(out, in->bytes);
}

static void fiat_p256_to_generic(EC_FELEM *out, const fiat_p256_felem in) {
  // This works because 256 is a multiple of 64, so there are no excess bytes to
  // zero when rounding up to |BN_ULONG|s.
  OPENSSL_STATIC_ASSERT(
      256 / 8 == sizeof(BN_ULONG) * ((256 + BN_BITS2 - 1) / BN_BITS2),
      "fiat_p256_to_bytes leaves bytes uninitialized");
  fiat_p256_to_bytes(out->bytes, in);
}

// fiat_p256_inv_square calculates |out| = |in|^{-2}
//
// Based on Fermat's Little Theorem:
//   a^p = a (mod p)
//   a^{p-1} = 1 (mod p)
//   a^{p-3} = a^{-2} (mod p)
static void fiat_p256_inv_square(fiat_p256_felem out,
                                 const fiat_p256_felem in) {
  // This implements the addition chain described in
  // https://briansmith.org/ecc-inversion-addition-chains-01#p256_field_inversion
  fiat_p256_felem x2, x3, x6, x12, x15, x30, x32;
  fiat_p256_square(x2, in);   // 2^2 - 2^1
  fiat_p256_mul(x2, x2, in);  // 2^2 - 2^0

  fiat_p256_square(x3, x2);   // 2^3 - 2^1
  fiat_p256_mul(x3, x3, in);  // 2^3 - 2^0

  fiat_p256_square(x6, x3);
  for (int i = 1; i < 3; i++) {
    fiat_p256_square(x6, x6);
  }                           // 2^6 - 2^3
  fiat_p256_mul(x6, x6, x3);  // 2^6 - 2^0

  fiat_p256_square(x12, x6);
  for (int i = 1; i < 6; i++) {
    fiat_p256_square(x12, x12);
  }                             // 2^12 - 2^6
  fiat_p256_mul(x12, x12, x6);  // 2^12 - 2^0

  fiat_p256_square(x15, x12);
  for (int i = 1; i < 3; i++) {
    fiat_p256_square(x15, x15);
  }                             // 2^15 - 2^3
  fiat_p256_mul(x15, x15, x3);  // 2^15 - 2^0

  fiat_p256_square(x30, x15);
  for (int i = 1; i < 15; i++) {
    fiat_p256_square(x30, x30);
  }                              // 2^30 - 2^15
  fiat_p256_mul(x30, x30, x15);  // 2^30 - 2^0

  fiat_p256_square(x32, x30);
  fiat_p256_square(x32, x32);   // 2^32 - 2^2
  fiat_p256_mul(x32, x32, x2);  // 2^32 - 2^0

  fiat_p256_felem ret;
  fiat_p256_square(ret, x32);
  for (int i = 1; i < 31 + 1; i++) {
    fiat_p256_square(ret, ret);
  }                             // 2^64 - 2^32
  fiat_p256_mul(ret, ret, in);  // 2^64 - 2^32 + 2^0

  for (int i = 0; i < 96 + 32; i++) {
    fiat_p256_square(ret, ret);
  }                              // 2^192 - 2^160 + 2^128
  fiat_p256_mul(ret, ret, x32);  // 2^192 - 2^160 + 2^128 + 2^32 - 2^0

  for (int i = 0; i < 32; i++) {
    fiat_p256_square(ret, ret);
  }                              // 2^224 - 2^192 + 2^160 + 2^64 - 2^32
  fiat_p256_mul(ret, ret, x32);  // 2^224 - 2^192 + 2^160 + 2^64 - 2^0

  for (int i = 0; i < 30; i++) {
    fiat_p256_square(ret, ret);
  }                              // 2^254 - 2^222 + 2^190 + 2^94 - 2^30
  fiat_p256_mul(ret, ret, x30);  // 2^254 - 2^222 + 2^190 + 2^94 - 2^0

  fiat_p256_square(ret, ret);
  fiat_p256_square(out, ret);  // 2^256 - 2^224 + 2^192 + 2^96 - 2^2
}

// Group operations
// ----------------
//
// Building on top of the field operations we have the operations on the
// elliptic curve group itself. Points on the curve are represented in Jacobian
// coordinates.
//
// Both operations were transcribed to Coq and proven to correspond to naive
// implementations using Affine coordinates, for all suitable fields.  In the
// Coq proofs, issues of constant-time execution and memory layout (aliasing)
// conventions were not considered. Specification of affine coordinates:
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Spec/WeierstrassCurve.v#L28>
// As a sanity check, a proof that these points form a commutative group:
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/AffineProofs.v#L33>

// fiat_p256_point_double calculates 2*(x_in, y_in, z_in)
//
// The method is taken from:
//   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
//
// Coq transcription and correctness proof:
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L93>
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L201>
//
// Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
// while x_out == y_in is not (maybe this works, but it's not tested).
static void fiat_p256_point_double(fiat_p256_felem x_out, fiat_p256_felem y_out,
                                   fiat_p256_felem z_out,
                                   const fiat_p256_felem x_in,
                                   const fiat_p256_felem y_in,
                                   const fiat_p256_felem z_in) {
  fiat_p256_felem delta, gamma, beta, ftmp, ftmp2, tmptmp, alpha, fourbeta;
  // delta = z^2
  fiat_p256_square(delta, z_in);
  // gamma = y^2
  fiat_p256_square(gamma, y_in);
  // beta = x*gamma
  fiat_p256_mul(beta, x_in, gamma);

  // alpha = 3*(x-delta)*(x+delta)
  fiat_p256_sub(ftmp, x_in, delta);
  fiat_p256_add(ftmp2, x_in, delta);

  fiat_p256_add(tmptmp, ftmp2, ftmp2);
  fiat_p256_add(ftmp2, ftmp2, tmptmp);
  fiat_p256_mul(alpha, ftmp, ftmp2);

  // x' = alpha^2 - 8*beta
  fiat_p256_square(x_out, alpha);
  fiat_p256_add(fourbeta, beta, beta);
  fiat_p256_add(fourbeta, fourbeta, fourbeta);
  fiat_p256_add(tmptmp, fourbeta, fourbeta);
  fiat_p256_sub(x_out, x_out, tmptmp);

  // z' = (y + z)^2 - gamma - delta
  fiat_p256_add(delta, gamma, delta);
  fiat_p256_add(ftmp, y_in, z_in);
  fiat_p256_square(z_out, ftmp);
  fiat_p256_sub(z_out, z_out, delta);

  // y' = alpha*(4*beta - x') - 8*gamma^2
  fiat_p256_sub(y_out, fourbeta, x_out);
  fiat_p256_add(gamma, gamma, gamma);
  fiat_p256_square(gamma, gamma);
  fiat_p256_mul(y_out, alpha, y_out);
  fiat_p256_add(gamma, gamma, gamma);
  fiat_p256_sub(y_out, y_out, gamma);
}

// fiat_p256_point_add calculates (x1, y1, z1) + (x2, y2, z2)
//
// The method is taken from:
//   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
// adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
//
// Coq transcription and correctness proof:
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L135>
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L205>
//
// This function includes a branch for checking whether the two input points
// are equal, (while not equal to the point at infinity). This case never
// happens during single point multiplication, so there is no timing leak for
// ECDH or ECDSA signing.
static void fiat_p256_point_add(fiat_p256_felem x3, fiat_p256_felem y3,
                                fiat_p256_felem z3, const fiat_p256_felem x1,
                                const fiat_p256_felem y1,
                                const fiat_p256_felem z1, const int mixed,
                                const fiat_p256_felem x2,
                                const fiat_p256_felem y2,
                                const fiat_p256_felem z2) {
  fiat_p256_felem x_out, y_out, z_out;
  fiat_p256_limb_t z1nz = fiat_p256_nz(z1);
  fiat_p256_limb_t z2nz = fiat_p256_nz(z2);

  // z1z1 = z1z1 = z1**2
  fiat_p256_felem z1z1;
  fiat_p256_square(z1z1, z1);

  fiat_p256_felem u1, s1, two_z1z2;
  if (!mixed) {
    // z2z2 = z2**2
    fiat_p256_felem z2z2;
    fiat_p256_square(z2z2, z2);

    // u1 = x1*z2z2
    fiat_p256_mul(u1, x1, z2z2);

    // two_z1z2 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2
    fiat_p256_add(two_z1z2, z1, z2);
    fiat_p256_square(two_z1z2, two_z1z2);
    fiat_p256_sub(two_z1z2, two_z1z2, z1z1);
    fiat_p256_sub(two_z1z2, two_z1z2, z2z2);

    // s1 = y1 * z2**3
    fiat_p256_mul(s1, z2, z2z2);
    fiat_p256_mul(s1, s1, y1);
  } else {
    // We'll assume z2 = 1 (special case z2 = 0 is handled later).

    // u1 = x1*z2z2
    fiat_p256_copy(u1, x1);
    // two_z1z2 = 2z1z2
    fiat_p256_add(two_z1z2, z1, z1);
    // s1 = y1 * z2**3
    fiat_p256_copy(s1, y1);
  }

  // u2 = x2*z1z1
  fiat_p256_felem u2;
  fiat_p256_mul(u2, x2, z1z1);

  // h = u2 - u1
  fiat_p256_felem h;
  fiat_p256_sub(h, u2, u1);

  fiat_p256_limb_t xneq = fiat_p256_nz(h);

  // z_out = two_z1z2 * h
  fiat_p256_mul(z_out, h, two_z1z2);

  // z1z1z1 = z1 * z1z1
  fiat_p256_felem z1z1z1;
  fiat_p256_mul(z1z1z1, z1, z1z1);

  // s2 = y2 * z1**3
  fiat_p256_felem s2;
  fiat_p256_mul(s2, y2, z1z1z1);

  // r = (s2 - s1)*2
  fiat_p256_felem r;
  fiat_p256_sub(r, s2, s1);
  fiat_p256_add(r, r, r);

  fiat_p256_limb_t yneq = fiat_p256_nz(r);

  fiat_p256_limb_t is_nontrivial_double = constant_time_is_zero_w(xneq | yneq) &
                                          ~constant_time_is_zero_w(z1nz) &
                                          ~constant_time_is_zero_w(z2nz);
  if (is_nontrivial_double) {
    fiat_p256_point_double(x3, y3, z3, x1, y1, z1);
    return;
  }

  // I = (2h)**2
  fiat_p256_felem i;
  fiat_p256_add(i, h, h);
  fiat_p256_square(i, i);

  // J = h * I
  fiat_p256_felem j;
  fiat_p256_mul(j, h, i);

  // V = U1 * I
  fiat_p256_felem v;
  fiat_p256_mul(v, u1, i);

  // x_out = r**2 - J - 2V
  fiat_p256_square(x_out, r);
  fiat_p256_sub(x_out, x_out, j);
  fiat_p256_sub(x_out, x_out, v);
  fiat_p256_sub(x_out, x_out, v);

  // y_out = r(V-x_out) - 2 * s1 * J
  fiat_p256_sub(y_out, v, x_out);
  fiat_p256_mul(y_out, y_out, r);
  fiat_p256_felem s1j;
  fiat_p256_mul(s1j, s1, j);
  fiat_p256_sub(y_out, y_out, s1j);
  fiat_p256_sub(y_out, y_out, s1j);

  fiat_p256_cmovznz(x_out, z1nz, x2, x_out);
  fiat_p256_cmovznz(x3, z2nz, x1, x_out);
  fiat_p256_cmovznz(y_out, z1nz, y2, y_out);
  fiat_p256_cmovznz(y3, z2nz, y1, y_out);
  fiat_p256_cmovznz(z_out, z1nz, z2, z_out);
  fiat_p256_cmovznz(z3, z2nz, z1, z_out);
}

#include "./p256_table.h"

// fiat_p256_select_point_affine selects the |idx-1|th point from a
// precomputation table and copies it to out. If |idx| is zero, the output is
// the point at infinity.
static void fiat_p256_select_point_affine(
    const fiat_p256_limb_t idx, size_t size,
    const fiat_p256_felem pre_comp[/*size*/][2], fiat_p256_felem out[3]) {
  OPENSSL_memset(out, 0, sizeof(fiat_p256_felem) * 3);
  for (size_t i = 0; i < size; i++) {
    fiat_p256_limb_t mismatch = i ^ (idx - 1);
    fiat_p256_cmovznz(out[0], mismatch, pre_comp[i][0], out[0]);
    fiat_p256_cmovznz(out[1], mismatch, pre_comp[i][1], out[1]);
  }
  fiat_p256_cmovznz(out[2], idx, out[2], fiat_p256_one);
}

// fiat_p256_select_point selects the |idx|th point from a precomputation table
// and copies it to out.
static void fiat_p256_select_point(const fiat_p256_limb_t idx, size_t size,
                                   const fiat_p256_felem pre_comp[/*size*/][3],
                                   fiat_p256_felem out[3]) {
  OPENSSL_memset(out, 0, sizeof(fiat_p256_felem) * 3);
  for (size_t i = 0; i < size; i++) {
    fiat_p256_limb_t mismatch = i ^ idx;
    fiat_p256_cmovznz(out[0], mismatch, pre_comp[i][0], out[0]);
    fiat_p256_cmovznz(out[1], mismatch, pre_comp[i][1], out[1]);
    fiat_p256_cmovznz(out[2], mismatch, pre_comp[i][2], out[2]);
  }
}

// fiat_p256_get_bit returns the |i|th bit in |in|
static crypto_word_t fiat_p256_get_bit(const uint8_t *in, int i) {
  if (i < 0 || i >= 256) {
    return 0;
  }
  return (in[i >> 3] >> (i & 7)) & 1;
}

// OPENSSL EC_METHOD FUNCTIONS

// Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
// (X/Z^2, Y/Z^3).
static int ec_GFp_nistp256_point_get_affine_coordinates(
    const EC_GROUP *group, const EC_RAW_POINT *point, EC_FELEM *x_out,
    EC_FELEM *y_out) {
  if (ec_GFp_simple_is_at_infinity(group, point)) {
    OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
    return 0;
  }

  fiat_p256_felem z1, z2;
  fiat_p256_from_generic(z1, &point->Z);
  fiat_p256_inv_square(z2, z1);

  if (x_out != NULL) {
    fiat_p256_felem x;
    fiat_p256_from_generic(x, &point->X);
    fiat_p256_mul(x, x, z2);
    fiat_p256_to_generic(x_out, x);
  }

  if (y_out != NULL) {
    fiat_p256_felem y;
    fiat_p256_from_generic(y, &point->Y);
    fiat_p256_square(z2, z2);  // z^-4
    fiat_p256_mul(y, y, z1);   // y * z
    fiat_p256_mul(y, y, z2);   // y * z^-3
    fiat_p256_to_generic(y_out, y);
  }

  return 1;
}

static void ec_GFp_nistp256_add(const EC_GROUP *group, EC_RAW_POINT *r,
                                const EC_RAW_POINT *a, const EC_RAW_POINT *b) {
  fiat_p256_felem x1, y1, z1, x2, y2, z2;
  fiat_p256_from_generic(x1, &a->X);
  fiat_p256_from_generic(y1, &a->Y);
  fiat_p256_from_generic(z1, &a->Z);
  fiat_p256_from_generic(x2, &b->X);
  fiat_p256_from_generic(y2, &b->Y);
  fiat_p256_from_generic(z2, &b->Z);
  fiat_p256_point_add(x1, y1, z1, x1, y1, z1, 0 /* both Jacobian */, x2, y2,
                      z2);
  fiat_p256_to_generic(&r->X, x1);
  fiat_p256_to_generic(&r->Y, y1);
  fiat_p256_to_generic(&r->Z, z1);
}

static void ec_GFp_nistp256_dbl(const EC_GROUP *group, EC_RAW_POINT *r,
                                const EC_RAW_POINT *a) {
  fiat_p256_felem x, y, z;
  fiat_p256_from_generic(x, &a->X);
  fiat_p256_from_generic(y, &a->Y);
  fiat_p256_from_generic(z, &a->Z);
  fiat_p256_point_double(x, y, z, x, y, z);
  fiat_p256_to_generic(&r->X, x);
  fiat_p256_to_generic(&r->Y, y);
  fiat_p256_to_generic(&r->Z, z);
}

static void ec_GFp_nistp256_point_mul(const EC_GROUP *group, EC_RAW_POINT *r,
                                      const EC_RAW_POINT *p,
                                      const EC_SCALAR *scalar) {
  fiat_p256_felem p_pre_comp[17][3];
  OPENSSL_memset(&p_pre_comp, 0, sizeof(p_pre_comp));
  // Precompute multiples.
  fiat_p256_from_generic(p_pre_comp[1][0], &p->X);
  fiat_p256_from_generic(p_pre_comp[1][1], &p->Y);
  fiat_p256_from_generic(p_pre_comp[1][2], &p->Z);
  for (size_t j = 2; j <= 16; ++j) {
    if (j & 1) {
      fiat_p256_point_add(p_pre_comp[j][0], p_pre_comp[j][1], p_pre_comp[j][2],
                          p_pre_comp[1][0], p_pre_comp[1][1], p_pre_comp[1][2],
                          0, p_pre_comp[j - 1][0], p_pre_comp[j - 1][1],
                          p_pre_comp[j - 1][2]);
    } else {
      fiat_p256_point_double(p_pre_comp[j][0], p_pre_comp[j][1],
                             p_pre_comp[j][2], p_pre_comp[j / 2][0],
                             p_pre_comp[j / 2][1], p_pre_comp[j / 2][2]);
    }
  }

  // Set nq to the point at infinity.
  fiat_p256_felem nq[3] = {{0}, {0}, {0}}, ftmp, tmp[3];

  // Loop over |scalar| msb-to-lsb, incorporating |p_pre_comp| every 5th round.
  int skip = 1;  // Save two point operations in the first round.
  for (size_t i = 255; i < 256; i--) {
    // double
    if (!skip) {
      fiat_p256_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
    }

    // do other additions every 5 doublings
    if (i % 5 == 0) {
      crypto_word_t bits = fiat_p256_get_bit(scalar->bytes, i + 4) << 5;
      bits |= fiat_p256_get_bit(scalar->bytes, i + 3) << 4;
      bits |= fiat_p256_get_bit(scalar->bytes, i + 2) << 3;
      bits |= fiat_p256_get_bit(scalar->bytes, i + 1) << 2;
      bits |= fiat_p256_get_bit(scalar->bytes, i) << 1;
      bits |= fiat_p256_get_bit(scalar->bytes, i - 1);
      crypto_word_t sign, digit;
      ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);

      // select the point to add or subtract, in constant time.
      fiat_p256_select_point((fiat_p256_limb_t)digit, 17,
                             (const fiat_p256_felem(*)[3])p_pre_comp, tmp);
      fiat_p256_opp(ftmp, tmp[1]);  // (X, -Y, Z) is the negative point.
      fiat_p256_cmovznz(tmp[1], (fiat_p256_limb_t)sign, tmp[1], ftmp);

      if (!skip) {
        fiat_p256_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2],
                            0 /* mixed */, tmp[0], tmp[1], tmp[2]);
      } else {
        fiat_p256_copy(nq[0], tmp[0]);
        fiat_p256_copy(nq[1], tmp[1]);
        fiat_p256_copy(nq[2], tmp[2]);
        skip = 0;
      }
    }
  }

  fiat_p256_to_generic(&r->X, nq[0]);
  fiat_p256_to_generic(&r->Y, nq[1]);
  fiat_p256_to_generic(&r->Z, nq[2]);
}

static void ec_GFp_nistp256_point_mul_base(const EC_GROUP *group,
                                           EC_RAW_POINT *r,
                                           const EC_SCALAR *scalar) {
  // Set nq to the point at infinity.
  fiat_p256_felem nq[3] = {{0}, {0}, {0}}, tmp[3];

  int skip = 1;  // Save two point operations in the first round.
  for (size_t i = 31; i < 32; i--) {
    if (!skip) {
      fiat_p256_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
    }

    // First, look 32 bits upwards.
    crypto_word_t bits = fiat_p256_get_bit(scalar->bytes, i + 224) << 3;
    bits |= fiat_p256_get_bit(scalar->bytes, i + 160) << 2;
    bits |= fiat_p256_get_bit(scalar->bytes, i + 96) << 1;
    bits |= fiat_p256_get_bit(scalar->bytes, i + 32);
    // Select the point to add, in constant time.
    fiat_p256_select_point_affine((fiat_p256_limb_t)bits, 15,
                                  fiat_p256_g_pre_comp[1], tmp);

    if (!skip) {
      fiat_p256_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2],
                          1 /* mixed */, tmp[0], tmp[1], tmp[2]);
    } else {
      fiat_p256_copy(nq[0], tmp[0]);
      fiat_p256_copy(nq[1], tmp[1]);
      fiat_p256_copy(nq[2], tmp[2]);
      skip = 0;
    }

    // Second, look at the current position.
    bits = fiat_p256_get_bit(scalar->bytes, i + 192) << 3;
    bits |= fiat_p256_get_bit(scalar->bytes, i + 128) << 2;
    bits |= fiat_p256_get_bit(scalar->bytes, i + 64) << 1;
    bits |= fiat_p256_get_bit(scalar->bytes, i);
    // Select the point to add, in constant time.
    fiat_p256_select_point_affine((fiat_p256_limb_t)bits, 15,
                                  fiat_p256_g_pre_comp[0], tmp);
    fiat_p256_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
                        tmp[0], tmp[1], tmp[2]);
  }

  fiat_p256_to_generic(&r->X, nq[0]);
  fiat_p256_to_generic(&r->Y, nq[1]);
  fiat_p256_to_generic(&r->Z, nq[2]);
}

static void ec_GFp_nistp256_point_mul_public(const EC_GROUP *group,
                                             EC_RAW_POINT *r,
                                             const EC_SCALAR *g_scalar,
                                             const EC_RAW_POINT *p,
                                             const EC_SCALAR *p_scalar) {
#define P256_WSIZE_PUBLIC 4
  // Precompute multiples of |p|. p_pre_comp[i] is (2*i+1) * |p|.
  fiat_p256_felem p_pre_comp[1 << (P256_WSIZE_PUBLIC - 1)][3];
  fiat_p256_from_generic(p_pre_comp[0][0], &p->X);
  fiat_p256_from_generic(p_pre_comp[0][1], &p->Y);
  fiat_p256_from_generic(p_pre_comp[0][2], &p->Z);
  fiat_p256_felem p2[3];
  fiat_p256_point_double(p2[0], p2[1], p2[2], p_pre_comp[0][0],
                         p_pre_comp[0][1], p_pre_comp[0][2]);
  for (size_t i = 1; i < OPENSSL_ARRAY_SIZE(p_pre_comp); i++) {
    fiat_p256_point_add(p_pre_comp[i][0], p_pre_comp[i][1], p_pre_comp[i][2],
                        p_pre_comp[i - 1][0], p_pre_comp[i - 1][1],
                        p_pre_comp[i - 1][2], 0 /* not mixed */, p2[0], p2[1],
                        p2[2]);
  }

  // Set up the coefficients for |p_scalar|.
  int8_t p_wNAF[257];
  ec_compute_wNAF(group, p_wNAF, p_scalar, 256, P256_WSIZE_PUBLIC);

  // Set |ret| to the point at infinity.
  int skip = 1;  // Save some point operations.
  fiat_p256_felem ret[3] = {{0}, {0}, {0}};
  for (int i = 256; i >= 0; i--) {
    if (!skip) {
      fiat_p256_point_double(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2]);
    }

    // For the |g_scalar|, we use the precomputed table without the
    // constant-time lookup.
    if (i <= 31) {
      // First, look 32 bits upwards.
      crypto_word_t bits = fiat_p256_get_bit(g_scalar->bytes, i + 224) << 3;
      bits |= fiat_p256_get_bit(g_scalar->bytes, i + 160) << 2;
      bits |= fiat_p256_get_bit(g_scalar->bytes, i + 96) << 1;
      bits |= fiat_p256_get_bit(g_scalar->bytes, i + 32);
      if (bits != 0) {
        size_t index = (size_t)(bits - 1);
        fiat_p256_point_add(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2],
                            1 /* mixed */, fiat_p256_g_pre_comp[1][index][0],
                            fiat_p256_g_pre_comp[1][index][1],
                            fiat_p256_one);
        skip = 0;
      }

      // Second, look at the current position.
      bits = fiat_p256_get_bit(g_scalar->bytes, i + 192) << 3;
      bits |= fiat_p256_get_bit(g_scalar->bytes, i + 128) << 2;
      bits |= fiat_p256_get_bit(g_scalar->bytes, i + 64) << 1;
      bits |= fiat_p256_get_bit(g_scalar->bytes, i);
      if (bits != 0) {
        size_t index = (size_t)(bits - 1);
        fiat_p256_point_add(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2],
                            1 /* mixed */, fiat_p256_g_pre_comp[0][index][0],
                            fiat_p256_g_pre_comp[0][index][1],
                            fiat_p256_one);
        skip = 0;
      }
    }

    int digit = p_wNAF[i];
    if (digit != 0) {
      assert(digit & 1);
      size_t idx = (size_t)(digit < 0 ? (-digit) >> 1 : digit >> 1);
      fiat_p256_felem *y = &p_pre_comp[idx][1], tmp;
      if (digit < 0) {
        fiat_p256_opp(tmp, p_pre_comp[idx][1]);
        y = &tmp;
      }
      if (!skip) {
        fiat_p256_point_add(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2],
                            0 /* not mixed */, p_pre_comp[idx][0], *y,
                            p_pre_comp[idx][2]);
      } else {
        fiat_p256_copy(ret[0], p_pre_comp[idx][0]);
        fiat_p256_copy(ret[1], *y);
        fiat_p256_copy(ret[2], p_pre_comp[idx][2]);
        skip = 0;
      }
    }
  }

  fiat_p256_to_generic(&r->X, ret[0]);
  fiat_p256_to_generic(&r->Y, ret[1]);
  fiat_p256_to_generic(&r->Z, ret[2]);
}

static int ec_GFp_nistp256_cmp_x_coordinate(const EC_GROUP *group,
                                            const EC_RAW_POINT *p,
                                            const EC_SCALAR *r) {
  if (ec_GFp_simple_is_at_infinity(group, p)) {
    return 0;
  }

  // We wish to compare X/Z^2 with r. This is equivalent to comparing X with
  // r*Z^2. Note that X and Z are represented in Montgomery form, while r is
  // not.
  fiat_p256_felem Z2_mont;
  fiat_p256_from_generic(Z2_mont, &p->Z);
  fiat_p256_mul(Z2_mont, Z2_mont, Z2_mont);

  fiat_p256_felem r_Z2;
  fiat_p256_from_bytes(r_Z2, r->bytes);  // r < order < p, so this is valid.
  fiat_p256_mul(r_Z2, r_Z2, Z2_mont);

  fiat_p256_felem X;
  fiat_p256_from_generic(X, &p->X);
  fiat_p256_from_montgomery(X, X);

  if (OPENSSL_memcmp(&r_Z2, &X, sizeof(r_Z2)) == 0) {
    return 1;
  }

  // During signing the x coefficient is reduced modulo the group order.
  // Therefore there is a small possibility, less than 1/2^128, that group_order
  // < p.x < P. in that case we need not only to compare against |r| but also to
  // compare against r+group_order.
  assert(group->field.width == group->order.width);
  if (bn_less_than_words(r->words, group->field_minus_order.words,
                         group->field.width)) {
    // We can ignore the carry because: r + group_order < p < 2^256.
    EC_FELEM tmp;
    bn_add_words(tmp.words, r->words, group->order.d, group->order.width);
    fiat_p256_from_generic(r_Z2, &tmp);
    fiat_p256_mul(r_Z2, r_Z2, Z2_mont);
    if (OPENSSL_memcmp(&r_Z2, &X, sizeof(r_Z2)) == 0) {
      return 1;
    }
  }

  return 0;
}

DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistp256_method) {
  out->group_init = ec_GFp_mont_group_init;
  out->group_finish = ec_GFp_mont_group_finish;
  out->group_set_curve = ec_GFp_mont_group_set_curve;
  out->point_get_affine_coordinates =
      ec_GFp_nistp256_point_get_affine_coordinates;
  out->add = ec_GFp_nistp256_add;
  out->dbl = ec_GFp_nistp256_dbl;
  out->mul = ec_GFp_nistp256_point_mul;
  out->mul_base = ec_GFp_nistp256_point_mul_base;
  out->mul_public = ec_GFp_nistp256_point_mul_public;
  out->felem_mul = ec_GFp_mont_felem_mul;
  out->felem_sqr = ec_GFp_mont_felem_sqr;
  out->felem_to_bytes = ec_GFp_mont_felem_to_bytes;
  out->felem_from_bytes = ec_GFp_mont_felem_from_bytes;
  out->scalar_inv0_montgomery = ec_simple_scalar_inv0_montgomery;
  out->scalar_to_montgomery_inv_vartime =
      ec_simple_scalar_to_montgomery_inv_vartime;
  out->cmp_x_coordinate = ec_GFp_nistp256_cmp_x_coordinate;
}

#undef BORINGSSL_NISTP256_64BIT