File: hpke.c

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (618 lines) | stat: -rw-r--r-- 21,471 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
/* Copyright (c) 2020, Google Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */

#include <CNIOBoringSSL_hpke.h>

#include <assert.h>
#include <string.h>

#include <CNIOBoringSSL_aead.h>
#include <CNIOBoringSSL_bytestring.h>
#include <CNIOBoringSSL_curve25519.h>
#include <CNIOBoringSSL_digest.h>
#include <CNIOBoringSSL_err.h>
#include <CNIOBoringSSL_evp_errors.h>
#include <CNIOBoringSSL_hkdf.h>
#include <CNIOBoringSSL_rand.h>
#include <CNIOBoringSSL_sha.h>

#include "../internal.h"


// This file implements draft-irtf-cfrg-hpke-08.

#define MAX_SEED_LEN X25519_PRIVATE_KEY_LEN
#define MAX_SHARED_SECRET_LEN SHA256_DIGEST_LENGTH

struct evp_hpke_kem_st {
  uint16_t id;
  size_t public_key_len;
  size_t private_key_len;
  size_t seed_len;
  int (*init_key)(EVP_HPKE_KEY *key, const uint8_t *priv_key,
                  size_t priv_key_len);
  int (*generate_key)(EVP_HPKE_KEY *key);
  int (*encap_with_seed)(const EVP_HPKE_KEM *kem, uint8_t *out_shared_secret,
                         size_t *out_shared_secret_len, uint8_t *out_enc,
                         size_t *out_enc_len, size_t max_enc,
                         const uint8_t *peer_public_key,
                         size_t peer_public_key_len, const uint8_t *seed,
                         size_t seed_len);
  int (*decap)(const EVP_HPKE_KEY *key, uint8_t *out_shared_secret,
               size_t *out_shared_secret_len, const uint8_t *enc,
               size_t enc_len);
};

struct evp_hpke_kdf_st {
  uint16_t id;
  // We only support HKDF-based KDFs.
  const EVP_MD *(*hkdf_md_func)(void);
};

struct evp_hpke_aead_st {
  uint16_t id;
  const EVP_AEAD *(*aead_func)(void);
};


// Low-level labeled KDF functions.

static const char kHpkeVersionId[] = "HPKE-v1";

static int add_label_string(CBB *cbb, const char *label) {
  return CBB_add_bytes(cbb, (const uint8_t *)label, strlen(label));
}

static int hpke_labeled_extract(const EVP_MD *hkdf_md, uint8_t *out_key,
                                size_t *out_len, const uint8_t *salt,
                                size_t salt_len, const uint8_t *suite_id,
                                size_t suite_id_len, const char *label,
                                const uint8_t *ikm, size_t ikm_len) {
  // labeledIKM = concat("HPKE-v1", suite_id, label, IKM)
  CBB labeled_ikm;
  int ok = CBB_init(&labeled_ikm, 0) &&
           add_label_string(&labeled_ikm, kHpkeVersionId) &&
           CBB_add_bytes(&labeled_ikm, suite_id, suite_id_len) &&
           add_label_string(&labeled_ikm, label) &&
           CBB_add_bytes(&labeled_ikm, ikm, ikm_len) &&
           HKDF_extract(out_key, out_len, hkdf_md, CBB_data(&labeled_ikm),
                        CBB_len(&labeled_ikm), salt, salt_len);
  CBB_cleanup(&labeled_ikm);
  return ok;
}

static int hpke_labeled_expand(const EVP_MD *hkdf_md, uint8_t *out_key,
                               size_t out_len, const uint8_t *prk,
                               size_t prk_len, const uint8_t *suite_id,
                               size_t suite_id_len, const char *label,
                               const uint8_t *info, size_t info_len) {
  // labeledInfo = concat(I2OSP(L, 2), "HPKE-v1", suite_id, label, info)
  CBB labeled_info;
  int ok = CBB_init(&labeled_info, 0) &&
           CBB_add_u16(&labeled_info, out_len) &&
           add_label_string(&labeled_info, kHpkeVersionId) &&
           CBB_add_bytes(&labeled_info, suite_id, suite_id_len) &&
           add_label_string(&labeled_info, label) &&
           CBB_add_bytes(&labeled_info, info, info_len) &&
           HKDF_expand(out_key, out_len, hkdf_md, prk, prk_len,
                       CBB_data(&labeled_info), CBB_len(&labeled_info));
  CBB_cleanup(&labeled_info);
  return ok;
}


// KEM implementations.

// dhkem_extract_and_expand implements the ExtractAndExpand operation in the
// DHKEM construction. See section 4.1 of draft-irtf-cfrg-hpke-08.
static int dhkem_extract_and_expand(uint16_t kem_id, const EVP_MD *hkdf_md,
                                    uint8_t *out_key, size_t out_len,
                                    const uint8_t *dh, size_t dh_len,
                                    const uint8_t *kem_context,
                                    size_t kem_context_len) {
  // concat("KEM", I2OSP(kem_id, 2))
  uint8_t suite_id[5] = {'K', 'E', 'M', kem_id >> 8, kem_id & 0xff};
  uint8_t prk[EVP_MAX_MD_SIZE];
  size_t prk_len;
  return hpke_labeled_extract(hkdf_md, prk, &prk_len, NULL, 0, suite_id,
                              sizeof(suite_id), "eae_prk", dh, dh_len) &&
         hpke_labeled_expand(hkdf_md, out_key, out_len, prk, prk_len, suite_id,
                             sizeof(suite_id), "shared_secret", kem_context,
                             kem_context_len);
}

static int x25519_init_key(EVP_HPKE_KEY *key, const uint8_t *priv_key,
                           size_t priv_key_len) {
  if (priv_key_len != X25519_PRIVATE_KEY_LEN) {
    OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR);
    return 0;
  }

  OPENSSL_memcpy(key->private_key, priv_key, priv_key_len);
  X25519_public_from_private(key->public_key, priv_key);
  return 1;
}

static int x25519_generate_key(EVP_HPKE_KEY *key) {
  X25519_keypair(key->public_key, key->private_key);
  return 1;
}

static int x25519_encap_with_seed(
    const EVP_HPKE_KEM *kem, uint8_t *out_shared_secret,
    size_t *out_shared_secret_len, uint8_t *out_enc, size_t *out_enc_len,
    size_t max_enc, const uint8_t *peer_public_key, size_t peer_public_key_len,
    const uint8_t *seed, size_t seed_len) {
  if (max_enc < X25519_PUBLIC_VALUE_LEN) {
    OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_BUFFER_SIZE);
    return 0;
  }
  if (seed_len != X25519_PRIVATE_KEY_LEN) {
    OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR);
    return 0;
  }
  X25519_public_from_private(out_enc, seed);

  uint8_t dh[X25519_SHARED_KEY_LEN];
  if (peer_public_key_len != X25519_PUBLIC_VALUE_LEN ||
      !X25519(dh, seed, peer_public_key)) {
    OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY);
    return 0;
  }

  uint8_t kem_context[2 * X25519_PUBLIC_VALUE_LEN];
  OPENSSL_memcpy(kem_context, out_enc, X25519_PUBLIC_VALUE_LEN);
  OPENSSL_memcpy(kem_context + X25519_PUBLIC_VALUE_LEN, peer_public_key,
                 X25519_PUBLIC_VALUE_LEN);
  if (!dhkem_extract_and_expand(kem->id, EVP_sha256(), out_shared_secret,
                                SHA256_DIGEST_LENGTH, dh, sizeof(dh),
                                kem_context, sizeof(kem_context))) {
    return 0;
  }

  *out_enc_len = X25519_PUBLIC_VALUE_LEN;
  *out_shared_secret_len = SHA256_DIGEST_LENGTH;
  return 1;
}

static int x25519_decap(const EVP_HPKE_KEY *key, uint8_t *out_shared_secret,
                        size_t *out_shared_secret_len, const uint8_t *enc,
                        size_t enc_len) {
  uint8_t dh[X25519_SHARED_KEY_LEN];
  if (enc_len != X25519_PUBLIC_VALUE_LEN ||
      !X25519(dh, key->private_key, enc)) {
    OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY);
    return 0;
  }

  uint8_t kem_context[2 * X25519_PUBLIC_VALUE_LEN];
  OPENSSL_memcpy(kem_context, enc, X25519_PUBLIC_VALUE_LEN);
  OPENSSL_memcpy(kem_context + X25519_PUBLIC_VALUE_LEN, key->public_key,
                 X25519_PUBLIC_VALUE_LEN);
  if (!dhkem_extract_and_expand(key->kem->id, EVP_sha256(), out_shared_secret,
                                SHA256_DIGEST_LENGTH, dh, sizeof(dh),
                                kem_context, sizeof(kem_context))) {
    return 0;
  }

  *out_shared_secret_len = SHA256_DIGEST_LENGTH;
  return 1;
}

const EVP_HPKE_KEM *EVP_hpke_x25519_hkdf_sha256(void) {
  static const EVP_HPKE_KEM kKEM = {
      /*id=*/EVP_HPKE_DHKEM_X25519_HKDF_SHA256,
      /*public_key_len=*/X25519_PUBLIC_VALUE_LEN,
      /*private_key_len=*/X25519_PRIVATE_KEY_LEN,
      /*seed_len=*/X25519_PRIVATE_KEY_LEN,
      x25519_init_key,
      x25519_generate_key,
      x25519_encap_with_seed,
      x25519_decap,
  };
  return &kKEM;
}

uint16_t EVP_HPKE_KEM_id(const EVP_HPKE_KEM *kem) { return kem->id; }

void EVP_HPKE_KEY_zero(EVP_HPKE_KEY *key) {
  OPENSSL_memset(key, 0, sizeof(EVP_HPKE_KEY));
}

void EVP_HPKE_KEY_cleanup(EVP_HPKE_KEY *key) {
  // Nothing to clean up for now, but we may introduce a cleanup process in the
  // future.
}

EVP_HPKE_KEY *EVP_HPKE_KEY_new(void) {
  EVP_HPKE_KEY *key = OPENSSL_malloc(sizeof(EVP_HPKE_KEY));
  if (key == NULL) {
    OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE);
    return NULL;
  }
  EVP_HPKE_KEY_zero(key);
  return key;
}

void EVP_HPKE_KEY_free(EVP_HPKE_KEY *key) {
  if (key != NULL) {
    EVP_HPKE_KEY_cleanup(key);
    OPENSSL_free(key);
  }
}

int EVP_HPKE_KEY_copy(EVP_HPKE_KEY *dst, const EVP_HPKE_KEY *src) {
  // For now, |EVP_HPKE_KEY| is trivially copyable.
  OPENSSL_memcpy(dst, src, sizeof(EVP_HPKE_KEY));
  return 1;
}

int EVP_HPKE_KEY_init(EVP_HPKE_KEY *key, const EVP_HPKE_KEM *kem,
                      const uint8_t *priv_key, size_t priv_key_len) {
  EVP_HPKE_KEY_zero(key);
  key->kem = kem;
  if (!kem->init_key(key, priv_key, priv_key_len)) {
    key->kem = NULL;
    return 0;
  }
  return 1;
}

int EVP_HPKE_KEY_generate(EVP_HPKE_KEY *key, const EVP_HPKE_KEM *kem) {
  EVP_HPKE_KEY_zero(key);
  key->kem = kem;
  if (!kem->generate_key(key)) {
    key->kem = NULL;
    return 0;
  }
  return 1;
}

const EVP_HPKE_KEM *EVP_HPKE_KEY_kem(const EVP_HPKE_KEY *key) {
  return key->kem;
}

int EVP_HPKE_KEY_public_key(const EVP_HPKE_KEY *key, uint8_t *out,
                            size_t *out_len, size_t max_out) {
  if (max_out < key->kem->public_key_len) {
    OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_BUFFER_SIZE);
    return 0;
  }
  OPENSSL_memcpy(out, key->public_key, key->kem->public_key_len);
  *out_len = key->kem->public_key_len;
  return 1;
}

int EVP_HPKE_KEY_private_key(const EVP_HPKE_KEY *key, uint8_t *out,
                            size_t *out_len, size_t max_out) {
  if (max_out < key->kem->private_key_len) {
    OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_BUFFER_SIZE);
    return 0;
  }
  OPENSSL_memcpy(out, key->private_key, key->kem->private_key_len);
  *out_len = key->kem->private_key_len;
  return 1;
}


// Supported KDFs and AEADs.

const EVP_HPKE_KDF *EVP_hpke_hkdf_sha256(void) {
  static const EVP_HPKE_KDF kKDF = {EVP_HPKE_HKDF_SHA256, &EVP_sha256};
  return &kKDF;
}

uint16_t EVP_HPKE_KDF_id(const EVP_HPKE_KDF *kdf) { return kdf->id; }

const EVP_HPKE_AEAD *EVP_hpke_aes_128_gcm(void) {
  static const EVP_HPKE_AEAD kAEAD = {EVP_HPKE_AES_128_GCM,
                                      &EVP_aead_aes_128_gcm};
  return &kAEAD;
}

const EVP_HPKE_AEAD *EVP_hpke_aes_256_gcm(void) {
  static const EVP_HPKE_AEAD kAEAD = {EVP_HPKE_AES_256_GCM,
                                      &EVP_aead_aes_256_gcm};
  return &kAEAD;
}

const EVP_HPKE_AEAD *EVP_hpke_chacha20_poly1305(void) {
  static const EVP_HPKE_AEAD kAEAD = {EVP_HPKE_CHACHA20_POLY1305,
                                      &EVP_aead_chacha20_poly1305};
  return &kAEAD;
}

uint16_t EVP_HPKE_AEAD_id(const EVP_HPKE_AEAD *aead) { return aead->id; }

const EVP_AEAD *EVP_HPKE_AEAD_aead(const EVP_HPKE_AEAD *aead) {
  return aead->aead_func();
}


// HPKE implementation.

// This is strlen("HPKE") + 3 * sizeof(uint16_t).
#define HPKE_SUITE_ID_LEN 10

// The suite_id for non-KEM pieces of HPKE is defined as concat("HPKE",
// I2OSP(kem_id, 2), I2OSP(kdf_id, 2), I2OSP(aead_id, 2)).
static int hpke_build_suite_id(const EVP_HPKE_CTX *ctx,
                               uint8_t out[HPKE_SUITE_ID_LEN]) {
  CBB cbb;
  int ret = CBB_init_fixed(&cbb, out, HPKE_SUITE_ID_LEN) &&
            add_label_string(&cbb, "HPKE") &&
            CBB_add_u16(&cbb, EVP_HPKE_DHKEM_X25519_HKDF_SHA256) &&
            CBB_add_u16(&cbb, ctx->kdf->id) &&
            CBB_add_u16(&cbb, ctx->aead->id);
  CBB_cleanup(&cbb);
  return ret;
}

#define HPKE_MODE_BASE 0

static int hpke_key_schedule(EVP_HPKE_CTX *ctx, const uint8_t *shared_secret,
                             size_t shared_secret_len, const uint8_t *info,
                             size_t info_len) {
  uint8_t suite_id[HPKE_SUITE_ID_LEN];
  if (!hpke_build_suite_id(ctx, suite_id)) {
    return 0;
  }

  // psk_id_hash = LabeledExtract("", "psk_id_hash", psk_id)
  // TODO(davidben): Precompute this value and store it with the EVP_HPKE_KDF.
  const EVP_MD *hkdf_md = ctx->kdf->hkdf_md_func();
  uint8_t psk_id_hash[EVP_MAX_MD_SIZE];
  size_t psk_id_hash_len;
  if (!hpke_labeled_extract(hkdf_md, psk_id_hash, &psk_id_hash_len, NULL, 0,
                            suite_id, sizeof(suite_id), "psk_id_hash", NULL,
                            0)) {
    return 0;
  }

  // info_hash = LabeledExtract("", "info_hash", info)
  uint8_t info_hash[EVP_MAX_MD_SIZE];
  size_t info_hash_len;
  if (!hpke_labeled_extract(hkdf_md, info_hash, &info_hash_len, NULL, 0,
                            suite_id, sizeof(suite_id), "info_hash", info,
                            info_len)) {
    return 0;
  }

  // key_schedule_context = concat(mode, psk_id_hash, info_hash)
  uint8_t context[sizeof(uint8_t) + 2 * EVP_MAX_MD_SIZE];
  size_t context_len;
  CBB context_cbb;
  if (!CBB_init_fixed(&context_cbb, context, sizeof(context)) ||
      !CBB_add_u8(&context_cbb, HPKE_MODE_BASE) ||
      !CBB_add_bytes(&context_cbb, psk_id_hash, psk_id_hash_len) ||
      !CBB_add_bytes(&context_cbb, info_hash, info_hash_len) ||
      !CBB_finish(&context_cbb, NULL, &context_len)) {
    return 0;
  }

  // secret = LabeledExtract(shared_secret, "secret", psk)
  uint8_t secret[EVP_MAX_MD_SIZE];
  size_t secret_len;
  if (!hpke_labeled_extract(hkdf_md, secret, &secret_len, shared_secret,
                            shared_secret_len, suite_id, sizeof(suite_id),
                            "secret", NULL, 0)) {
    return 0;
  }

  // key = LabeledExpand(secret, "key", key_schedule_context, Nk)
  const EVP_AEAD *aead = EVP_HPKE_AEAD_aead(ctx->aead);
  uint8_t key[EVP_AEAD_MAX_KEY_LENGTH];
  const size_t kKeyLen = EVP_AEAD_key_length(aead);
  if (!hpke_labeled_expand(hkdf_md, key, kKeyLen, secret, secret_len, suite_id,
                           sizeof(suite_id), "key", context, context_len) ||
      !EVP_AEAD_CTX_init(&ctx->aead_ctx, aead, key, kKeyLen,
                         EVP_AEAD_DEFAULT_TAG_LENGTH, NULL)) {
    return 0;
  }

  // base_nonce = LabeledExpand(secret, "base_nonce", key_schedule_context, Nn)
  if (!hpke_labeled_expand(hkdf_md, ctx->base_nonce,
                           EVP_AEAD_nonce_length(aead), secret, secret_len,
                           suite_id, sizeof(suite_id), "base_nonce", context,
                           context_len)) {
    return 0;
  }

  // exporter_secret = LabeledExpand(secret, "exp", key_schedule_context, Nh)
  if (!hpke_labeled_expand(hkdf_md, ctx->exporter_secret, EVP_MD_size(hkdf_md),
                           secret, secret_len, suite_id, sizeof(suite_id),
                           "exp", context, context_len)) {
    return 0;
  }

  return 1;
}

void EVP_HPKE_CTX_zero(EVP_HPKE_CTX *ctx) {
  OPENSSL_memset(ctx, 0, sizeof(EVP_HPKE_CTX));
  EVP_AEAD_CTX_zero(&ctx->aead_ctx);
}

void EVP_HPKE_CTX_cleanup(EVP_HPKE_CTX *ctx) {
  EVP_AEAD_CTX_cleanup(&ctx->aead_ctx);
}

EVP_HPKE_CTX *EVP_HPKE_CTX_new(void) {
  EVP_HPKE_CTX *ctx = OPENSSL_malloc(sizeof(EVP_HPKE_CTX));
  if (ctx == NULL) {
    OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE);
    return NULL;
  }
  EVP_HPKE_CTX_zero(ctx);
  return ctx;
}

void EVP_HPKE_CTX_free(EVP_HPKE_CTX *ctx) {
  if (ctx != NULL) {
    EVP_HPKE_CTX_cleanup(ctx);
    OPENSSL_free(ctx);
  }
}

int EVP_HPKE_CTX_setup_sender(EVP_HPKE_CTX *ctx, uint8_t *out_enc,
                              size_t *out_enc_len, size_t max_enc,
                              const EVP_HPKE_KEM *kem, const EVP_HPKE_KDF *kdf,
                              const EVP_HPKE_AEAD *aead,
                              const uint8_t *peer_public_key,
                              size_t peer_public_key_len, const uint8_t *info,
                              size_t info_len) {
  uint8_t seed[MAX_SEED_LEN];
  RAND_bytes(seed, kem->seed_len);
  return EVP_HPKE_CTX_setup_sender_with_seed_for_testing(
      ctx, out_enc, out_enc_len, max_enc, kem, kdf, aead, peer_public_key,
      peer_public_key_len, info, info_len, seed, kem->seed_len);
}

int EVP_HPKE_CTX_setup_sender_with_seed_for_testing(
    EVP_HPKE_CTX *ctx, uint8_t *out_enc, size_t *out_enc_len, size_t max_enc,
    const EVP_HPKE_KEM *kem, const EVP_HPKE_KDF *kdf, const EVP_HPKE_AEAD *aead,
    const uint8_t *peer_public_key, size_t peer_public_key_len,
    const uint8_t *info, size_t info_len, const uint8_t *seed,
    size_t seed_len) {
  EVP_HPKE_CTX_zero(ctx);
  ctx->is_sender = 1;
  ctx->kdf = kdf;
  ctx->aead = aead;
  uint8_t shared_secret[MAX_SHARED_SECRET_LEN];
  size_t shared_secret_len;
  if (!kem->encap_with_seed(kem, shared_secret, &shared_secret_len, out_enc,
                            out_enc_len, max_enc, peer_public_key,
                            peer_public_key_len, seed, seed_len) ||
      !hpke_key_schedule(ctx, shared_secret, shared_secret_len, info,
                         info_len)) {
    EVP_HPKE_CTX_cleanup(ctx);
    return 0;
  }
  return 1;
}

int EVP_HPKE_CTX_setup_recipient(EVP_HPKE_CTX *ctx, const EVP_HPKE_KEY *key,
                                 const EVP_HPKE_KDF *kdf,
                                 const EVP_HPKE_AEAD *aead, const uint8_t *enc,
                                 size_t enc_len, const uint8_t *info,
                                 size_t info_len) {
  EVP_HPKE_CTX_zero(ctx);
  ctx->is_sender = 0;
  ctx->kdf = kdf;
  ctx->aead = aead;
  uint8_t shared_secret[MAX_SHARED_SECRET_LEN];
  size_t shared_secret_len;
  if (!key->kem->decap(key, shared_secret, &shared_secret_len, enc, enc_len) ||
      !hpke_key_schedule(ctx, shared_secret, sizeof(shared_secret), info,
                         info_len)) {
    EVP_HPKE_CTX_cleanup(ctx);
    return 0;
  }
  return 1;
}

static void hpke_nonce(const EVP_HPKE_CTX *ctx, uint8_t *out_nonce,
                       size_t nonce_len) {
  assert(nonce_len >= 8);

  // Write padded big-endian bytes of |ctx->seq| to |out_nonce|.
  OPENSSL_memset(out_nonce, 0, nonce_len);
  uint64_t seq_copy = ctx->seq;
  for (size_t i = 0; i < 8; i++) {
    out_nonce[nonce_len - i - 1] = seq_copy & 0xff;
    seq_copy >>= 8;
  }

  // XOR the encoded sequence with the |ctx->base_nonce|.
  for (size_t i = 0; i < nonce_len; i++) {
    out_nonce[i] ^= ctx->base_nonce[i];
  }
}

int EVP_HPKE_CTX_open(EVP_HPKE_CTX *ctx, uint8_t *out, size_t *out_len,
                      size_t max_out_len, const uint8_t *in, size_t in_len,
                      const uint8_t *ad, size_t ad_len) {
  if (ctx->is_sender) {
    OPENSSL_PUT_ERROR(EVP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
    return 0;
  }
  if (ctx->seq == UINT64_MAX) {
    OPENSSL_PUT_ERROR(EVP, ERR_R_OVERFLOW);
    return 0;
  }

  uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH];
  const size_t nonce_len = EVP_AEAD_nonce_length(ctx->aead_ctx.aead);
  hpke_nonce(ctx, nonce, nonce_len);

  if (!EVP_AEAD_CTX_open(&ctx->aead_ctx, out, out_len, max_out_len, nonce,
                         nonce_len, in, in_len, ad, ad_len)) {
    return 0;
  }
  ctx->seq++;
  return 1;
}

int EVP_HPKE_CTX_seal(EVP_HPKE_CTX *ctx, uint8_t *out, size_t *out_len,
                      size_t max_out_len, const uint8_t *in, size_t in_len,
                      const uint8_t *ad, size_t ad_len) {
  if (!ctx->is_sender) {
    OPENSSL_PUT_ERROR(EVP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
    return 0;
  }
  if (ctx->seq == UINT64_MAX) {
    OPENSSL_PUT_ERROR(EVP, ERR_R_OVERFLOW);
    return 0;
  }

  uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH];
  const size_t nonce_len = EVP_AEAD_nonce_length(ctx->aead_ctx.aead);
  hpke_nonce(ctx, nonce, nonce_len);

  if (!EVP_AEAD_CTX_seal(&ctx->aead_ctx, out, out_len, max_out_len, nonce,
                         nonce_len, in, in_len, ad, ad_len)) {
    return 0;
  }
  ctx->seq++;
  return 1;
}

int EVP_HPKE_CTX_export(const EVP_HPKE_CTX *ctx, uint8_t *out,
                        size_t secret_len, const uint8_t *context,
                        size_t context_len) {
  uint8_t suite_id[HPKE_SUITE_ID_LEN];
  if (!hpke_build_suite_id(ctx, suite_id)) {
    return 0;
  }
  const EVP_MD *hkdf_md = ctx->kdf->hkdf_md_func();
  if (!hpke_labeled_expand(hkdf_md, out, secret_len, ctx->exporter_secret,
                           EVP_MD_size(hkdf_md), suite_id, sizeof(suite_id),
                           "sec", context, context_len)) {
    return 0;
  }
  return 1;
}

size_t EVP_HPKE_CTX_max_overhead(const EVP_HPKE_CTX *ctx) {
  assert(ctx->is_sender);
  return EVP_AEAD_max_overhead(EVP_AEAD_CTX_aead(&ctx->aead_ctx));
}

const EVP_HPKE_AEAD *EVP_HPKE_CTX_aead(const EVP_HPKE_CTX *ctx) {
  return ctx->aead;
}

const EVP_HPKE_KDF *EVP_HPKE_CTX_kdf(const EVP_HPKE_CTX *ctx) {
  return ctx->kdf;
}