1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
/* Copyright (c) 2017, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <CNIOBoringSSL_rand.h>
#include <CNIOBoringSSL_type_check.h>
#include <CNIOBoringSSL_mem.h>
#include "internal.h"
#include "../cipher/internal.h"
// Section references in this file refer to SP 800-90Ar1:
// http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
// See table 3.
static const uint64_t kMaxReseedCount = UINT64_C(1) << 48;
int CTR_DRBG_init(CTR_DRBG_STATE *drbg,
const uint8_t entropy[CTR_DRBG_ENTROPY_LEN],
const uint8_t *personalization, size_t personalization_len) {
// Section 10.2.1.3.1
if (personalization_len > CTR_DRBG_ENTROPY_LEN) {
return 0;
}
uint8_t seed_material[CTR_DRBG_ENTROPY_LEN];
OPENSSL_memcpy(seed_material, entropy, CTR_DRBG_ENTROPY_LEN);
for (size_t i = 0; i < personalization_len; i++) {
seed_material[i] ^= personalization[i];
}
// Section 10.2.1.2
// kInitMask is the result of encrypting blocks with big-endian value 1, 2
// and 3 with the all-zero AES-256 key.
static const uint8_t kInitMask[CTR_DRBG_ENTROPY_LEN] = {
0x53, 0x0f, 0x8a, 0xfb, 0xc7, 0x45, 0x36, 0xb9, 0xa9, 0x63, 0xb4, 0xf1,
0xc4, 0xcb, 0x73, 0x8b, 0xce, 0xa7, 0x40, 0x3d, 0x4d, 0x60, 0x6b, 0x6e,
0x07, 0x4e, 0xc5, 0xd3, 0xba, 0xf3, 0x9d, 0x18, 0x72, 0x60, 0x03, 0xca,
0x37, 0xa6, 0x2a, 0x74, 0xd1, 0xa2, 0xf5, 0x8e, 0x75, 0x06, 0x35, 0x8e,
};
for (size_t i = 0; i < sizeof(kInitMask); i++) {
seed_material[i] ^= kInitMask[i];
}
drbg->ctr = aes_ctr_set_key(&drbg->ks, NULL, &drbg->block, seed_material, 32);
OPENSSL_memcpy(drbg->counter.bytes, seed_material + 32, 16);
drbg->reseed_counter = 1;
return 1;
}
OPENSSL_STATIC_ASSERT(CTR_DRBG_ENTROPY_LEN % AES_BLOCK_SIZE == 0,
"not a multiple of AES block size");
// ctr_inc adds |n| to the last four bytes of |drbg->counter|, treated as a
// big-endian number.
static void ctr32_add(CTR_DRBG_STATE *drbg, uint32_t n) {
drbg->counter.words[3] =
CRYPTO_bswap4(CRYPTO_bswap4(drbg->counter.words[3]) + n);
}
static int ctr_drbg_update(CTR_DRBG_STATE *drbg, const uint8_t *data,
size_t data_len) {
// Per section 10.2.1.2, |data_len| must be |CTR_DRBG_ENTROPY_LEN|. Here, we
// allow shorter inputs and right-pad them with zeros. This is equivalent to
// the specified algorithm but saves a copy in |CTR_DRBG_generate|.
if (data_len > CTR_DRBG_ENTROPY_LEN) {
return 0;
}
uint8_t temp[CTR_DRBG_ENTROPY_LEN];
for (size_t i = 0; i < CTR_DRBG_ENTROPY_LEN; i += AES_BLOCK_SIZE) {
ctr32_add(drbg, 1);
drbg->block(drbg->counter.bytes, temp + i, &drbg->ks);
}
for (size_t i = 0; i < data_len; i++) {
temp[i] ^= data[i];
}
drbg->ctr = aes_ctr_set_key(&drbg->ks, NULL, &drbg->block, temp, 32);
OPENSSL_memcpy(drbg->counter.bytes, temp + 32, 16);
return 1;
}
int CTR_DRBG_reseed(CTR_DRBG_STATE *drbg,
const uint8_t entropy[CTR_DRBG_ENTROPY_LEN],
const uint8_t *additional_data,
size_t additional_data_len) {
// Section 10.2.1.4
uint8_t entropy_copy[CTR_DRBG_ENTROPY_LEN];
if (additional_data_len > 0) {
if (additional_data_len > CTR_DRBG_ENTROPY_LEN) {
return 0;
}
OPENSSL_memcpy(entropy_copy, entropy, CTR_DRBG_ENTROPY_LEN);
for (size_t i = 0; i < additional_data_len; i++) {
entropy_copy[i] ^= additional_data[i];
}
entropy = entropy_copy;
}
if (!ctr_drbg_update(drbg, entropy, CTR_DRBG_ENTROPY_LEN)) {
return 0;
}
drbg->reseed_counter = 1;
return 1;
}
int CTR_DRBG_generate(CTR_DRBG_STATE *drbg, uint8_t *out, size_t out_len,
const uint8_t *additional_data,
size_t additional_data_len) {
// See 9.3.1
if (out_len > CTR_DRBG_MAX_GENERATE_LENGTH) {
return 0;
}
// See 10.2.1.5.1
if (drbg->reseed_counter > kMaxReseedCount) {
return 0;
}
if (additional_data_len != 0 &&
!ctr_drbg_update(drbg, additional_data, additional_data_len)) {
return 0;
}
// kChunkSize is used to interact better with the cache. Since the AES-CTR
// code assumes that it's encrypting rather than just writing keystream, the
// buffer has to be zeroed first. Without chunking, large reads would zero
// the whole buffer, flushing the L1 cache, and then do another pass (missing
// the cache every time) to “encrypt” it. The code can avoid this by
// chunking.
static const size_t kChunkSize = 8 * 1024;
while (out_len >= AES_BLOCK_SIZE) {
size_t todo = kChunkSize;
if (todo > out_len) {
todo = out_len;
}
todo &= ~(AES_BLOCK_SIZE-1);
const size_t num_blocks = todo / AES_BLOCK_SIZE;
if (drbg->ctr) {
OPENSSL_memset(out, 0, todo);
ctr32_add(drbg, 1);
drbg->ctr(out, out, num_blocks, &drbg->ks, drbg->counter.bytes);
ctr32_add(drbg, num_blocks - 1);
} else {
for (size_t i = 0; i < todo; i += AES_BLOCK_SIZE) {
ctr32_add(drbg, 1);
drbg->block(drbg->counter.bytes, out + i, &drbg->ks);
}
}
out += todo;
out_len -= todo;
}
if (out_len > 0) {
uint8_t block[AES_BLOCK_SIZE];
ctr32_add(drbg, 1);
drbg->block(drbg->counter.bytes, block, &drbg->ks);
OPENSSL_memcpy(out, block, out_len);
}
// Right-padding |additional_data| in step 2.2 is handled implicitly by
// |ctr_drbg_update|, to save a copy.
if (!ctr_drbg_update(drbg, additional_data, additional_data_len)) {
return 0;
}
drbg->reseed_counter++;
return 1;
}
void CTR_DRBG_clear(CTR_DRBG_STATE *drbg) {
OPENSSL_cleanse(drbg, sizeof(CTR_DRBG_STATE));
}
|