1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
|
/* Copyright (c) 2020, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
// An implementation of the NIST P-256 elliptic curve point multiplication.
// 256-bit Montgomery form for 64 and 32-bit. Field operations are generated by
// Fiat, which lives in //third_party/fiat.
#include <CNIOBoringSSL_base.h>
#include <CNIOBoringSSL_bn.h>
#include <CNIOBoringSSL_ec.h>
#include <CNIOBoringSSL_err.h>
#include <CNIOBoringSSL_mem.h>
#include <CNIOBoringSSL_type_check.h>
#include <assert.h>
#include <string.h>
#include "../../internal.h"
#include "../delocate.h"
#include "./internal.h"
// MSVC does not implement uint128_t, and crashes with intrinsics
#if defined(BORINGSSL_HAS_UINT128)
#define BORINGSSL_NISTP256_64BIT 1
#include "../../../third_party/fiat/p256_64.h"
#else
#include "../../../third_party/fiat/p256_32.h"
#endif
// utility functions, handwritten
#if defined(BORINGSSL_NISTP256_64BIT)
#define FIAT_P256_NLIMBS 4
typedef uint64_t fiat_p256_limb_t;
typedef uint64_t fiat_p256_felem[FIAT_P256_NLIMBS];
static const fiat_p256_felem fiat_p256_one = {0x1, 0xffffffff00000000,
0xffffffffffffffff, 0xfffffffe};
#else // 64BIT; else 32BIT
#define FIAT_P256_NLIMBS 8
typedef uint32_t fiat_p256_limb_t;
typedef uint32_t fiat_p256_felem[FIAT_P256_NLIMBS];
static const fiat_p256_felem fiat_p256_one = {
0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0};
#endif // 64BIT
static fiat_p256_limb_t fiat_p256_nz(
const fiat_p256_limb_t in1[FIAT_P256_NLIMBS]) {
fiat_p256_limb_t ret;
fiat_p256_nonzero(&ret, in1);
return ret;
}
static void fiat_p256_copy(fiat_p256_limb_t out[FIAT_P256_NLIMBS],
const fiat_p256_limb_t in1[FIAT_P256_NLIMBS]) {
for (size_t i = 0; i < FIAT_P256_NLIMBS; i++) {
out[i] = in1[i];
}
}
static void fiat_p256_cmovznz(fiat_p256_limb_t out[FIAT_P256_NLIMBS],
fiat_p256_limb_t t,
const fiat_p256_limb_t z[FIAT_P256_NLIMBS],
const fiat_p256_limb_t nz[FIAT_P256_NLIMBS]) {
fiat_p256_selectznz(out, !!t, z, nz);
}
static void fiat_p256_from_generic(fiat_p256_felem out, const EC_FELEM *in) {
fiat_p256_from_bytes(out, in->bytes);
}
static void fiat_p256_to_generic(EC_FELEM *out, const fiat_p256_felem in) {
// This works because 256 is a multiple of 64, so there are no excess bytes to
// zero when rounding up to |BN_ULONG|s.
OPENSSL_STATIC_ASSERT(
256 / 8 == sizeof(BN_ULONG) * ((256 + BN_BITS2 - 1) / BN_BITS2),
"fiat_p256_to_bytes leaves bytes uninitialized");
fiat_p256_to_bytes(out->bytes, in);
}
// fiat_p256_inv_square calculates |out| = |in|^{-2}
//
// Based on Fermat's Little Theorem:
// a^p = a (mod p)
// a^{p-1} = 1 (mod p)
// a^{p-3} = a^{-2} (mod p)
static void fiat_p256_inv_square(fiat_p256_felem out,
const fiat_p256_felem in) {
// This implements the addition chain described in
// https://briansmith.org/ecc-inversion-addition-chains-01#p256_field_inversion
fiat_p256_felem x2, x3, x6, x12, x15, x30, x32;
fiat_p256_square(x2, in); // 2^2 - 2^1
fiat_p256_mul(x2, x2, in); // 2^2 - 2^0
fiat_p256_square(x3, x2); // 2^3 - 2^1
fiat_p256_mul(x3, x3, in); // 2^3 - 2^0
fiat_p256_square(x6, x3);
for (int i = 1; i < 3; i++) {
fiat_p256_square(x6, x6);
} // 2^6 - 2^3
fiat_p256_mul(x6, x6, x3); // 2^6 - 2^0
fiat_p256_square(x12, x6);
for (int i = 1; i < 6; i++) {
fiat_p256_square(x12, x12);
} // 2^12 - 2^6
fiat_p256_mul(x12, x12, x6); // 2^12 - 2^0
fiat_p256_square(x15, x12);
for (int i = 1; i < 3; i++) {
fiat_p256_square(x15, x15);
} // 2^15 - 2^3
fiat_p256_mul(x15, x15, x3); // 2^15 - 2^0
fiat_p256_square(x30, x15);
for (int i = 1; i < 15; i++) {
fiat_p256_square(x30, x30);
} // 2^30 - 2^15
fiat_p256_mul(x30, x30, x15); // 2^30 - 2^0
fiat_p256_square(x32, x30);
fiat_p256_square(x32, x32); // 2^32 - 2^2
fiat_p256_mul(x32, x32, x2); // 2^32 - 2^0
fiat_p256_felem ret;
fiat_p256_square(ret, x32);
for (int i = 1; i < 31 + 1; i++) {
fiat_p256_square(ret, ret);
} // 2^64 - 2^32
fiat_p256_mul(ret, ret, in); // 2^64 - 2^32 + 2^0
for (int i = 0; i < 96 + 32; i++) {
fiat_p256_square(ret, ret);
} // 2^192 - 2^160 + 2^128
fiat_p256_mul(ret, ret, x32); // 2^192 - 2^160 + 2^128 + 2^32 - 2^0
for (int i = 0; i < 32; i++) {
fiat_p256_square(ret, ret);
} // 2^224 - 2^192 + 2^160 + 2^64 - 2^32
fiat_p256_mul(ret, ret, x32); // 2^224 - 2^192 + 2^160 + 2^64 - 2^0
for (int i = 0; i < 30; i++) {
fiat_p256_square(ret, ret);
} // 2^254 - 2^222 + 2^190 + 2^94 - 2^30
fiat_p256_mul(ret, ret, x30); // 2^254 - 2^222 + 2^190 + 2^94 - 2^0
fiat_p256_square(ret, ret);
fiat_p256_square(out, ret); // 2^256 - 2^224 + 2^192 + 2^96 - 2^2
}
// Group operations
// ----------------
//
// Building on top of the field operations we have the operations on the
// elliptic curve group itself. Points on the curve are represented in Jacobian
// coordinates.
//
// Both operations were transcribed to Coq and proven to correspond to naive
// implementations using Affine coordinates, for all suitable fields. In the
// Coq proofs, issues of constant-time execution and memory layout (aliasing)
// conventions were not considered. Specification of affine coordinates:
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Spec/WeierstrassCurve.v#L28>
// As a sanity check, a proof that these points form a commutative group:
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/AffineProofs.v#L33>
// fiat_p256_point_double calculates 2*(x_in, y_in, z_in)
//
// The method is taken from:
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
//
// Coq transcription and correctness proof:
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L93>
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L201>
//
// Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
// while x_out == y_in is not (maybe this works, but it's not tested).
static void fiat_p256_point_double(fiat_p256_felem x_out, fiat_p256_felem y_out,
fiat_p256_felem z_out,
const fiat_p256_felem x_in,
const fiat_p256_felem y_in,
const fiat_p256_felem z_in) {
fiat_p256_felem delta, gamma, beta, ftmp, ftmp2, tmptmp, alpha, fourbeta;
// delta = z^2
fiat_p256_square(delta, z_in);
// gamma = y^2
fiat_p256_square(gamma, y_in);
// beta = x*gamma
fiat_p256_mul(beta, x_in, gamma);
// alpha = 3*(x-delta)*(x+delta)
fiat_p256_sub(ftmp, x_in, delta);
fiat_p256_add(ftmp2, x_in, delta);
fiat_p256_add(tmptmp, ftmp2, ftmp2);
fiat_p256_add(ftmp2, ftmp2, tmptmp);
fiat_p256_mul(alpha, ftmp, ftmp2);
// x' = alpha^2 - 8*beta
fiat_p256_square(x_out, alpha);
fiat_p256_add(fourbeta, beta, beta);
fiat_p256_add(fourbeta, fourbeta, fourbeta);
fiat_p256_add(tmptmp, fourbeta, fourbeta);
fiat_p256_sub(x_out, x_out, tmptmp);
// z' = (y + z)^2 - gamma - delta
fiat_p256_add(delta, gamma, delta);
fiat_p256_add(ftmp, y_in, z_in);
fiat_p256_square(z_out, ftmp);
fiat_p256_sub(z_out, z_out, delta);
// y' = alpha*(4*beta - x') - 8*gamma^2
fiat_p256_sub(y_out, fourbeta, x_out);
fiat_p256_add(gamma, gamma, gamma);
fiat_p256_square(gamma, gamma);
fiat_p256_mul(y_out, alpha, y_out);
fiat_p256_add(gamma, gamma, gamma);
fiat_p256_sub(y_out, y_out, gamma);
}
// fiat_p256_point_add calculates (x1, y1, z1) + (x2, y2, z2)
//
// The method is taken from:
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
// adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
//
// Coq transcription and correctness proof:
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L135>
// <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L205>
//
// This function includes a branch for checking whether the two input points
// are equal, (while not equal to the point at infinity). This case never
// happens during single point multiplication, so there is no timing leak for
// ECDH or ECDSA signing.
static void fiat_p256_point_add(fiat_p256_felem x3, fiat_p256_felem y3,
fiat_p256_felem z3, const fiat_p256_felem x1,
const fiat_p256_felem y1,
const fiat_p256_felem z1, const int mixed,
const fiat_p256_felem x2,
const fiat_p256_felem y2,
const fiat_p256_felem z2) {
fiat_p256_felem x_out, y_out, z_out;
fiat_p256_limb_t z1nz = fiat_p256_nz(z1);
fiat_p256_limb_t z2nz = fiat_p256_nz(z2);
// z1z1 = z1z1 = z1**2
fiat_p256_felem z1z1;
fiat_p256_square(z1z1, z1);
fiat_p256_felem u1, s1, two_z1z2;
if (!mixed) {
// z2z2 = z2**2
fiat_p256_felem z2z2;
fiat_p256_square(z2z2, z2);
// u1 = x1*z2z2
fiat_p256_mul(u1, x1, z2z2);
// two_z1z2 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2
fiat_p256_add(two_z1z2, z1, z2);
fiat_p256_square(two_z1z2, two_z1z2);
fiat_p256_sub(two_z1z2, two_z1z2, z1z1);
fiat_p256_sub(two_z1z2, two_z1z2, z2z2);
// s1 = y1 * z2**3
fiat_p256_mul(s1, z2, z2z2);
fiat_p256_mul(s1, s1, y1);
} else {
// We'll assume z2 = 1 (special case z2 = 0 is handled later).
// u1 = x1*z2z2
fiat_p256_copy(u1, x1);
// two_z1z2 = 2z1z2
fiat_p256_add(two_z1z2, z1, z1);
// s1 = y1 * z2**3
fiat_p256_copy(s1, y1);
}
// u2 = x2*z1z1
fiat_p256_felem u2;
fiat_p256_mul(u2, x2, z1z1);
// h = u2 - u1
fiat_p256_felem h;
fiat_p256_sub(h, u2, u1);
fiat_p256_limb_t xneq = fiat_p256_nz(h);
// z_out = two_z1z2 * h
fiat_p256_mul(z_out, h, two_z1z2);
// z1z1z1 = z1 * z1z1
fiat_p256_felem z1z1z1;
fiat_p256_mul(z1z1z1, z1, z1z1);
// s2 = y2 * z1**3
fiat_p256_felem s2;
fiat_p256_mul(s2, y2, z1z1z1);
// r = (s2 - s1)*2
fiat_p256_felem r;
fiat_p256_sub(r, s2, s1);
fiat_p256_add(r, r, r);
fiat_p256_limb_t yneq = fiat_p256_nz(r);
fiat_p256_limb_t is_nontrivial_double = constant_time_is_zero_w(xneq | yneq) &
~constant_time_is_zero_w(z1nz) &
~constant_time_is_zero_w(z2nz);
if (is_nontrivial_double) {
fiat_p256_point_double(x3, y3, z3, x1, y1, z1);
return;
}
// I = (2h)**2
fiat_p256_felem i;
fiat_p256_add(i, h, h);
fiat_p256_square(i, i);
// J = h * I
fiat_p256_felem j;
fiat_p256_mul(j, h, i);
// V = U1 * I
fiat_p256_felem v;
fiat_p256_mul(v, u1, i);
// x_out = r**2 - J - 2V
fiat_p256_square(x_out, r);
fiat_p256_sub(x_out, x_out, j);
fiat_p256_sub(x_out, x_out, v);
fiat_p256_sub(x_out, x_out, v);
// y_out = r(V-x_out) - 2 * s1 * J
fiat_p256_sub(y_out, v, x_out);
fiat_p256_mul(y_out, y_out, r);
fiat_p256_felem s1j;
fiat_p256_mul(s1j, s1, j);
fiat_p256_sub(y_out, y_out, s1j);
fiat_p256_sub(y_out, y_out, s1j);
fiat_p256_cmovznz(x_out, z1nz, x2, x_out);
fiat_p256_cmovznz(x3, z2nz, x1, x_out);
fiat_p256_cmovznz(y_out, z1nz, y2, y_out);
fiat_p256_cmovznz(y3, z2nz, y1, y_out);
fiat_p256_cmovznz(z_out, z1nz, z2, z_out);
fiat_p256_cmovznz(z3, z2nz, z1, z_out);
}
#include "./p256_table.h"
// fiat_p256_select_point_affine selects the |idx-1|th point from a
// precomputation table and copies it to out. If |idx| is zero, the output is
// the point at infinity.
static void fiat_p256_select_point_affine(
const fiat_p256_limb_t idx, size_t size,
const fiat_p256_felem pre_comp[/*size*/][2], fiat_p256_felem out[3]) {
OPENSSL_memset(out, 0, sizeof(fiat_p256_felem) * 3);
for (size_t i = 0; i < size; i++) {
fiat_p256_limb_t mismatch = i ^ (idx - 1);
fiat_p256_cmovznz(out[0], mismatch, pre_comp[i][0], out[0]);
fiat_p256_cmovznz(out[1], mismatch, pre_comp[i][1], out[1]);
}
fiat_p256_cmovznz(out[2], idx, out[2], fiat_p256_one);
}
// fiat_p256_select_point selects the |idx|th point from a precomputation table
// and copies it to out.
static void fiat_p256_select_point(const fiat_p256_limb_t idx, size_t size,
const fiat_p256_felem pre_comp[/*size*/][3],
fiat_p256_felem out[3]) {
OPENSSL_memset(out, 0, sizeof(fiat_p256_felem) * 3);
for (size_t i = 0; i < size; i++) {
fiat_p256_limb_t mismatch = i ^ idx;
fiat_p256_cmovznz(out[0], mismatch, pre_comp[i][0], out[0]);
fiat_p256_cmovznz(out[1], mismatch, pre_comp[i][1], out[1]);
fiat_p256_cmovznz(out[2], mismatch, pre_comp[i][2], out[2]);
}
}
// fiat_p256_get_bit returns the |i|th bit in |in|
static crypto_word_t fiat_p256_get_bit(const uint8_t *in, int i) {
if (i < 0 || i >= 256) {
return 0;
}
return (in[i >> 3] >> (i & 7)) & 1;
}
// OPENSSL EC_METHOD FUNCTIONS
// Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
// (X/Z^2, Y/Z^3).
static int ec_GFp_nistp256_point_get_affine_coordinates(
const EC_GROUP *group, const EC_RAW_POINT *point, EC_FELEM *x_out,
EC_FELEM *y_out) {
if (ec_GFp_simple_is_at_infinity(group, point)) {
OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
return 0;
}
fiat_p256_felem z1, z2;
fiat_p256_from_generic(z1, &point->Z);
fiat_p256_inv_square(z2, z1);
if (x_out != NULL) {
fiat_p256_felem x;
fiat_p256_from_generic(x, &point->X);
fiat_p256_mul(x, x, z2);
fiat_p256_to_generic(x_out, x);
}
if (y_out != NULL) {
fiat_p256_felem y;
fiat_p256_from_generic(y, &point->Y);
fiat_p256_square(z2, z2); // z^-4
fiat_p256_mul(y, y, z1); // y * z
fiat_p256_mul(y, y, z2); // y * z^-3
fiat_p256_to_generic(y_out, y);
}
return 1;
}
static void ec_GFp_nistp256_add(const EC_GROUP *group, EC_RAW_POINT *r,
const EC_RAW_POINT *a, const EC_RAW_POINT *b) {
fiat_p256_felem x1, y1, z1, x2, y2, z2;
fiat_p256_from_generic(x1, &a->X);
fiat_p256_from_generic(y1, &a->Y);
fiat_p256_from_generic(z1, &a->Z);
fiat_p256_from_generic(x2, &b->X);
fiat_p256_from_generic(y2, &b->Y);
fiat_p256_from_generic(z2, &b->Z);
fiat_p256_point_add(x1, y1, z1, x1, y1, z1, 0 /* both Jacobian */, x2, y2,
z2);
fiat_p256_to_generic(&r->X, x1);
fiat_p256_to_generic(&r->Y, y1);
fiat_p256_to_generic(&r->Z, z1);
}
static void ec_GFp_nistp256_dbl(const EC_GROUP *group, EC_RAW_POINT *r,
const EC_RAW_POINT *a) {
fiat_p256_felem x, y, z;
fiat_p256_from_generic(x, &a->X);
fiat_p256_from_generic(y, &a->Y);
fiat_p256_from_generic(z, &a->Z);
fiat_p256_point_double(x, y, z, x, y, z);
fiat_p256_to_generic(&r->X, x);
fiat_p256_to_generic(&r->Y, y);
fiat_p256_to_generic(&r->Z, z);
}
static void ec_GFp_nistp256_point_mul(const EC_GROUP *group, EC_RAW_POINT *r,
const EC_RAW_POINT *p,
const EC_SCALAR *scalar) {
fiat_p256_felem p_pre_comp[17][3];
OPENSSL_memset(&p_pre_comp, 0, sizeof(p_pre_comp));
// Precompute multiples.
fiat_p256_from_generic(p_pre_comp[1][0], &p->X);
fiat_p256_from_generic(p_pre_comp[1][1], &p->Y);
fiat_p256_from_generic(p_pre_comp[1][2], &p->Z);
for (size_t j = 2; j <= 16; ++j) {
if (j & 1) {
fiat_p256_point_add(p_pre_comp[j][0], p_pre_comp[j][1], p_pre_comp[j][2],
p_pre_comp[1][0], p_pre_comp[1][1], p_pre_comp[1][2],
0, p_pre_comp[j - 1][0], p_pre_comp[j - 1][1],
p_pre_comp[j - 1][2]);
} else {
fiat_p256_point_double(p_pre_comp[j][0], p_pre_comp[j][1],
p_pre_comp[j][2], p_pre_comp[j / 2][0],
p_pre_comp[j / 2][1], p_pre_comp[j / 2][2]);
}
}
// Set nq to the point at infinity.
fiat_p256_felem nq[3] = {{0}, {0}, {0}}, ftmp, tmp[3];
// Loop over |scalar| msb-to-lsb, incorporating |p_pre_comp| every 5th round.
int skip = 1; // Save two point operations in the first round.
for (size_t i = 255; i < 256; i--) {
// double
if (!skip) {
fiat_p256_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
}
// do other additions every 5 doublings
if (i % 5 == 0) {
crypto_word_t bits = fiat_p256_get_bit(scalar->bytes, i + 4) << 5;
bits |= fiat_p256_get_bit(scalar->bytes, i + 3) << 4;
bits |= fiat_p256_get_bit(scalar->bytes, i + 2) << 3;
bits |= fiat_p256_get_bit(scalar->bytes, i + 1) << 2;
bits |= fiat_p256_get_bit(scalar->bytes, i) << 1;
bits |= fiat_p256_get_bit(scalar->bytes, i - 1);
crypto_word_t sign, digit;
ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
// select the point to add or subtract, in constant time.
fiat_p256_select_point((fiat_p256_limb_t)digit, 17,
(const fiat_p256_felem(*)[3])p_pre_comp, tmp);
fiat_p256_opp(ftmp, tmp[1]); // (X, -Y, Z) is the negative point.
fiat_p256_cmovznz(tmp[1], (fiat_p256_limb_t)sign, tmp[1], ftmp);
if (!skip) {
fiat_p256_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2],
0 /* mixed */, tmp[0], tmp[1], tmp[2]);
} else {
fiat_p256_copy(nq[0], tmp[0]);
fiat_p256_copy(nq[1], tmp[1]);
fiat_p256_copy(nq[2], tmp[2]);
skip = 0;
}
}
}
fiat_p256_to_generic(&r->X, nq[0]);
fiat_p256_to_generic(&r->Y, nq[1]);
fiat_p256_to_generic(&r->Z, nq[2]);
}
static void ec_GFp_nistp256_point_mul_base(const EC_GROUP *group,
EC_RAW_POINT *r,
const EC_SCALAR *scalar) {
// Set nq to the point at infinity.
fiat_p256_felem nq[3] = {{0}, {0}, {0}}, tmp[3];
int skip = 1; // Save two point operations in the first round.
for (size_t i = 31; i < 32; i--) {
if (!skip) {
fiat_p256_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
}
// First, look 32 bits upwards.
crypto_word_t bits = fiat_p256_get_bit(scalar->bytes, i + 224) << 3;
bits |= fiat_p256_get_bit(scalar->bytes, i + 160) << 2;
bits |= fiat_p256_get_bit(scalar->bytes, i + 96) << 1;
bits |= fiat_p256_get_bit(scalar->bytes, i + 32);
// Select the point to add, in constant time.
fiat_p256_select_point_affine((fiat_p256_limb_t)bits, 15,
fiat_p256_g_pre_comp[1], tmp);
if (!skip) {
fiat_p256_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2],
1 /* mixed */, tmp[0], tmp[1], tmp[2]);
} else {
fiat_p256_copy(nq[0], tmp[0]);
fiat_p256_copy(nq[1], tmp[1]);
fiat_p256_copy(nq[2], tmp[2]);
skip = 0;
}
// Second, look at the current position.
bits = fiat_p256_get_bit(scalar->bytes, i + 192) << 3;
bits |= fiat_p256_get_bit(scalar->bytes, i + 128) << 2;
bits |= fiat_p256_get_bit(scalar->bytes, i + 64) << 1;
bits |= fiat_p256_get_bit(scalar->bytes, i);
// Select the point to add, in constant time.
fiat_p256_select_point_affine((fiat_p256_limb_t)bits, 15,
fiat_p256_g_pre_comp[0], tmp);
fiat_p256_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
tmp[0], tmp[1], tmp[2]);
}
fiat_p256_to_generic(&r->X, nq[0]);
fiat_p256_to_generic(&r->Y, nq[1]);
fiat_p256_to_generic(&r->Z, nq[2]);
}
static void ec_GFp_nistp256_point_mul_public(const EC_GROUP *group,
EC_RAW_POINT *r,
const EC_SCALAR *g_scalar,
const EC_RAW_POINT *p,
const EC_SCALAR *p_scalar) {
#define P256_WSIZE_PUBLIC 4
// Precompute multiples of |p|. p_pre_comp[i] is (2*i+1) * |p|.
fiat_p256_felem p_pre_comp[1 << (P256_WSIZE_PUBLIC - 1)][3];
fiat_p256_from_generic(p_pre_comp[0][0], &p->X);
fiat_p256_from_generic(p_pre_comp[0][1], &p->Y);
fiat_p256_from_generic(p_pre_comp[0][2], &p->Z);
fiat_p256_felem p2[3];
fiat_p256_point_double(p2[0], p2[1], p2[2], p_pre_comp[0][0],
p_pre_comp[0][1], p_pre_comp[0][2]);
for (size_t i = 1; i < OPENSSL_ARRAY_SIZE(p_pre_comp); i++) {
fiat_p256_point_add(p_pre_comp[i][0], p_pre_comp[i][1], p_pre_comp[i][2],
p_pre_comp[i - 1][0], p_pre_comp[i - 1][1],
p_pre_comp[i - 1][2], 0 /* not mixed */, p2[0], p2[1],
p2[2]);
}
// Set up the coefficients for |p_scalar|.
int8_t p_wNAF[257];
ec_compute_wNAF(group, p_wNAF, p_scalar, 256, P256_WSIZE_PUBLIC);
// Set |ret| to the point at infinity.
int skip = 1; // Save some point operations.
fiat_p256_felem ret[3] = {{0}, {0}, {0}};
for (int i = 256; i >= 0; i--) {
if (!skip) {
fiat_p256_point_double(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2]);
}
// For the |g_scalar|, we use the precomputed table without the
// constant-time lookup.
if (i <= 31) {
// First, look 32 bits upwards.
crypto_word_t bits = fiat_p256_get_bit(g_scalar->bytes, i + 224) << 3;
bits |= fiat_p256_get_bit(g_scalar->bytes, i + 160) << 2;
bits |= fiat_p256_get_bit(g_scalar->bytes, i + 96) << 1;
bits |= fiat_p256_get_bit(g_scalar->bytes, i + 32);
if (bits != 0) {
size_t index = (size_t)(bits - 1);
fiat_p256_point_add(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2],
1 /* mixed */, fiat_p256_g_pre_comp[1][index][0],
fiat_p256_g_pre_comp[1][index][1],
fiat_p256_one);
skip = 0;
}
// Second, look at the current position.
bits = fiat_p256_get_bit(g_scalar->bytes, i + 192) << 3;
bits |= fiat_p256_get_bit(g_scalar->bytes, i + 128) << 2;
bits |= fiat_p256_get_bit(g_scalar->bytes, i + 64) << 1;
bits |= fiat_p256_get_bit(g_scalar->bytes, i);
if (bits != 0) {
size_t index = (size_t)(bits - 1);
fiat_p256_point_add(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2],
1 /* mixed */, fiat_p256_g_pre_comp[0][index][0],
fiat_p256_g_pre_comp[0][index][1],
fiat_p256_one);
skip = 0;
}
}
int digit = p_wNAF[i];
if (digit != 0) {
assert(digit & 1);
size_t idx = (size_t)(digit < 0 ? (-digit) >> 1 : digit >> 1);
fiat_p256_felem *y = &p_pre_comp[idx][1], tmp;
if (digit < 0) {
fiat_p256_opp(tmp, p_pre_comp[idx][1]);
y = &tmp;
}
if (!skip) {
fiat_p256_point_add(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2],
0 /* not mixed */, p_pre_comp[idx][0], *y,
p_pre_comp[idx][2]);
} else {
fiat_p256_copy(ret[0], p_pre_comp[idx][0]);
fiat_p256_copy(ret[1], *y);
fiat_p256_copy(ret[2], p_pre_comp[idx][2]);
skip = 0;
}
}
}
fiat_p256_to_generic(&r->X, ret[0]);
fiat_p256_to_generic(&r->Y, ret[1]);
fiat_p256_to_generic(&r->Z, ret[2]);
}
static int ec_GFp_nistp256_cmp_x_coordinate(const EC_GROUP *group,
const EC_RAW_POINT *p,
const EC_SCALAR *r) {
if (ec_GFp_simple_is_at_infinity(group, p)) {
return 0;
}
// We wish to compare X/Z^2 with r. This is equivalent to comparing X with
// r*Z^2. Note that X and Z are represented in Montgomery form, while r is
// not.
fiat_p256_felem Z2_mont;
fiat_p256_from_generic(Z2_mont, &p->Z);
fiat_p256_mul(Z2_mont, Z2_mont, Z2_mont);
fiat_p256_felem r_Z2;
fiat_p256_from_bytes(r_Z2, r->bytes); // r < order < p, so this is valid.
fiat_p256_mul(r_Z2, r_Z2, Z2_mont);
fiat_p256_felem X;
fiat_p256_from_generic(X, &p->X);
fiat_p256_from_montgomery(X, X);
if (OPENSSL_memcmp(&r_Z2, &X, sizeof(r_Z2)) == 0) {
return 1;
}
// During signing the x coefficient is reduced modulo the group order.
// Therefore there is a small possibility, less than 1/2^128, that group_order
// < p.x < P. in that case we need not only to compare against |r| but also to
// compare against r+group_order.
assert(group->field.width == group->order.width);
if (bn_less_than_words(r->words, group->field_minus_order.words,
group->field.width)) {
// We can ignore the carry because: r + group_order < p < 2^256.
EC_FELEM tmp;
bn_add_words(tmp.words, r->words, group->order.d, group->order.width);
fiat_p256_from_generic(r_Z2, &tmp);
fiat_p256_mul(r_Z2, r_Z2, Z2_mont);
if (OPENSSL_memcmp(&r_Z2, &X, sizeof(r_Z2)) == 0) {
return 1;
}
}
return 0;
}
DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistp256_method) {
out->group_init = ec_GFp_mont_group_init;
out->group_finish = ec_GFp_mont_group_finish;
out->group_set_curve = ec_GFp_mont_group_set_curve;
out->point_get_affine_coordinates =
ec_GFp_nistp256_point_get_affine_coordinates;
out->add = ec_GFp_nistp256_add;
out->dbl = ec_GFp_nistp256_dbl;
out->mul = ec_GFp_nistp256_point_mul;
out->mul_base = ec_GFp_nistp256_point_mul_base;
out->mul_public = ec_GFp_nistp256_point_mul_public;
out->felem_mul = ec_GFp_mont_felem_mul;
out->felem_sqr = ec_GFp_mont_felem_sqr;
out->felem_to_bytes = ec_GFp_mont_felem_to_bytes;
out->felem_from_bytes = ec_GFp_mont_felem_from_bytes;
out->scalar_inv0_montgomery = ec_simple_scalar_inv0_montgomery;
out->scalar_to_montgomery_inv_vartime =
ec_simple_scalar_to_montgomery_inv_vartime;
out->cmp_x_coordinate = ec_GFp_nistp256_cmp_x_coordinate;
}
#undef BORINGSSL_NISTP256_64BIT
|