1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
|
/* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the Eric Young open source
* license provided above.
*
* The binary polynomial arithmetic software is originally written by
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
* Laboratories. */
#ifndef OPENSSL_HEADER_BN_H
#define OPENSSL_HEADER_BN_H
#include "CNIOBoringSSL_base.h"
#include "CNIOBoringSSL_thread.h"
#include <sys/types.h>
#include <stdio.h> // for FILE*
#if defined(__cplusplus)
extern "C" {
#endif
// BN provides support for working with arbitrary sized integers. For example,
// although the largest integer supported by the compiler might be 64 bits, BN
// will allow you to work with numbers until you run out of memory.
// BN_ULONG is the native word size when working with big integers.
//
// Note: on some platforms, inttypes.h does not define print format macros in
// C++ unless |__STDC_FORMAT_MACROS| defined. This is due to text in C99 which
// was never adopted in any C++ standard and explicitly overruled in C++11. As
// this is a public header, bn.h does not define |__STDC_FORMAT_MACROS| itself.
// Projects which use |BN_*_FMT*| with outdated C headers may need to define it
// externally.
#if defined(OPENSSL_64_BIT)
#define BN_ULONG uint64_t
#define BN_BITS2 64
#define BN_DEC_FMT1 "%" PRIu64
#define BN_DEC_FMT2 "%019" PRIu64
#define BN_HEX_FMT1 "%" PRIx64
#define BN_HEX_FMT2 "%016" PRIx64
#elif defined(OPENSSL_32_BIT)
#define BN_ULONG uint32_t
#define BN_BITS2 32
#define BN_DEC_FMT1 "%" PRIu32
#define BN_DEC_FMT2 "%09" PRIu32
#define BN_HEX_FMT1 "%" PRIx32
#define BN_HEX_FMT2 "%08" PRIx32
#else
#error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
#endif
// Allocation and freeing.
// BN_new creates a new, allocated BIGNUM and initialises it.
OPENSSL_EXPORT BIGNUM *BN_new(void);
// BN_init initialises a stack allocated |BIGNUM|.
OPENSSL_EXPORT void BN_init(BIGNUM *bn);
// BN_free frees the data referenced by |bn| and, if |bn| was originally
// allocated on the heap, frees |bn| also.
OPENSSL_EXPORT void BN_free(BIGNUM *bn);
// BN_clear_free erases and frees the data referenced by |bn| and, if |bn| was
// originally allocated on the heap, frees |bn| also.
OPENSSL_EXPORT void BN_clear_free(BIGNUM *bn);
// BN_dup allocates a new BIGNUM and sets it equal to |src|. It returns the
// allocated BIGNUM on success or NULL otherwise.
OPENSSL_EXPORT BIGNUM *BN_dup(const BIGNUM *src);
// BN_copy sets |dest| equal to |src| and returns |dest| or NULL on allocation
// failure.
OPENSSL_EXPORT BIGNUM *BN_copy(BIGNUM *dest, const BIGNUM *src);
// BN_clear sets |bn| to zero and erases the old data.
OPENSSL_EXPORT void BN_clear(BIGNUM *bn);
// BN_value_one returns a static BIGNUM with value 1.
OPENSSL_EXPORT const BIGNUM *BN_value_one(void);
// Basic functions.
// BN_num_bits returns the minimum number of bits needed to represent the
// absolute value of |bn|.
OPENSSL_EXPORT unsigned BN_num_bits(const BIGNUM *bn);
// BN_num_bytes returns the minimum number of bytes needed to represent the
// absolute value of |bn|.
OPENSSL_EXPORT unsigned BN_num_bytes(const BIGNUM *bn);
// BN_zero sets |bn| to zero.
OPENSSL_EXPORT void BN_zero(BIGNUM *bn);
// BN_one sets |bn| to one. It returns one on success or zero on allocation
// failure.
OPENSSL_EXPORT int BN_one(BIGNUM *bn);
// BN_set_word sets |bn| to |value|. It returns one on success or zero on
// allocation failure.
OPENSSL_EXPORT int BN_set_word(BIGNUM *bn, BN_ULONG value);
// BN_set_u64 sets |bn| to |value|. It returns one on success or zero on
// allocation failure.
OPENSSL_EXPORT int BN_set_u64(BIGNUM *bn, uint64_t value);
// BN_set_negative sets the sign of |bn|.
OPENSSL_EXPORT void BN_set_negative(BIGNUM *bn, int sign);
// BN_is_negative returns one if |bn| is negative and zero otherwise.
OPENSSL_EXPORT int BN_is_negative(const BIGNUM *bn);
// Conversion functions.
// BN_bin2bn sets |*ret| to the value of |len| bytes from |in|, interpreted as
// a big-endian number, and returns |ret|. If |ret| is NULL then a fresh
// |BIGNUM| is allocated and returned. It returns NULL on allocation
// failure.
OPENSSL_EXPORT BIGNUM *BN_bin2bn(const uint8_t *in, size_t len, BIGNUM *ret);
// BN_bn2bin serialises the absolute value of |in| to |out| as a big-endian
// integer, which must have |BN_num_bytes| of space available. It returns the
// number of bytes written. Note this function leaks the magnitude of |in|. If
// |in| is secret, use |BN_bn2bin_padded| instead.
OPENSSL_EXPORT size_t BN_bn2bin(const BIGNUM *in, uint8_t *out);
// BN_le2bn sets |*ret| to the value of |len| bytes from |in|, interpreted as
// a little-endian number, and returns |ret|. If |ret| is NULL then a fresh
// |BIGNUM| is allocated and returned. It returns NULL on allocation
// failure.
OPENSSL_EXPORT BIGNUM *BN_le2bn(const uint8_t *in, size_t len, BIGNUM *ret);
// BN_bn2le_padded serialises the absolute value of |in| to |out| as a
// little-endian integer, which must have |len| of space available, padding
// out the remainder of out with zeros. If |len| is smaller than |BN_num_bytes|,
// the function fails and returns 0. Otherwise, it returns 1.
OPENSSL_EXPORT int BN_bn2le_padded(uint8_t *out, size_t len, const BIGNUM *in);
// BN_bn2bin_padded serialises the absolute value of |in| to |out| as a
// big-endian integer. The integer is padded with leading zeros up to size
// |len|. If |len| is smaller than |BN_num_bytes|, the function fails and
// returns 0. Otherwise, it returns 1.
OPENSSL_EXPORT int BN_bn2bin_padded(uint8_t *out, size_t len, const BIGNUM *in);
// BN_bn2cbb_padded behaves like |BN_bn2bin_padded| but writes to a |CBB|.
OPENSSL_EXPORT int BN_bn2cbb_padded(CBB *out, size_t len, const BIGNUM *in);
// BN_bn2hex returns an allocated string that contains a NUL-terminated, hex
// representation of |bn|. If |bn| is negative, the first char in the resulting
// string will be '-'. Returns NULL on allocation failure.
OPENSSL_EXPORT char *BN_bn2hex(const BIGNUM *bn);
// BN_hex2bn parses the leading hex number from |in|, which may be proceeded by
// a '-' to indicate a negative number and may contain trailing, non-hex data.
// If |outp| is not NULL, it constructs a BIGNUM equal to the hex number and
// stores it in |*outp|. If |*outp| is NULL then it allocates a new BIGNUM and
// updates |*outp|. It returns the number of bytes of |in| processed or zero on
// error.
OPENSSL_EXPORT int BN_hex2bn(BIGNUM **outp, const char *in);
// BN_bn2dec returns an allocated string that contains a NUL-terminated,
// decimal representation of |bn|. If |bn| is negative, the first char in the
// resulting string will be '-'. Returns NULL on allocation failure.
OPENSSL_EXPORT char *BN_bn2dec(const BIGNUM *a);
// BN_dec2bn parses the leading decimal number from |in|, which may be
// proceeded by a '-' to indicate a negative number and may contain trailing,
// non-decimal data. If |outp| is not NULL, it constructs a BIGNUM equal to the
// decimal number and stores it in |*outp|. If |*outp| is NULL then it
// allocates a new BIGNUM and updates |*outp|. It returns the number of bytes
// of |in| processed or zero on error.
OPENSSL_EXPORT int BN_dec2bn(BIGNUM **outp, const char *in);
// BN_asc2bn acts like |BN_dec2bn| or |BN_hex2bn| depending on whether |in|
// begins with "0X" or "0x" (indicating hex) or not (indicating decimal). A
// leading '-' is still permitted and comes before the optional 0X/0x. It
// returns one on success or zero on error.
OPENSSL_EXPORT int BN_asc2bn(BIGNUM **outp, const char *in);
// BN_print writes a hex encoding of |a| to |bio|. It returns one on success
// and zero on error.
OPENSSL_EXPORT int BN_print(BIO *bio, const BIGNUM *a);
// BN_print_fp acts like |BIO_print|, but wraps |fp| in a |BIO| first.
OPENSSL_EXPORT int BN_print_fp(FILE *fp, const BIGNUM *a);
// BN_get_word returns the absolute value of |bn| as a single word. If |bn| is
// too large to be represented as a single word, the maximum possible value
// will be returned.
OPENSSL_EXPORT BN_ULONG BN_get_word(const BIGNUM *bn);
// BN_get_u64 sets |*out| to the absolute value of |bn| as a |uint64_t| and
// returns one. If |bn| is too large to be represented as a |uint64_t|, it
// returns zero.
OPENSSL_EXPORT int BN_get_u64(const BIGNUM *bn, uint64_t *out);
// ASN.1 functions.
// BN_parse_asn1_unsigned parses a non-negative DER INTEGER from |cbs| writes
// the result to |ret|. It returns one on success and zero on failure.
OPENSSL_EXPORT int BN_parse_asn1_unsigned(CBS *cbs, BIGNUM *ret);
// BN_marshal_asn1 marshals |bn| as a non-negative DER INTEGER and appends the
// result to |cbb|. It returns one on success and zero on failure.
OPENSSL_EXPORT int BN_marshal_asn1(CBB *cbb, const BIGNUM *bn);
// BIGNUM pools.
//
// Certain BIGNUM operations need to use many temporary variables and
// allocating and freeing them can be quite slow. Thus such operations typically
// take a |BN_CTX| parameter, which contains a pool of |BIGNUMs|. The |ctx|
// argument to a public function may be NULL, in which case a local |BN_CTX|
// will be created just for the lifetime of that call.
//
// A function must call |BN_CTX_start| first. Then, |BN_CTX_get| may be called
// repeatedly to obtain temporary |BIGNUM|s. All |BN_CTX_get| calls must be made
// before calling any other functions that use the |ctx| as an argument.
//
// Finally, |BN_CTX_end| must be called before returning from the function.
// When |BN_CTX_end| is called, the |BIGNUM| pointers obtained from
// |BN_CTX_get| become invalid.
// BN_CTX_new returns a new, empty BN_CTX or NULL on allocation failure.
OPENSSL_EXPORT BN_CTX *BN_CTX_new(void);
// BN_CTX_free frees all BIGNUMs contained in |ctx| and then frees |ctx|
// itself.
OPENSSL_EXPORT void BN_CTX_free(BN_CTX *ctx);
// BN_CTX_start "pushes" a new entry onto the |ctx| stack and allows future
// calls to |BN_CTX_get|.
OPENSSL_EXPORT void BN_CTX_start(BN_CTX *ctx);
// BN_CTX_get returns a new |BIGNUM|, or NULL on allocation failure. Once
// |BN_CTX_get| has returned NULL, all future calls will also return NULL until
// |BN_CTX_end| is called.
OPENSSL_EXPORT BIGNUM *BN_CTX_get(BN_CTX *ctx);
// BN_CTX_end invalidates all |BIGNUM|s returned from |BN_CTX_get| since the
// matching |BN_CTX_start| call.
OPENSSL_EXPORT void BN_CTX_end(BN_CTX *ctx);
// Simple arithmetic
// BN_add sets |r| = |a| + |b|, where |r| may be the same pointer as either |a|
// or |b|. It returns one on success and zero on allocation failure.
OPENSSL_EXPORT int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
// BN_uadd sets |r| = |a| + |b|, where |a| and |b| are non-negative and |r| may
// be the same pointer as either |a| or |b|. It returns one on success and zero
// on allocation failure.
OPENSSL_EXPORT int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
// BN_add_word adds |w| to |a|. It returns one on success and zero otherwise.
OPENSSL_EXPORT int BN_add_word(BIGNUM *a, BN_ULONG w);
// BN_sub sets |r| = |a| - |b|, where |r| may be the same pointer as either |a|
// or |b|. It returns one on success and zero on allocation failure.
OPENSSL_EXPORT int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
// BN_usub sets |r| = |a| - |b|, where |a| and |b| are non-negative integers,
// |b| < |a| and |r| may be the same pointer as either |a| or |b|. It returns
// one on success and zero on allocation failure.
OPENSSL_EXPORT int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
// BN_sub_word subtracts |w| from |a|. It returns one on success and zero on
// allocation failure.
OPENSSL_EXPORT int BN_sub_word(BIGNUM *a, BN_ULONG w);
// BN_mul sets |r| = |a| * |b|, where |r| may be the same pointer as |a| or
// |b|. Returns one on success and zero otherwise.
OPENSSL_EXPORT int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
BN_CTX *ctx);
// BN_mul_word sets |bn| = |bn| * |w|. It returns one on success or zero on
// allocation failure.
OPENSSL_EXPORT int BN_mul_word(BIGNUM *bn, BN_ULONG w);
// BN_sqr sets |r| = |a|^2 (i.e. squares), where |r| may be the same pointer as
// |a|. Returns one on success and zero otherwise. This is more efficient than
// BN_mul(r, a, a, ctx).
OPENSSL_EXPORT int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx);
// BN_div divides |numerator| by |divisor| and places the result in |quotient|
// and the remainder in |rem|. Either of |quotient| or |rem| may be NULL, in
// which case the respective value is not returned. The result is rounded
// towards zero; thus if |numerator| is negative, the remainder will be zero or
// negative. It returns one on success or zero on error.
OPENSSL_EXPORT int BN_div(BIGNUM *quotient, BIGNUM *rem,
const BIGNUM *numerator, const BIGNUM *divisor,
BN_CTX *ctx);
// BN_div_word sets |numerator| = |numerator|/|divisor| and returns the
// remainder or (BN_ULONG)-1 on error.
OPENSSL_EXPORT BN_ULONG BN_div_word(BIGNUM *numerator, BN_ULONG divisor);
// BN_sqrt sets |*out_sqrt| (which may be the same |BIGNUM| as |in|) to the
// square root of |in|, using |ctx|. It returns one on success or zero on
// error. Negative numbers and non-square numbers will result in an error with
// appropriate errors on the error queue.
OPENSSL_EXPORT int BN_sqrt(BIGNUM *out_sqrt, const BIGNUM *in, BN_CTX *ctx);
// Comparison functions
// BN_cmp returns a value less than, equal to or greater than zero if |a| is
// less than, equal to or greater than |b|, respectively.
OPENSSL_EXPORT int BN_cmp(const BIGNUM *a, const BIGNUM *b);
// BN_cmp_word is like |BN_cmp| except it takes its second argument as a
// |BN_ULONG| instead of a |BIGNUM|.
OPENSSL_EXPORT int BN_cmp_word(const BIGNUM *a, BN_ULONG b);
// BN_ucmp returns a value less than, equal to or greater than zero if the
// absolute value of |a| is less than, equal to or greater than the absolute
// value of |b|, respectively.
OPENSSL_EXPORT int BN_ucmp(const BIGNUM *a, const BIGNUM *b);
// BN_equal_consttime returns one if |a| is equal to |b|, and zero otherwise.
// It takes an amount of time dependent on the sizes of |a| and |b|, but
// independent of the contents (including the signs) of |a| and |b|.
OPENSSL_EXPORT int BN_equal_consttime(const BIGNUM *a, const BIGNUM *b);
// BN_abs_is_word returns one if the absolute value of |bn| equals |w| and zero
// otherwise.
OPENSSL_EXPORT int BN_abs_is_word(const BIGNUM *bn, BN_ULONG w);
// BN_is_zero returns one if |bn| is zero and zero otherwise.
OPENSSL_EXPORT int BN_is_zero(const BIGNUM *bn);
// BN_is_one returns one if |bn| equals one and zero otherwise.
OPENSSL_EXPORT int BN_is_one(const BIGNUM *bn);
// BN_is_word returns one if |bn| is exactly |w| and zero otherwise.
OPENSSL_EXPORT int BN_is_word(const BIGNUM *bn, BN_ULONG w);
// BN_is_odd returns one if |bn| is odd and zero otherwise.
OPENSSL_EXPORT int BN_is_odd(const BIGNUM *bn);
// BN_is_pow2 returns 1 if |a| is a power of two, and 0 otherwise.
OPENSSL_EXPORT int BN_is_pow2(const BIGNUM *a);
// Bitwise operations.
// BN_lshift sets |r| equal to |a| << n. The |a| and |r| arguments may be the
// same |BIGNUM|. It returns one on success and zero on allocation failure.
OPENSSL_EXPORT int BN_lshift(BIGNUM *r, const BIGNUM *a, int n);
// BN_lshift1 sets |r| equal to |a| << 1, where |r| and |a| may be the same
// pointer. It returns one on success and zero on allocation failure.
OPENSSL_EXPORT int BN_lshift1(BIGNUM *r, const BIGNUM *a);
// BN_rshift sets |r| equal to |a| >> n, where |r| and |a| may be the same
// pointer. It returns one on success and zero on allocation failure.
OPENSSL_EXPORT int BN_rshift(BIGNUM *r, const BIGNUM *a, int n);
// BN_rshift1 sets |r| equal to |a| >> 1, where |r| and |a| may be the same
// pointer. It returns one on success and zero on allocation failure.
OPENSSL_EXPORT int BN_rshift1(BIGNUM *r, const BIGNUM *a);
// BN_set_bit sets the |n|th, least-significant bit in |a|. For example, if |a|
// is 2 then setting bit zero will make it 3. It returns one on success or zero
// on allocation failure.
OPENSSL_EXPORT int BN_set_bit(BIGNUM *a, int n);
// BN_clear_bit clears the |n|th, least-significant bit in |a|. For example, if
// |a| is 3, clearing bit zero will make it two. It returns one on success or
// zero on allocation failure.
OPENSSL_EXPORT int BN_clear_bit(BIGNUM *a, int n);
// BN_is_bit_set returns one if the |n|th least-significant bit in |a| exists
// and is set. Otherwise, it returns zero.
OPENSSL_EXPORT int BN_is_bit_set(const BIGNUM *a, int n);
// BN_mask_bits truncates |a| so that it is only |n| bits long. It returns one
// on success or zero if |n| is negative.
//
// This differs from OpenSSL which additionally returns zero if |a|'s word
// length is less than or equal to |n|, rounded down to a number of words. Note
// word size is platform-dependent, so this behavior is also difficult to rely
// on in OpenSSL and not very useful.
OPENSSL_EXPORT int BN_mask_bits(BIGNUM *a, int n);
// BN_count_low_zero_bits returns the number of low-order zero bits in |bn|, or
// the number of factors of two which divide it. It returns zero if |bn| is
// zero.
OPENSSL_EXPORT int BN_count_low_zero_bits(const BIGNUM *bn);
// Modulo arithmetic.
// BN_mod_word returns |a| mod |w| or (BN_ULONG)-1 on error.
OPENSSL_EXPORT BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w);
// BN_mod_pow2 sets |r| = |a| mod 2^|e|. It returns 1 on success and
// 0 on error.
OPENSSL_EXPORT int BN_mod_pow2(BIGNUM *r, const BIGNUM *a, size_t e);
// BN_nnmod_pow2 sets |r| = |a| mod 2^|e| where |r| is always positive.
// It returns 1 on success and 0 on error.
OPENSSL_EXPORT int BN_nnmod_pow2(BIGNUM *r, const BIGNUM *a, size_t e);
// BN_mod is a helper macro that calls |BN_div| and discards the quotient.
#define BN_mod(rem, numerator, divisor, ctx) \
BN_div(NULL, (rem), (numerator), (divisor), (ctx))
// BN_nnmod is a non-negative modulo function. It acts like |BN_mod|, but 0 <=
// |rem| < |divisor| is always true. It returns one on success and zero on
// error.
OPENSSL_EXPORT int BN_nnmod(BIGNUM *rem, const BIGNUM *numerator,
const BIGNUM *divisor, BN_CTX *ctx);
// BN_mod_add sets |r| = |a| + |b| mod |m|. It returns one on success and zero
// on error.
OPENSSL_EXPORT int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
const BIGNUM *m, BN_CTX *ctx);
// BN_mod_add_quick acts like |BN_mod_add| but requires that |a| and |b| be
// non-negative and less than |m|.
OPENSSL_EXPORT int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
const BIGNUM *m);
// BN_mod_sub sets |r| = |a| - |b| mod |m|. It returns one on success and zero
// on error.
OPENSSL_EXPORT int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
const BIGNUM *m, BN_CTX *ctx);
// BN_mod_sub_quick acts like |BN_mod_sub| but requires that |a| and |b| be
// non-negative and less than |m|.
OPENSSL_EXPORT int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
const BIGNUM *m);
// BN_mod_mul sets |r| = |a|*|b| mod |m|. It returns one on success and zero
// on error.
OPENSSL_EXPORT int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
const BIGNUM *m, BN_CTX *ctx);
// BN_mod_sqr sets |r| = |a|^2 mod |m|. It returns one on success and zero
// on error.
OPENSSL_EXPORT int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m,
BN_CTX *ctx);
// BN_mod_lshift sets |r| = (|a| << n) mod |m|, where |r| and |a| may be the
// same pointer. It returns one on success and zero on error.
OPENSSL_EXPORT int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n,
const BIGNUM *m, BN_CTX *ctx);
// BN_mod_lshift_quick acts like |BN_mod_lshift| but requires that |a| be
// non-negative and less than |m|.
OPENSSL_EXPORT int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n,
const BIGNUM *m);
// BN_mod_lshift1 sets |r| = (|a| << 1) mod |m|, where |r| and |a| may be the
// same pointer. It returns one on success and zero on error.
OPENSSL_EXPORT int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m,
BN_CTX *ctx);
// BN_mod_lshift1_quick acts like |BN_mod_lshift1| but requires that |a| be
// non-negative and less than |m|.
OPENSSL_EXPORT int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a,
const BIGNUM *m);
// BN_mod_sqrt returns a newly-allocated |BIGNUM|, r, such that
// r^2 == a (mod p). |p| must be a prime. It returns NULL on error or if |a| is
// not a square mod |p|. In the latter case, it will add |BN_R_NOT_A_SQUARE| to
// the error queue.
OPENSSL_EXPORT BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p,
BN_CTX *ctx);
// Random and prime number generation.
// The following are values for the |top| parameter of |BN_rand|.
#define BN_RAND_TOP_ANY (-1)
#define BN_RAND_TOP_ONE 0
#define BN_RAND_TOP_TWO 1
// The following are values for the |bottom| parameter of |BN_rand|.
#define BN_RAND_BOTTOM_ANY 0
#define BN_RAND_BOTTOM_ODD 1
// BN_rand sets |rnd| to a random number of length |bits|. It returns one on
// success and zero otherwise.
//
// |top| must be one of the |BN_RAND_TOP_*| values. If |BN_RAND_TOP_ONE|, the
// most-significant bit, if any, will be set. If |BN_RAND_TOP_TWO|, the two
// most significant bits, if any, will be set. If |BN_RAND_TOP_ANY|, no extra
// action will be taken and |BN_num_bits(rnd)| may not equal |bits| if the most
// significant bits randomly ended up as zeros.
//
// |bottom| must be one of the |BN_RAND_BOTTOM_*| values. If
// |BN_RAND_BOTTOM_ODD|, the least-significant bit, if any, will be set. If
// |BN_RAND_BOTTOM_ANY|, no extra action will be taken.
OPENSSL_EXPORT int BN_rand(BIGNUM *rnd, int bits, int top, int bottom);
// BN_pseudo_rand is an alias for |BN_rand|.
OPENSSL_EXPORT int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom);
// BN_rand_range is equivalent to |BN_rand_range_ex| with |min_inclusive| set
// to zero and |max_exclusive| set to |range|.
OPENSSL_EXPORT int BN_rand_range(BIGNUM *rnd, const BIGNUM *range);
// BN_rand_range_ex sets |rnd| to a random value in
// [min_inclusive..max_exclusive). It returns one on success and zero
// otherwise.
OPENSSL_EXPORT int BN_rand_range_ex(BIGNUM *r, BN_ULONG min_inclusive,
const BIGNUM *max_exclusive);
// BN_pseudo_rand_range is an alias for BN_rand_range.
OPENSSL_EXPORT int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range);
#define BN_GENCB_GENERATED 0
#define BN_GENCB_PRIME_TEST 1
// bn_gencb_st, or |BN_GENCB|, holds a callback function that is used by
// generation functions that can take a very long time to complete. Use
// |BN_GENCB_set| to initialise a |BN_GENCB| structure.
//
// The callback receives the address of that |BN_GENCB| structure as its last
// argument and the user is free to put an arbitrary pointer in |arg|. The other
// arguments are set as follows:
// event=BN_GENCB_GENERATED, n=i: after generating the i'th possible prime
// number.
// event=BN_GENCB_PRIME_TEST, n=-1: when finished trial division primality
// checks.
// event=BN_GENCB_PRIME_TEST, n=i: when the i'th primality test has finished.
//
// The callback can return zero to abort the generation progress or one to
// allow it to continue.
//
// When other code needs to call a BN generation function it will often take a
// BN_GENCB argument and may call the function with other argument values.
struct bn_gencb_st {
void *arg; // callback-specific data
int (*callback)(int event, int n, struct bn_gencb_st *);
};
// BN_GENCB_set configures |callback| to call |f| and sets |callout->arg| to
// |arg|.
OPENSSL_EXPORT void BN_GENCB_set(BN_GENCB *callback,
int (*f)(int event, int n, BN_GENCB *),
void *arg);
// BN_GENCB_call calls |callback|, if not NULL, and returns the return value of
// the callback, or 1 if |callback| is NULL.
OPENSSL_EXPORT int BN_GENCB_call(BN_GENCB *callback, int event, int n);
// BN_generate_prime_ex sets |ret| to a prime number of |bits| length. If safe
// is non-zero then the prime will be such that (ret-1)/2 is also a prime.
// (This is needed for Diffie-Hellman groups to ensure that the only subgroups
// are of size 2 and (p-1)/2.).
//
// If |add| is not NULL, the prime will fulfill the condition |ret| % |add| ==
// |rem| in order to suit a given generator. (If |rem| is NULL then |ret| %
// |add| == 1.)
//
// If |cb| is not NULL, it will be called during processing to give an
// indication of progress. See the comments for |BN_GENCB|. It returns one on
// success and zero otherwise.
OPENSSL_EXPORT int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe,
const BIGNUM *add, const BIGNUM *rem,
BN_GENCB *cb);
// BN_prime_checks_for_validation can be used as the |checks| argument to the
// primarily testing functions when validating an externally-supplied candidate
// prime. It gives a false positive rate of at most 2^{-128}. (The worst case
// false positive rate for a single iteration is 1/4, so we perform 32
// iterations.)
#define BN_prime_checks_for_validation 32
// BN_prime_checks_for_generation can be used as the |checks| argument to the
// primality testing functions when generating random primes. It gives a false
// positive rate at most the security level of the corresponding RSA key size.
//
// Note this value only performs enough checks if the candidate prime was
// selected randomly. If validating an externally-supplied candidate, especially
// one that may be selected adversarially, use |BN_prime_checks_for_validation|
// instead.
#define BN_prime_checks_for_generation 0
// bn_primality_result_t enumerates the outcomes of primality-testing.
enum bn_primality_result_t {
bn_probably_prime,
bn_composite,
bn_non_prime_power_composite,
};
// BN_enhanced_miller_rabin_primality_test tests whether |w| is probably a prime
// number using the Enhanced Miller-Rabin Test (FIPS 186-4 C.3.2) with
// |checks| iterations and returns the result in |out_result|. Enhanced
// Miller-Rabin tests primality for odd integers greater than 3, returning
// |bn_probably_prime| if the number is probably prime,
// |bn_non_prime_power_composite| if the number is a composite that is not the
// power of a single prime, and |bn_composite| otherwise. It returns one on
// success and zero on failure. If |cb| is not NULL, then it is called during
// each iteration of the primality test.
//
// See |BN_prime_checks_for_validation| and |BN_prime_checks_for_generation| for
// recommended values of |checks|.
OPENSSL_EXPORT int BN_enhanced_miller_rabin_primality_test(
enum bn_primality_result_t *out_result, const BIGNUM *w, int checks,
BN_CTX *ctx, BN_GENCB *cb);
// BN_primality_test sets |*is_probably_prime| to one if |candidate| is
// probably a prime number by the Miller-Rabin test or zero if it's certainly
// not.
//
// If |do_trial_division| is non-zero then |candidate| will be tested against a
// list of small primes before Miller-Rabin tests. The probability of this
// function returning a false positive is at most 2^{2*checks}. See
// |BN_prime_checks_for_validation| and |BN_prime_checks_for_generation| for
// recommended values of |checks|.
//
// If |cb| is not NULL then it is called during the checking process. See the
// comment above |BN_GENCB|.
//
// The function returns one on success and zero on error.
OPENSSL_EXPORT int BN_primality_test(int *is_probably_prime,
const BIGNUM *candidate, int checks,
BN_CTX *ctx, int do_trial_division,
BN_GENCB *cb);
// BN_is_prime_fasttest_ex returns one if |candidate| is probably a prime
// number by the Miller-Rabin test, zero if it's certainly not and -1 on error.
//
// If |do_trial_division| is non-zero then |candidate| will be tested against a
// list of small primes before Miller-Rabin tests. The probability of this
// function returning one when |candidate| is composite is at most 2^{2*checks}.
// See |BN_prime_checks_for_validation| and |BN_prime_checks_for_generation| for
// recommended values of |checks|.
//
// If |cb| is not NULL then it is called during the checking process. See the
// comment above |BN_GENCB|.
//
// WARNING: deprecated. Use |BN_primality_test|.
OPENSSL_EXPORT int BN_is_prime_fasttest_ex(const BIGNUM *candidate, int checks,
BN_CTX *ctx, int do_trial_division,
BN_GENCB *cb);
// BN_is_prime_ex acts the same as |BN_is_prime_fasttest_ex| with
// |do_trial_division| set to zero.
//
// WARNING: deprecated: Use |BN_primality_test|.
OPENSSL_EXPORT int BN_is_prime_ex(const BIGNUM *candidate, int checks,
BN_CTX *ctx, BN_GENCB *cb);
// Number theory functions
// BN_gcd sets |r| = gcd(|a|, |b|). It returns one on success and zero
// otherwise.
OPENSSL_EXPORT int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
BN_CTX *ctx);
// BN_mod_inverse sets |out| equal to |a|^-1, mod |n|. If |out| is NULL, a
// fresh BIGNUM is allocated. It returns the result or NULL on error.
//
// If |n| is even then the operation is performed using an algorithm that avoids
// some branches but which isn't constant-time. This function shouldn't be used
// for secret values; use |BN_mod_inverse_blinded| instead. Or, if |n| is
// guaranteed to be prime, use
// |BN_mod_exp_mont_consttime(out, a, m_minus_2, m, ctx, m_mont)|, taking
// advantage of Fermat's Little Theorem.
OPENSSL_EXPORT BIGNUM *BN_mod_inverse(BIGNUM *out, const BIGNUM *a,
const BIGNUM *n, BN_CTX *ctx);
// BN_mod_inverse_blinded sets |out| equal to |a|^-1, mod |n|, where |n| is the
// Montgomery modulus for |mont|. |a| must be non-negative and must be less
// than |n|. |n| must be greater than 1. |a| is blinded (masked by a random
// value) to protect it against side-channel attacks. On failure, if the failure
// was caused by |a| having no inverse mod |n| then |*out_no_inverse| will be
// set to one; otherwise it will be set to zero.
//
// Note this function may incorrectly report |a| has no inverse if the random
// blinding value has no inverse. It should only be used when |n| has few
// non-invertible elements, such as an RSA modulus.
int BN_mod_inverse_blinded(BIGNUM *out, int *out_no_inverse, const BIGNUM *a,
const BN_MONT_CTX *mont, BN_CTX *ctx);
// BN_mod_inverse_odd sets |out| equal to |a|^-1, mod |n|. |a| must be
// non-negative and must be less than |n|. |n| must be odd. This function
// shouldn't be used for secret values; use |BN_mod_inverse_blinded| instead.
// Or, if |n| is guaranteed to be prime, use
// |BN_mod_exp_mont_consttime(out, a, m_minus_2, m, ctx, m_mont)|, taking
// advantage of Fermat's Little Theorem. It returns one on success or zero on
// failure. On failure, if the failure was caused by |a| having no inverse mod
// |n| then |*out_no_inverse| will be set to one; otherwise it will be set to
// zero.
int BN_mod_inverse_odd(BIGNUM *out, int *out_no_inverse, const BIGNUM *a,
const BIGNUM *n, BN_CTX *ctx);
// Montgomery arithmetic.
// BN_MONT_CTX contains the precomputed values needed to work in a specific
// Montgomery domain.
// BN_MONT_CTX_new_for_modulus returns a fresh |BN_MONT_CTX| given the modulus,
// |mod| or NULL on error. Note this function assumes |mod| is public.
OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_new_for_modulus(const BIGNUM *mod,
BN_CTX *ctx);
// BN_MONT_CTX_new_consttime behaves like |BN_MONT_CTX_new_for_modulus| but
// treats |mod| as secret.
OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_new_consttime(const BIGNUM *mod,
BN_CTX *ctx);
// BN_MONT_CTX_free frees memory associated with |mont|.
OPENSSL_EXPORT void BN_MONT_CTX_free(BN_MONT_CTX *mont);
// BN_MONT_CTX_copy sets |to| equal to |from|. It returns |to| on success or
// NULL on error.
OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to,
const BN_MONT_CTX *from);
// BN_MONT_CTX_set_locked takes |lock| and checks whether |*pmont| is NULL. If
// so, it creates a new |BN_MONT_CTX| and sets the modulus for it to |mod|. It
// then stores it as |*pmont|. It returns one on success and zero on error. Note
// this function assumes |mod| is public.
//
// If |*pmont| is already non-NULL then it does nothing and returns one.
int BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_MUTEX *lock,
const BIGNUM *mod, BN_CTX *bn_ctx);
// BN_to_montgomery sets |ret| equal to |a| in the Montgomery domain. |a| is
// assumed to be in the range [0, n), where |n| is the Montgomery modulus. It
// returns one on success or zero on error.
OPENSSL_EXPORT int BN_to_montgomery(BIGNUM *ret, const BIGNUM *a,
const BN_MONT_CTX *mont, BN_CTX *ctx);
// BN_from_montgomery sets |ret| equal to |a| * R^-1, i.e. translates values out
// of the Montgomery domain. |a| is assumed to be in the range [0, n*R), where
// |n| is the Montgomery modulus. Note n < R, so inputs in the range [0, n*n)
// are valid. This function returns one on success or zero on error.
OPENSSL_EXPORT int BN_from_montgomery(BIGNUM *ret, const BIGNUM *a,
const BN_MONT_CTX *mont, BN_CTX *ctx);
// BN_mod_mul_montgomery set |r| equal to |a| * |b|, in the Montgomery domain.
// Both |a| and |b| must already be in the Montgomery domain (by
// |BN_to_montgomery|). In particular, |a| and |b| are assumed to be in the
// range [0, n), where |n| is the Montgomery modulus. It returns one on success
// or zero on error.
OPENSSL_EXPORT int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a,
const BIGNUM *b,
const BN_MONT_CTX *mont, BN_CTX *ctx);
// Exponentiation.
// BN_exp sets |r| equal to |a|^{|p|}. It does so with a square-and-multiply
// algorithm that leaks side-channel information. It returns one on success or
// zero otherwise.
OPENSSL_EXPORT int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
BN_CTX *ctx);
// BN_mod_exp sets |r| equal to |a|^{|p|} mod |m|. It does so with the best
// algorithm for the values provided. It returns one on success or zero
// otherwise. The |BN_mod_exp_mont_consttime| variant must be used if the
// exponent is secret.
OPENSSL_EXPORT int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx);
// BN_mod_exp_mont behaves like |BN_mod_exp| but treats |a| as secret and
// requires 0 <= |a| < |m|.
OPENSSL_EXPORT int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx,
const BN_MONT_CTX *mont);
// BN_mod_exp_mont_consttime behaves like |BN_mod_exp| but treats |a|, |p|, and
// |m| as secret and requires 0 <= |a| < |m|.
OPENSSL_EXPORT int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a,
const BIGNUM *p, const BIGNUM *m,
BN_CTX *ctx,
const BN_MONT_CTX *mont);
// Deprecated functions
// BN_bn2mpi serialises the value of |in| to |out|, using a format that consists
// of the number's length in bytes represented as a 4-byte big-endian number,
// and the number itself in big-endian format, where the most significant bit
// signals a negative number. (The representation of numbers with the MSB set is
// prefixed with null byte). |out| must have sufficient space available; to
// find the needed amount of space, call the function with |out| set to NULL.
OPENSSL_EXPORT size_t BN_bn2mpi(const BIGNUM *in, uint8_t *out);
// BN_mpi2bn parses |len| bytes from |in| and returns the resulting value. The
// bytes at |in| are expected to be in the format emitted by |BN_bn2mpi|.
//
// If |out| is NULL then a fresh |BIGNUM| is allocated and returned, otherwise
// |out| is reused and returned. On error, NULL is returned and the error queue
// is updated.
OPENSSL_EXPORT BIGNUM *BN_mpi2bn(const uint8_t *in, size_t len, BIGNUM *out);
// BN_mod_exp_mont_word is like |BN_mod_exp_mont| except that the base |a| is
// given as a |BN_ULONG| instead of a |BIGNUM *|. It returns one on success
// or zero otherwise.
OPENSSL_EXPORT int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx,
const BN_MONT_CTX *mont);
// BN_mod_exp2_mont calculates (a1^p1) * (a2^p2) mod m. It returns 1 on success
// or zero otherwise.
OPENSSL_EXPORT int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1,
const BIGNUM *p1, const BIGNUM *a2,
const BIGNUM *p2, const BIGNUM *m,
BN_CTX *ctx, const BN_MONT_CTX *mont);
// BN_MONT_CTX_new returns a fresh |BN_MONT_CTX| or NULL on allocation failure.
// Use |BN_MONT_CTX_new_for_modulus| instead.
OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_new(void);
// BN_MONT_CTX_set sets up a Montgomery context given the modulus, |mod|. It
// returns one on success and zero on error. Use |BN_MONT_CTX_new_for_modulus|
// instead.
OPENSSL_EXPORT int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod,
BN_CTX *ctx);
// BN_bn2binpad behaves like |BN_bn2bin_padded|, but it returns |len| on success
// and -1 on error.
//
// Use |BN_bn2bin_padded| instead. It is |size_t|-clean.
OPENSSL_EXPORT int BN_bn2binpad(const BIGNUM *in, uint8_t *out, int len);
// BN_prime_checks is a deprecated alias for |BN_prime_checks_for_validation|.
// Use |BN_prime_checks_for_generation| or |BN_prime_checks_for_validation|
// instead. (This defaults to the |_for_validation| value in order to be
// conservative.)
#define BN_prime_checks BN_prime_checks_for_validation
// Private functions
struct bignum_st {
// d is a pointer to an array of |width| |BN_BITS2|-bit chunks in
// little-endian order. This stores the absolute value of the number.
BN_ULONG *d;
// width is the number of elements of |d| which are valid. This value is not
// necessarily minimal; the most-significant words of |d| may be zero.
// |width| determines a potentially loose upper-bound on the absolute value
// of the |BIGNUM|.
//
// Functions taking |BIGNUM| inputs must compute the same answer for all
// possible widths. |bn_minimal_width|, |bn_set_minimal_width|, and other
// helpers may be used to recover the minimal width, provided it is not
// secret. If it is secret, use a different algorithm. Functions may output
// minimal or non-minimal |BIGNUM|s depending on secrecy requirements, but
// those which cause widths to unboundedly grow beyond the minimal value
// should be documented such.
//
// Note this is different from historical |BIGNUM| semantics.
int width;
// dmax is number of elements of |d| which are allocated.
int dmax;
// neg is one if the number if negative and zero otherwise.
int neg;
// flags is a bitmask of |BN_FLG_*| values
int flags;
};
struct bn_mont_ctx_st {
// RR is R^2, reduced modulo |N|. It is used to convert to Montgomery form. It
// is guaranteed to have the same width as |N|.
BIGNUM RR;
// N is the modulus. It is always stored in minimal form, so |N.width|
// determines R.
BIGNUM N;
BN_ULONG n0[2]; // least significant words of (R*Ri-1)/N
};
OPENSSL_EXPORT unsigned BN_num_bits_word(BN_ULONG l);
#define BN_FLG_MALLOCED 0x01
#define BN_FLG_STATIC_DATA 0x02
// |BN_FLG_CONSTTIME| has been removed and intentionally omitted so code relying
// on it will not compile. Consumers outside BoringSSL should use the
// higher-level cryptographic algorithms exposed by other modules. Consumers
// within the library should call the appropriate timing-sensitive algorithm
// directly.
#if defined(__cplusplus)
} // extern C
#if !defined(BORINGSSL_NO_CXX)
extern "C++" {
BSSL_NAMESPACE_BEGIN
BORINGSSL_MAKE_DELETER(BIGNUM, BN_free)
BORINGSSL_MAKE_DELETER(BN_CTX, BN_CTX_free)
BORINGSSL_MAKE_DELETER(BN_MONT_CTX, BN_MONT_CTX_free)
class BN_CTXScope {
public:
BN_CTXScope(BN_CTX *ctx) : ctx_(ctx) { BN_CTX_start(ctx_); }
~BN_CTXScope() { BN_CTX_end(ctx_); }
private:
BN_CTX *ctx_;
BN_CTXScope(BN_CTXScope &) = delete;
BN_CTXScope &operator=(BN_CTXScope &) = delete;
};
BSSL_NAMESPACE_END
} // extern C++
#endif
#endif
#define BN_R_ARG2_LT_ARG3 100
#define BN_R_BAD_RECIPROCAL 101
#define BN_R_BIGNUM_TOO_LONG 102
#define BN_R_BITS_TOO_SMALL 103
#define BN_R_CALLED_WITH_EVEN_MODULUS 104
#define BN_R_DIV_BY_ZERO 105
#define BN_R_EXPAND_ON_STATIC_BIGNUM_DATA 106
#define BN_R_INPUT_NOT_REDUCED 107
#define BN_R_INVALID_RANGE 108
#define BN_R_NEGATIVE_NUMBER 109
#define BN_R_NOT_A_SQUARE 110
#define BN_R_NOT_INITIALIZED 111
#define BN_R_NO_INVERSE 112
#define BN_R_PRIVATE_KEY_TOO_LARGE 113
#define BN_R_P_IS_NOT_PRIME 114
#define BN_R_TOO_MANY_ITERATIONS 115
#define BN_R_TOO_MANY_TEMPORARY_VARIABLES 116
#define BN_R_BAD_ENCODING 117
#define BN_R_ENCODE_ERROR 118
#define BN_R_INVALID_INPUT 119
#endif // OPENSSL_HEADER_BN_H
|