1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com). */
#ifndef OPENSSL_HEADER_CRYPTO_INTERNAL_H
#define OPENSSL_HEADER_CRYPTO_INTERNAL_H
#include <CNIOBoringSSL_crypto.h>
#include <CNIOBoringSSL_ex_data.h>
#include <CNIOBoringSSL_stack.h>
#include <CNIOBoringSSL_thread.h>
#include <assert.h>
#include <string.h>
#if defined(BORINGSSL_CONSTANT_TIME_VALIDATION)
#include <valgrind/memcheck.h>
#endif
#if !defined(__cplusplus)
#if defined(_MSC_VER)
#define alignas(x) __declspec(align(x))
#define alignof __alignof
#else
#include <stdalign.h>
#endif
#endif
#if defined(OPENSSL_THREADS) && \
(!defined(OPENSSL_WINDOWS) || defined(__MINGW32__))
#include <pthread.h>
#define OPENSSL_PTHREADS
#endif
#if defined(OPENSSL_THREADS) && !defined(OPENSSL_PTHREADS) && \
defined(OPENSSL_WINDOWS)
#define OPENSSL_WINDOWS_THREADS
OPENSSL_MSVC_PRAGMA(warning(push, 3))
#include <windows.h>
OPENSSL_MSVC_PRAGMA(warning(pop))
#endif
#if defined(__cplusplus)
extern "C" {
#endif
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || defined(OPENSSL_ARM) || \
defined(OPENSSL_AARCH64) || defined(OPENSSL_PPC64LE)
// OPENSSL_cpuid_setup initializes the platform-specific feature cache.
void OPENSSL_cpuid_setup(void);
#endif
#if (defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) && \
!defined(OPENSSL_STATIC_ARMCAP)
// OPENSSL_get_armcap_pointer_for_test returns a pointer to |OPENSSL_armcap_P|
// for unit tests. Any modifications to the value must be made after
// |CRYPTO_library_init| but before any other function call in BoringSSL.
OPENSSL_EXPORT uint32_t *OPENSSL_get_armcap_pointer_for_test(void);
#endif
#if (!defined(_MSC_VER) || defined(__clang__)) && defined(OPENSSL_64_BIT)
#define BORINGSSL_HAS_UINT128
typedef __int128_t int128_t;
typedef __uint128_t uint128_t;
// clang-cl supports __uint128_t but modulus and division don't work.
// https://crbug.com/787617.
#if !defined(_MSC_VER) || !defined(__clang__)
#define BORINGSSL_CAN_DIVIDE_UINT128
#endif
#endif
#define OPENSSL_ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0]))
// Have a generic fall-through for different versions of C/C++.
#if defined(__cplusplus) && __cplusplus >= 201703L
#define OPENSSL_FALLTHROUGH [[fallthrough]]
#elif defined(__cplusplus) && __cplusplus >= 201103L && defined(__clang__)
#define OPENSSL_FALLTHROUGH [[clang::fallthrough]]
#elif defined(__cplusplus) && __cplusplus >= 201103L && defined(__GNUC__) && \
__GNUC__ >= 7
#define OPENSSL_FALLTHROUGH [[gnu::fallthrough]]
#elif defined(__GNUC__) && __GNUC__ >= 7 // gcc 7
#define OPENSSL_FALLTHROUGH __attribute__ ((fallthrough))
#elif defined(__clang__)
#if __has_attribute(fallthrough) && __clang_major__ >= 5
// Clang 3.5, at least, complains about "error: declaration does not declare
// anything", possibily because we put a semicolon after this macro in
// practice. Thus limit it to >= Clang 5, which does work.
#define OPENSSL_FALLTHROUGH __attribute__ ((fallthrough))
#else // clang versions that do not support fallthrough.
#define OPENSSL_FALLTHROUGH
#endif
#else // C++11 on gcc 6, and all other cases
#define OPENSSL_FALLTHROUGH
#endif
// For convenience in testing 64-bit generic code, we allow disabling SSE2
// intrinsics via |OPENSSL_NO_SSE2_FOR_TESTING|. x86_64 always has SSE2
// available, so we would otherwise need to test such code on a non-x86_64
// platform.
#if defined(__SSE2__) && !defined(OPENSSL_NO_SSE2_FOR_TESTING)
#define OPENSSL_SSE2
#endif
// Pointer utility functions.
// buffers_alias returns one if |a| and |b| alias and zero otherwise.
static inline int buffers_alias(const uint8_t *a, size_t a_len,
const uint8_t *b, size_t b_len) {
// Cast |a| and |b| to integers. In C, pointer comparisons between unrelated
// objects are undefined whereas pointer to integer conversions are merely
// implementation-defined. We assume the implementation defined it in a sane
// way.
uintptr_t a_u = (uintptr_t)a;
uintptr_t b_u = (uintptr_t)b;
return a_u + a_len > b_u && b_u + b_len > a_u;
}
// align_pointer returns |ptr|, advanced to |alignment|. |alignment| must be a
// power of two, and |ptr| must have at least |alignment - 1| bytes of scratch
// space.
static inline void *align_pointer(void *ptr, size_t alignment) {
// |alignment| must be a power of two.
assert(alignment != 0 && (alignment & (alignment - 1)) == 0);
// Instead of aligning |ptr| as a |uintptr_t| and casting back, compute the
// offset and advance in pointer space. C guarantees that casting from pointer
// to |uintptr_t| and back gives the same pointer, but general
// integer-to-pointer conversions are implementation-defined. GCC does define
// it in the useful way, but this makes fewer assumptions.
uintptr_t offset = (0u - (uintptr_t)ptr) & (alignment - 1);
ptr = (char *)ptr + offset;
assert(((uintptr_t)ptr & (alignment - 1)) == 0);
return ptr;
}
// Constant-time utility functions.
//
// The following methods return a bitmask of all ones (0xff...f) for true and 0
// for false. This is useful for choosing a value based on the result of a
// conditional in constant time. For example,
//
// if (a < b) {
// c = a;
// } else {
// c = b;
// }
//
// can be written as
//
// crypto_word_t lt = constant_time_lt_w(a, b);
// c = constant_time_select_w(lt, a, b);
// crypto_word_t is the type that most constant-time functions use. Ideally we
// would like it to be |size_t|, but NaCl builds in 64-bit mode with 32-bit
// pointers, which means that |size_t| can be 32 bits when |BN_ULONG| is 64
// bits. Since we want to be able to do constant-time operations on a
// |BN_ULONG|, |crypto_word_t| is defined as an unsigned value with the native
// word length.
#if defined(OPENSSL_64_BIT)
typedef uint64_t crypto_word_t;
#elif defined(OPENSSL_32_BIT)
typedef uint32_t crypto_word_t;
#else
#error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
#endif
#define CONSTTIME_TRUE_W ~((crypto_word_t)0)
#define CONSTTIME_FALSE_W ((crypto_word_t)0)
#define CONSTTIME_TRUE_8 ((uint8_t)0xff)
#define CONSTTIME_FALSE_8 ((uint8_t)0)
// value_barrier_w returns |a|, but prevents GCC and Clang from reasoning about
// the returned value. This is used to mitigate compilers undoing constant-time
// code, until we can express our requirements directly in the language.
//
// Note the compiler is aware that |value_barrier_w| has no side effects and
// always has the same output for a given input. This allows it to eliminate
// dead code, move computations across loops, and vectorize.
static inline crypto_word_t value_barrier_w(crypto_word_t a) {
#if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__))
__asm__("" : "+r"(a) : /* no inputs */);
#endif
return a;
}
// value_barrier_u32 behaves like |value_barrier_w| but takes a |uint32_t|.
static inline uint32_t value_barrier_u32(uint32_t a) {
#if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__))
__asm__("" : "+r"(a) : /* no inputs */);
#endif
return a;
}
// value_barrier_u64 behaves like |value_barrier_w| but takes a |uint64_t|.
static inline uint64_t value_barrier_u64(uint64_t a) {
#if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__))
__asm__("" : "+r"(a) : /* no inputs */);
#endif
return a;
}
// constant_time_msb_w returns the given value with the MSB copied to all the
// other bits.
static inline crypto_word_t constant_time_msb_w(crypto_word_t a) {
return 0u - (a >> (sizeof(a) * 8 - 1));
}
// constant_time_lt_w returns 0xff..f if a < b and 0 otherwise.
static inline crypto_word_t constant_time_lt_w(crypto_word_t a,
crypto_word_t b) {
// Consider the two cases of the problem:
// msb(a) == msb(b): a < b iff the MSB of a - b is set.
// msb(a) != msb(b): a < b iff the MSB of b is set.
//
// If msb(a) == msb(b) then the following evaluates as:
// msb(a^((a^b)|((a-b)^a))) ==
// msb(a^((a-b) ^ a)) == (because msb(a^b) == 0)
// msb(a^a^(a-b)) == (rearranging)
// msb(a-b) (because ∀x. x^x == 0)
//
// Else, if msb(a) != msb(b) then the following evaluates as:
// msb(a^((a^b)|((a-b)^a))) ==
// msb(a^(𝟙 | ((a-b)^a))) == (because msb(a^b) == 1 and 𝟙
// represents a value s.t. msb(𝟙) = 1)
// msb(a^𝟙) == (because ORing with 1 results in 1)
// msb(b)
//
//
// Here is an SMT-LIB verification of this formula:
//
// (define-fun lt ((a (_ BitVec 32)) (b (_ BitVec 32))) (_ BitVec 32)
// (bvxor a (bvor (bvxor a b) (bvxor (bvsub a b) a)))
// )
//
// (declare-fun a () (_ BitVec 32))
// (declare-fun b () (_ BitVec 32))
//
// (assert (not (= (= #x00000001 (bvlshr (lt a b) #x0000001f)) (bvult a b))))
// (check-sat)
// (get-model)
return constant_time_msb_w(a^((a^b)|((a-b)^a)));
}
// constant_time_lt_8 acts like |constant_time_lt_w| but returns an 8-bit
// mask.
static inline uint8_t constant_time_lt_8(crypto_word_t a, crypto_word_t b) {
return (uint8_t)(constant_time_lt_w(a, b));
}
// constant_time_ge_w returns 0xff..f if a >= b and 0 otherwise.
static inline crypto_word_t constant_time_ge_w(crypto_word_t a,
crypto_word_t b) {
return ~constant_time_lt_w(a, b);
}
// constant_time_ge_8 acts like |constant_time_ge_w| but returns an 8-bit
// mask.
static inline uint8_t constant_time_ge_8(crypto_word_t a, crypto_word_t b) {
return (uint8_t)(constant_time_ge_w(a, b));
}
// constant_time_is_zero returns 0xff..f if a == 0 and 0 otherwise.
static inline crypto_word_t constant_time_is_zero_w(crypto_word_t a) {
// Here is an SMT-LIB verification of this formula:
//
// (define-fun is_zero ((a (_ BitVec 32))) (_ BitVec 32)
// (bvand (bvnot a) (bvsub a #x00000001))
// )
//
// (declare-fun a () (_ BitVec 32))
//
// (assert (not (= (= #x00000001 (bvlshr (is_zero a) #x0000001f)) (= a #x00000000))))
// (check-sat)
// (get-model)
return constant_time_msb_w(~a & (a - 1));
}
// constant_time_is_zero_8 acts like |constant_time_is_zero_w| but returns an
// 8-bit mask.
static inline uint8_t constant_time_is_zero_8(crypto_word_t a) {
return (uint8_t)(constant_time_is_zero_w(a));
}
// constant_time_eq_w returns 0xff..f if a == b and 0 otherwise.
static inline crypto_word_t constant_time_eq_w(crypto_word_t a,
crypto_word_t b) {
return constant_time_is_zero_w(a ^ b);
}
// constant_time_eq_8 acts like |constant_time_eq_w| but returns an 8-bit
// mask.
static inline uint8_t constant_time_eq_8(crypto_word_t a, crypto_word_t b) {
return (uint8_t)(constant_time_eq_w(a, b));
}
// constant_time_eq_int acts like |constant_time_eq_w| but works on int
// values.
static inline crypto_word_t constant_time_eq_int(int a, int b) {
return constant_time_eq_w((crypto_word_t)(a), (crypto_word_t)(b));
}
// constant_time_eq_int_8 acts like |constant_time_eq_int| but returns an 8-bit
// mask.
static inline uint8_t constant_time_eq_int_8(int a, int b) {
return constant_time_eq_8((crypto_word_t)(a), (crypto_word_t)(b));
}
// constant_time_select_w returns (mask & a) | (~mask & b). When |mask| is all
// 1s or all 0s (as returned by the methods above), the select methods return
// either |a| (if |mask| is nonzero) or |b| (if |mask| is zero).
static inline crypto_word_t constant_time_select_w(crypto_word_t mask,
crypto_word_t a,
crypto_word_t b) {
// Clang recognizes this pattern as a select. While it usually transforms it
// to a cmov, it sometimes further transforms it into a branch, which we do
// not want.
//
// Adding barriers to both |mask| and |~mask| breaks the relationship between
// the two, which makes the compiler stick with bitmasks.
return (value_barrier_w(mask) & a) | (value_barrier_w(~mask) & b);
}
// constant_time_select_8 acts like |constant_time_select| but operates on
// 8-bit values.
static inline uint8_t constant_time_select_8(uint8_t mask, uint8_t a,
uint8_t b) {
return (uint8_t)(constant_time_select_w(mask, a, b));
}
// constant_time_select_int acts like |constant_time_select| but operates on
// ints.
static inline int constant_time_select_int(crypto_word_t mask, int a, int b) {
return (int)(constant_time_select_w(mask, (crypto_word_t)(a),
(crypto_word_t)(b)));
}
#if defined(BORINGSSL_CONSTANT_TIME_VALIDATION)
// CONSTTIME_SECRET takes a pointer and a number of bytes and marks that region
// of memory as secret. Secret data is tracked as it flows to registers and
// other parts of a memory. If secret data is used as a condition for a branch,
// or as a memory index, it will trigger warnings in valgrind.
#define CONSTTIME_SECRET(x, y) VALGRIND_MAKE_MEM_UNDEFINED(x, y)
// CONSTTIME_DECLASSIFY takes a pointer and a number of bytes and marks that
// region of memory as public. Public data is not subject to constant-time
// rules.
#define CONSTTIME_DECLASSIFY(x, y) VALGRIND_MAKE_MEM_DEFINED(x, y)
#else
#define CONSTTIME_SECRET(x, y)
#define CONSTTIME_DECLASSIFY(x, y)
#endif // BORINGSSL_CONSTANT_TIME_VALIDATION
// Thread-safe initialisation.
#if !defined(OPENSSL_THREADS)
typedef uint32_t CRYPTO_once_t;
#define CRYPTO_ONCE_INIT 0
#elif defined(OPENSSL_WINDOWS_THREADS)
typedef INIT_ONCE CRYPTO_once_t;
#define CRYPTO_ONCE_INIT INIT_ONCE_STATIC_INIT
#elif defined(OPENSSL_PTHREADS)
typedef pthread_once_t CRYPTO_once_t;
#define CRYPTO_ONCE_INIT PTHREAD_ONCE_INIT
#else
#error "Unknown threading library"
#endif
// CRYPTO_once calls |init| exactly once per process. This is thread-safe: if
// concurrent threads call |CRYPTO_once| with the same |CRYPTO_once_t| argument
// then they will block until |init| completes, but |init| will have only been
// called once.
//
// The |once| argument must be a |CRYPTO_once_t| that has been initialised with
// the value |CRYPTO_ONCE_INIT|.
OPENSSL_EXPORT void CRYPTO_once(CRYPTO_once_t *once, void (*init)(void));
// Reference counting.
// Automatically enable C11 atomics if implemented.
#if !defined(OPENSSL_C11_ATOMIC) && defined(OPENSSL_THREADS) && \
!defined(__STDC_NO_ATOMICS__) && defined(__STDC_VERSION__) && \
__STDC_VERSION__ >= 201112L
#define OPENSSL_C11_ATOMIC
#endif
// CRYPTO_REFCOUNT_MAX is the value at which the reference count saturates.
#define CRYPTO_REFCOUNT_MAX 0xffffffff
// CRYPTO_refcount_inc atomically increments the value at |*count| unless the
// value would overflow. It's safe for multiple threads to concurrently call
// this or |CRYPTO_refcount_dec_and_test_zero| on the same
// |CRYPTO_refcount_t|.
OPENSSL_EXPORT void CRYPTO_refcount_inc(CRYPTO_refcount_t *count);
// CRYPTO_refcount_dec_and_test_zero tests the value at |*count|:
// if it's zero, it crashes the address space.
// if it's the maximum value, it returns zero.
// otherwise, it atomically decrements it and returns one iff the resulting
// value is zero.
//
// It's safe for multiple threads to concurrently call this or
// |CRYPTO_refcount_inc| on the same |CRYPTO_refcount_t|.
OPENSSL_EXPORT int CRYPTO_refcount_dec_and_test_zero(CRYPTO_refcount_t *count);
// Locks.
//
// Two types of locks are defined: |CRYPTO_MUTEX|, which can be used in
// structures as normal, and |struct CRYPTO_STATIC_MUTEX|, which can be used as
// a global lock. A global lock must be initialised to the value
// |CRYPTO_STATIC_MUTEX_INIT|.
//
// |CRYPTO_MUTEX| can appear in public structures and so is defined in
// thread.h as a structure large enough to fit the real type. The global lock is
// a different type so it may be initialized with platform initializer macros.
#if !defined(OPENSSL_THREADS)
struct CRYPTO_STATIC_MUTEX {
char padding; // Empty structs have different sizes in C and C++.
};
#define CRYPTO_STATIC_MUTEX_INIT { 0 }
#elif defined(OPENSSL_WINDOWS_THREADS)
struct CRYPTO_STATIC_MUTEX {
SRWLOCK lock;
};
#define CRYPTO_STATIC_MUTEX_INIT { SRWLOCK_INIT }
#elif defined(OPENSSL_PTHREADS)
struct CRYPTO_STATIC_MUTEX {
pthread_rwlock_t lock;
};
#define CRYPTO_STATIC_MUTEX_INIT { PTHREAD_RWLOCK_INITIALIZER }
#else
#error "Unknown threading library"
#endif
// CRYPTO_MUTEX_init initialises |lock|. If |lock| is a static variable, use a
// |CRYPTO_STATIC_MUTEX|.
OPENSSL_EXPORT void CRYPTO_MUTEX_init(CRYPTO_MUTEX *lock);
// CRYPTO_MUTEX_lock_read locks |lock| such that other threads may also have a
// read lock, but none may have a write lock.
OPENSSL_EXPORT void CRYPTO_MUTEX_lock_read(CRYPTO_MUTEX *lock);
// CRYPTO_MUTEX_lock_write locks |lock| such that no other thread has any type
// of lock on it.
OPENSSL_EXPORT void CRYPTO_MUTEX_lock_write(CRYPTO_MUTEX *lock);
// CRYPTO_MUTEX_unlock_read unlocks |lock| for reading.
OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_read(CRYPTO_MUTEX *lock);
// CRYPTO_MUTEX_unlock_write unlocks |lock| for writing.
OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_write(CRYPTO_MUTEX *lock);
// CRYPTO_MUTEX_cleanup releases all resources held by |lock|.
OPENSSL_EXPORT void CRYPTO_MUTEX_cleanup(CRYPTO_MUTEX *lock);
// CRYPTO_STATIC_MUTEX_lock_read locks |lock| such that other threads may also
// have a read lock, but none may have a write lock. The |lock| variable does
// not need to be initialised by any function, but must have been statically
// initialised with |CRYPTO_STATIC_MUTEX_INIT|.
OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_read(
struct CRYPTO_STATIC_MUTEX *lock);
// CRYPTO_STATIC_MUTEX_lock_write locks |lock| such that no other thread has
// any type of lock on it. The |lock| variable does not need to be initialised
// by any function, but must have been statically initialised with
// |CRYPTO_STATIC_MUTEX_INIT|.
OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_write(
struct CRYPTO_STATIC_MUTEX *lock);
// CRYPTO_STATIC_MUTEX_unlock_read unlocks |lock| for reading.
OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_read(
struct CRYPTO_STATIC_MUTEX *lock);
// CRYPTO_STATIC_MUTEX_unlock_write unlocks |lock| for writing.
OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_write(
struct CRYPTO_STATIC_MUTEX *lock);
#if defined(__cplusplus)
extern "C++" {
BSSL_NAMESPACE_BEGIN
namespace internal {
// MutexLockBase is a RAII helper for CRYPTO_MUTEX locking.
template <void (*LockFunc)(CRYPTO_MUTEX *), void (*ReleaseFunc)(CRYPTO_MUTEX *)>
class MutexLockBase {
public:
explicit MutexLockBase(CRYPTO_MUTEX *mu) : mu_(mu) {
assert(mu_ != nullptr);
LockFunc(mu_);
}
~MutexLockBase() { ReleaseFunc(mu_); }
MutexLockBase(const MutexLockBase<LockFunc, ReleaseFunc> &) = delete;
MutexLockBase &operator=(const MutexLockBase<LockFunc, ReleaseFunc> &) =
delete;
private:
CRYPTO_MUTEX *const mu_;
};
} // namespace internal
using MutexWriteLock =
internal::MutexLockBase<CRYPTO_MUTEX_lock_write, CRYPTO_MUTEX_unlock_write>;
using MutexReadLock =
internal::MutexLockBase<CRYPTO_MUTEX_lock_read, CRYPTO_MUTEX_unlock_read>;
BSSL_NAMESPACE_END
} // extern "C++"
#endif // defined(__cplusplus)
// Thread local storage.
// thread_local_data_t enumerates the types of thread-local data that can be
// stored.
typedef enum {
OPENSSL_THREAD_LOCAL_ERR = 0,
OPENSSL_THREAD_LOCAL_RAND,
OPENSSL_THREAD_LOCAL_FIPS_COUNTERS,
OPENSSL_THREAD_LOCAL_TEST,
NUM_OPENSSL_THREAD_LOCALS,
} thread_local_data_t;
// thread_local_destructor_t is the type of a destructor function that will be
// called when a thread exits and its thread-local storage needs to be freed.
typedef void (*thread_local_destructor_t)(void *);
// CRYPTO_get_thread_local gets the pointer value that is stored for the
// current thread for the given index, or NULL if none has been set.
OPENSSL_EXPORT void *CRYPTO_get_thread_local(thread_local_data_t value);
// CRYPTO_set_thread_local sets a pointer value for the current thread at the
// given index. This function should only be called once per thread for a given
// |index|: rather than update the pointer value itself, update the data that
// is pointed to.
//
// The destructor function will be called when a thread exits to free this
// thread-local data. All calls to |CRYPTO_set_thread_local| with the same
// |index| should have the same |destructor| argument. The destructor may be
// called with a NULL argument if a thread that never set a thread-local
// pointer for |index|, exits. The destructor may be called concurrently with
// different arguments.
//
// This function returns one on success or zero on error. If it returns zero
// then |destructor| has been called with |value| already.
OPENSSL_EXPORT int CRYPTO_set_thread_local(
thread_local_data_t index, void *value,
thread_local_destructor_t destructor);
// ex_data
typedef struct crypto_ex_data_func_st CRYPTO_EX_DATA_FUNCS;
DECLARE_STACK_OF(CRYPTO_EX_DATA_FUNCS)
// CRYPTO_EX_DATA_CLASS tracks the ex_indices registered for a type which
// supports ex_data. It should defined as a static global within the module
// which defines that type.
typedef struct {
struct CRYPTO_STATIC_MUTEX lock;
STACK_OF(CRYPTO_EX_DATA_FUNCS) *meth;
// num_reserved is one if the ex_data index zero is reserved for legacy
// |TYPE_get_app_data| functions.
uint8_t num_reserved;
} CRYPTO_EX_DATA_CLASS;
#define CRYPTO_EX_DATA_CLASS_INIT {CRYPTO_STATIC_MUTEX_INIT, NULL, 0}
#define CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA \
{CRYPTO_STATIC_MUTEX_INIT, NULL, 1}
// CRYPTO_get_ex_new_index allocates a new index for |ex_data_class| and writes
// it to |*out_index|. Each class of object should provide a wrapper function
// that uses the correct |CRYPTO_EX_DATA_CLASS|. It returns one on success and
// zero otherwise.
OPENSSL_EXPORT int CRYPTO_get_ex_new_index(CRYPTO_EX_DATA_CLASS *ex_data_class,
int *out_index, long argl,
void *argp,
CRYPTO_EX_free *free_func);
// CRYPTO_set_ex_data sets an extra data pointer on a given object. Each class
// of object should provide a wrapper function.
OPENSSL_EXPORT int CRYPTO_set_ex_data(CRYPTO_EX_DATA *ad, int index, void *val);
// CRYPTO_get_ex_data returns an extra data pointer for a given object, or NULL
// if no such index exists. Each class of object should provide a wrapper
// function.
OPENSSL_EXPORT void *CRYPTO_get_ex_data(const CRYPTO_EX_DATA *ad, int index);
// CRYPTO_new_ex_data initialises a newly allocated |CRYPTO_EX_DATA|.
OPENSSL_EXPORT void CRYPTO_new_ex_data(CRYPTO_EX_DATA *ad);
// CRYPTO_free_ex_data frees |ad|, which is embedded inside |obj|, which is an
// object of the given class.
OPENSSL_EXPORT void CRYPTO_free_ex_data(CRYPTO_EX_DATA_CLASS *ex_data_class,
void *obj, CRYPTO_EX_DATA *ad);
// Endianness conversions.
#if defined(__GNUC__) && __GNUC__ >= 2
static inline uint16_t CRYPTO_bswap2(uint16_t x) {
return __builtin_bswap16(x);
}
static inline uint32_t CRYPTO_bswap4(uint32_t x) {
return __builtin_bswap32(x);
}
static inline uint64_t CRYPTO_bswap8(uint64_t x) {
return __builtin_bswap64(x);
}
#elif defined(_MSC_VER)
OPENSSL_MSVC_PRAGMA(warning(push, 3))
#include <stdlib.h>
OPENSSL_MSVC_PRAGMA(warning(pop))
#pragma intrinsic(_byteswap_uint64, _byteswap_ulong, _byteswap_ushort)
static inline uint16_t CRYPTO_bswap2(uint16_t x) {
return _byteswap_ushort(x);
}
static inline uint32_t CRYPTO_bswap4(uint32_t x) {
return _byteswap_ulong(x);
}
static inline uint64_t CRYPTO_bswap8(uint64_t x) {
return _byteswap_uint64(x);
}
#else
static inline uint16_t CRYPTO_bswap2(uint16_t x) {
return (x >> 8) | (x << 8);
}
static inline uint32_t CRYPTO_bswap4(uint32_t x) {
x = (x >> 16) | (x << 16);
x = ((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8);
return x;
}
static inline uint64_t CRYPTO_bswap8(uint64_t x) {
return CRYPTO_bswap4(x >> 32) | (((uint64_t)CRYPTO_bswap4(x)) << 32);
}
#endif
// Language bug workarounds.
//
// Most C standard library functions are undefined if passed NULL, even when the
// corresponding length is zero. This gives them (and, in turn, all functions
// which call them) surprising behavior on empty arrays. Some compilers will
// miscompile code due to this rule. See also
// https://www.imperialviolet.org/2016/06/26/nonnull.html
//
// These wrapper functions behave the same as the corresponding C standard
// functions, but behave as expected when passed NULL if the length is zero.
//
// Note |OPENSSL_memcmp| is a different function from |CRYPTO_memcmp|.
// C++ defines |memchr| as a const-correct overload.
#if defined(__cplusplus)
extern "C++" {
static inline const void *OPENSSL_memchr(const void *s, int c, size_t n) {
if (n == 0) {
return NULL;
}
return memchr(s, c, n);
}
static inline void *OPENSSL_memchr(void *s, int c, size_t n) {
if (n == 0) {
return NULL;
}
return memchr(s, c, n);
}
} // extern "C++"
#else // __cplusplus
static inline void *OPENSSL_memchr(const void *s, int c, size_t n) {
if (n == 0) {
return NULL;
}
return memchr(s, c, n);
}
#endif // __cplusplus
static inline int OPENSSL_memcmp(const void *s1, const void *s2, size_t n) {
if (n == 0) {
return 0;
}
return memcmp(s1, s2, n);
}
static inline void *OPENSSL_memcpy(void *dst, const void *src, size_t n) {
if (n == 0) {
return dst;
}
return memcpy(dst, src, n);
}
static inline void *OPENSSL_memmove(void *dst, const void *src, size_t n) {
if (n == 0) {
return dst;
}
return memmove(dst, src, n);
}
static inline void *OPENSSL_memset(void *dst, int c, size_t n) {
if (n == 0) {
return dst;
}
return memset(dst, c, n);
}
// Loads and stores.
//
// The following functions load and store sized integers with the specified
// endianness. They use |memcpy|, and so avoid alignment or strict aliasing
// requirements on the input and output pointers.
static inline uint32_t CRYPTO_load_u32_le(const void *in) {
uint32_t v;
OPENSSL_memcpy(&v, in, sizeof(v));
return v;
}
static inline void CRYPTO_store_u32_le(void *out, uint32_t v) {
OPENSSL_memcpy(out, &v, sizeof(v));
}
static inline uint32_t CRYPTO_load_u32_be(const void *in) {
uint32_t v;
OPENSSL_memcpy(&v, in, sizeof(v));
return CRYPTO_bswap4(v);
}
static inline void CRYPTO_store_u32_be(void *out, uint32_t v) {
v = CRYPTO_bswap4(v);
OPENSSL_memcpy(out, &v, sizeof(v));
}
static inline uint64_t CRYPTO_load_u64_be(const void *ptr) {
uint64_t ret;
OPENSSL_memcpy(&ret, ptr, sizeof(ret));
return CRYPTO_bswap8(ret);
}
static inline void CRYPTO_store_u64_be(void *out, uint64_t v) {
v = CRYPTO_bswap8(v);
OPENSSL_memcpy(out, &v, sizeof(v));
}
static inline crypto_word_t CRYPTO_load_word_le(const void *in) {
crypto_word_t v;
OPENSSL_memcpy(&v, in, sizeof(v));
return v;
}
static inline void CRYPTO_store_word_le(void *out, crypto_word_t v) {
OPENSSL_memcpy(out, &v, sizeof(v));
}
// FIPS functions.
#if defined(BORINGSSL_FIPS)
// BORINGSSL_FIPS_abort is called when a FIPS power-on or continuous test
// fails. It prevents any further cryptographic operations by the current
// process.
void BORINGSSL_FIPS_abort(void) __attribute__((noreturn));
#endif
// boringssl_fips_self_test runs the FIPS KAT-based self tests. It returns one
// on success and zero on error. The argument is the integrity hash of the FIPS
// module and may be used to check and write flag files to suppress duplicate
// self-tests. If |module_hash_len| is zero then no flag file will be checked
// nor written and tests will always be run.
int boringssl_fips_self_test(const uint8_t *module_hash,
size_t module_hash_len);
#if defined(BORINGSSL_FIPS_COUNTERS)
void boringssl_fips_inc_counter(enum fips_counter_t counter);
#else
OPENSSL_INLINE void boringssl_fips_inc_counter(enum fips_counter_t counter) {}
#endif
#if defined(__cplusplus)
} // extern C
#endif
#endif // OPENSSL_HEADER_CRYPTO_INTERNAL_H
|