1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
/* Copyright (c) 2019, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <CNIOBoringSSL_base.h>
#include "../../internal.h"
#include "internal.h"
#if !defined(BORINGSSL_HAS_UINT128) && defined(OPENSSL_SSE2)
#include <emmintrin.h>
#endif
// This file contains a constant-time implementation of GHASH based on the notes
// in https://bearssl.org/constanttime.html#ghash-for-gcm and the reduction
// algorithm described in
// https://crypto.stanford.edu/RealWorldCrypto/slides/gueron.pdf.
//
// Unlike the BearSSL notes, we use uint128_t in the 64-bit implementation. Our
// primary compilers (clang, clang-cl, and gcc) all support it. MSVC will run
// the 32-bit implementation, but we can use its intrinsics if necessary.
#if defined(BORINGSSL_HAS_UINT128)
static void gcm_mul64_nohw(uint64_t *out_lo, uint64_t *out_hi, uint64_t a,
uint64_t b) {
// One term every four bits means the largest term is 64/4 = 16, which barely
// overflows into the next term. Using one term every five bits would cost 25
// multiplications instead of 16. It is faster to mask off the bottom four
// bits of |a|, giving a largest term of 60/4 = 15, and apply the bottom bits
// separately.
uint64_t a0 = a & UINT64_C(0x1111111111111110);
uint64_t a1 = a & UINT64_C(0x2222222222222220);
uint64_t a2 = a & UINT64_C(0x4444444444444440);
uint64_t a3 = a & UINT64_C(0x8888888888888880);
uint64_t b0 = b & UINT64_C(0x1111111111111111);
uint64_t b1 = b & UINT64_C(0x2222222222222222);
uint64_t b2 = b & UINT64_C(0x4444444444444444);
uint64_t b3 = b & UINT64_C(0x8888888888888888);
uint128_t c0 = (a0 * (uint128_t)b0) ^ (a1 * (uint128_t)b3) ^
(a2 * (uint128_t)b2) ^ (a3 * (uint128_t)b1);
uint128_t c1 = (a0 * (uint128_t)b1) ^ (a1 * (uint128_t)b0) ^
(a2 * (uint128_t)b3) ^ (a3 * (uint128_t)b2);
uint128_t c2 = (a0 * (uint128_t)b2) ^ (a1 * (uint128_t)b1) ^
(a2 * (uint128_t)b0) ^ (a3 * (uint128_t)b3);
uint128_t c3 = (a0 * (uint128_t)b3) ^ (a1 * (uint128_t)b2) ^
(a2 * (uint128_t)b1) ^ (a3 * (uint128_t)b0);
// Multiply the bottom four bits of |a| with |b|.
uint64_t a0_mask = UINT64_C(0) - (a & 1);
uint64_t a1_mask = UINT64_C(0) - ((a >> 1) & 1);
uint64_t a2_mask = UINT64_C(0) - ((a >> 2) & 1);
uint64_t a3_mask = UINT64_C(0) - ((a >> 3) & 1);
uint128_t extra = (a0_mask & b) ^ ((uint128_t)(a1_mask & b) << 1) ^
((uint128_t)(a2_mask & b) << 2) ^
((uint128_t)(a3_mask & b) << 3);
*out_lo = (((uint64_t)c0) & UINT64_C(0x1111111111111111)) ^
(((uint64_t)c1) & UINT64_C(0x2222222222222222)) ^
(((uint64_t)c2) & UINT64_C(0x4444444444444444)) ^
(((uint64_t)c3) & UINT64_C(0x8888888888888888)) ^ ((uint64_t)extra);
*out_hi = (((uint64_t)(c0 >> 64)) & UINT64_C(0x1111111111111111)) ^
(((uint64_t)(c1 >> 64)) & UINT64_C(0x2222222222222222)) ^
(((uint64_t)(c2 >> 64)) & UINT64_C(0x4444444444444444)) ^
(((uint64_t)(c3 >> 64)) & UINT64_C(0x8888888888888888)) ^
((uint64_t)(extra >> 64));
}
#elif defined(OPENSSL_SSE2)
static __m128i gcm_mul32_nohw(uint32_t a, uint32_t b) {
// One term every four bits means the largest term is 32/4 = 8, which does not
// overflow into the next term.
__m128i aa = _mm_setr_epi32(a, 0, a, 0);
__m128i bb = _mm_setr_epi32(b, 0, b, 0);
__m128i a0a0 =
_mm_and_si128(aa, _mm_setr_epi32(0x11111111, 0, 0x11111111, 0));
__m128i a2a2 =
_mm_and_si128(aa, _mm_setr_epi32(0x44444444, 0, 0x44444444, 0));
__m128i b0b1 =
_mm_and_si128(bb, _mm_setr_epi32(0x11111111, 0, 0x22222222, 0));
__m128i b2b3 =
_mm_and_si128(bb, _mm_setr_epi32(0x44444444, 0, 0x88888888, 0));
__m128i c0c1 =
_mm_xor_si128(_mm_mul_epu32(a0a0, b0b1), _mm_mul_epu32(a2a2, b2b3));
__m128i c2c3 =
_mm_xor_si128(_mm_mul_epu32(a2a2, b0b1), _mm_mul_epu32(a0a0, b2b3));
__m128i a1a1 =
_mm_and_si128(aa, _mm_setr_epi32(0x22222222, 0, 0x22222222, 0));
__m128i a3a3 =
_mm_and_si128(aa, _mm_setr_epi32(0x88888888, 0, 0x88888888, 0));
__m128i b3b0 =
_mm_and_si128(bb, _mm_setr_epi32(0x88888888, 0, 0x11111111, 0));
__m128i b1b2 =
_mm_and_si128(bb, _mm_setr_epi32(0x22222222, 0, 0x44444444, 0));
c0c1 = _mm_xor_si128(c0c1, _mm_mul_epu32(a1a1, b3b0));
c0c1 = _mm_xor_si128(c0c1, _mm_mul_epu32(a3a3, b1b2));
c2c3 = _mm_xor_si128(c2c3, _mm_mul_epu32(a3a3, b3b0));
c2c3 = _mm_xor_si128(c2c3, _mm_mul_epu32(a1a1, b1b2));
c0c1 = _mm_and_si128(
c0c1, _mm_setr_epi32(0x11111111, 0x11111111, 0x22222222, 0x22222222));
c2c3 = _mm_and_si128(
c2c3, _mm_setr_epi32(0x44444444, 0x44444444, 0x88888888, 0x88888888));
c0c1 = _mm_xor_si128(c0c1, c2c3);
// c0 ^= c1
c0c1 = _mm_xor_si128(c0c1, _mm_srli_si128(c0c1, 8));
return c0c1;
}
static void gcm_mul64_nohw(uint64_t *out_lo, uint64_t *out_hi, uint64_t a,
uint64_t b) {
uint32_t a0 = a & 0xffffffff;
uint32_t a1 = a >> 32;
uint32_t b0 = b & 0xffffffff;
uint32_t b1 = b >> 32;
// Karatsuba multiplication.
__m128i lo = gcm_mul32_nohw(a0, b0);
__m128i hi = gcm_mul32_nohw(a1, b1);
__m128i mid = gcm_mul32_nohw(a0 ^ a1, b0 ^ b1);
mid = _mm_xor_si128(mid, lo);
mid = _mm_xor_si128(mid, hi);
__m128i ret = _mm_unpacklo_epi64(lo, hi);
mid = _mm_slli_si128(mid, 4);
mid = _mm_and_si128(mid, _mm_setr_epi32(0, 0xffffffff, 0xffffffff, 0));
ret = _mm_xor_si128(ret, mid);
memcpy(out_lo, &ret, 8);
memcpy(out_hi, ((char*)&ret) + 8, 8);
}
#else // !BORINGSSL_HAS_UINT128 && !OPENSSL_SSE2
static uint64_t gcm_mul32_nohw(uint32_t a, uint32_t b) {
// One term every four bits means the largest term is 32/4 = 8, which does not
// overflow into the next term.
uint32_t a0 = a & 0x11111111;
uint32_t a1 = a & 0x22222222;
uint32_t a2 = a & 0x44444444;
uint32_t a3 = a & 0x88888888;
uint32_t b0 = b & 0x11111111;
uint32_t b1 = b & 0x22222222;
uint32_t b2 = b & 0x44444444;
uint32_t b3 = b & 0x88888888;
uint64_t c0 = (a0 * (uint64_t)b0) ^ (a1 * (uint64_t)b3) ^
(a2 * (uint64_t)b2) ^ (a3 * (uint64_t)b1);
uint64_t c1 = (a0 * (uint64_t)b1) ^ (a1 * (uint64_t)b0) ^
(a2 * (uint64_t)b3) ^ (a3 * (uint64_t)b2);
uint64_t c2 = (a0 * (uint64_t)b2) ^ (a1 * (uint64_t)b1) ^
(a2 * (uint64_t)b0) ^ (a3 * (uint64_t)b3);
uint64_t c3 = (a0 * (uint64_t)b3) ^ (a1 * (uint64_t)b2) ^
(a2 * (uint64_t)b1) ^ (a3 * (uint64_t)b0);
return (c0 & UINT64_C(0x1111111111111111)) |
(c1 & UINT64_C(0x2222222222222222)) |
(c2 & UINT64_C(0x4444444444444444)) |
(c3 & UINT64_C(0x8888888888888888));
}
static void gcm_mul64_nohw(uint64_t *out_lo, uint64_t *out_hi, uint64_t a,
uint64_t b) {
uint32_t a0 = a & 0xffffffff;
uint32_t a1 = a >> 32;
uint32_t b0 = b & 0xffffffff;
uint32_t b1 = b >> 32;
// Karatsuba multiplication.
uint64_t lo = gcm_mul32_nohw(a0, b0);
uint64_t hi = gcm_mul32_nohw(a1, b1);
uint64_t mid = gcm_mul32_nohw(a0 ^ a1, b0 ^ b1) ^ lo ^ hi;
*out_lo = lo ^ (mid << 32);
*out_hi = hi ^ (mid >> 32);
}
#endif // BORINGSSL_HAS_UINT128
void gcm_init_nohw(u128 Htable[16], const uint64_t Xi[2]) {
// We implement GHASH in terms of POLYVAL, as described in RFC8452. This
// avoids a shift by 1 in the multiplication, needed to account for bit
// reversal losing a bit after multiplication, that is,
// rev128(X) * rev128(Y) = rev255(X*Y).
//
// Per Appendix A, we run mulX_POLYVAL. Note this is the same transformation
// applied by |gcm_init_clmul|, etc. Note |Xi| has already been byteswapped.
//
// See also slide 16 of
// https://crypto.stanford.edu/RealWorldCrypto/slides/gueron.pdf
Htable[0].lo = Xi[1];
Htable[0].hi = Xi[0];
uint64_t carry = Htable[0].hi >> 63;
carry = 0u - carry;
Htable[0].hi <<= 1;
Htable[0].hi |= Htable[0].lo >> 63;
Htable[0].lo <<= 1;
// The irreducible polynomial is 1 + x^121 + x^126 + x^127 + x^128, so we
// conditionally add 0xc200...0001.
Htable[0].lo ^= carry & 1;
Htable[0].hi ^= carry & UINT64_C(0xc200000000000000);
// This implementation does not use the rest of |Htable|.
}
static void gcm_polyval_nohw(uint64_t Xi[2], const u128 *H) {
// Karatsuba multiplication. The product of |Xi| and |H| is stored in |r0|
// through |r3|. Note there is no byte or bit reversal because we are
// evaluating POLYVAL.
uint64_t r0, r1;
gcm_mul64_nohw(&r0, &r1, Xi[0], H->lo);
uint64_t r2, r3;
gcm_mul64_nohw(&r2, &r3, Xi[1], H->hi);
uint64_t mid0, mid1;
gcm_mul64_nohw(&mid0, &mid1, Xi[0] ^ Xi[1], H->hi ^ H->lo);
mid0 ^= r0 ^ r2;
mid1 ^= r1 ^ r3;
r2 ^= mid1;
r1 ^= mid0;
// Now we multiply our 256-bit result by x^-128 and reduce. |r2| and
// |r3| shifts into position and we must multiply |r0| and |r1| by x^-128. We
// have:
//
// 1 = x^121 + x^126 + x^127 + x^128
// x^-128 = x^-7 + x^-2 + x^-1 + 1
//
// This is the GHASH reduction step, but with bits flowing in reverse.
// The x^-7, x^-2, and x^-1 terms shift bits past x^0, which would require
// another reduction steps. Instead, we gather the excess bits, incorporate
// them into |r0| and |r1| and reduce once. See slides 17-19
// of https://crypto.stanford.edu/RealWorldCrypto/slides/gueron.pdf.
r1 ^= (r0 << 63) ^ (r0 << 62) ^ (r0 << 57);
// 1
r2 ^= r0;
r3 ^= r1;
// x^-1
r2 ^= r0 >> 1;
r2 ^= r1 << 63;
r3 ^= r1 >> 1;
// x^-2
r2 ^= r0 >> 2;
r2 ^= r1 << 62;
r3 ^= r1 >> 2;
// x^-7
r2 ^= r0 >> 7;
r2 ^= r1 << 57;
r3 ^= r1 >> 7;
Xi[0] = r2;
Xi[1] = r3;
}
void gcm_gmult_nohw(uint64_t Xi[2], const u128 Htable[16]) {
uint64_t swapped[2];
swapped[0] = CRYPTO_bswap8(Xi[1]);
swapped[1] = CRYPTO_bswap8(Xi[0]);
gcm_polyval_nohw(swapped, &Htable[0]);
Xi[0] = CRYPTO_bswap8(swapped[1]);
Xi[1] = CRYPTO_bswap8(swapped[0]);
}
void gcm_ghash_nohw(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
size_t len) {
uint64_t swapped[2];
swapped[0] = CRYPTO_bswap8(Xi[1]);
swapped[1] = CRYPTO_bswap8(Xi[0]);
while (len >= 16) {
uint64_t block[2];
OPENSSL_memcpy(block, inp, 16);
swapped[0] ^= CRYPTO_bswap8(block[1]);
swapped[1] ^= CRYPTO_bswap8(block[0]);
gcm_polyval_nohw(swapped, &Htable[0]);
inp += 16;
len -= 16;
}
Xi[0] = CRYPTO_bswap8(swapped[1]);
Xi[1] = CRYPTO_bswap8(swapped[0]);
}
|